УДК 517.518.6

Л. И. Данилов

О ПОЧТИ ПЕРИОДИЧЕСКИХ ПО БЕЗИКОВИЧУ СЕЧЕНИЯХ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ

Доказано, что почти периодические по Безиковичу многозначные отображения $\mathbb{R} \ni t \to F(t) \in \mathrm{cl} \mathcal{U}$ имеют почти периодические по Безиковичу сечения, где $\mathrm{cl} \mathcal{U}$ — множество непустых замкнутых подмножеств полного метрического пространства \mathcal{U} .

Ключевые слова: почти периодические функции, сечения, многозначные отображения

Введение

При исследовании почти периодических (п.п.) решений дифференциальных включений возникает вопрос о существовании п.п. сечений многозначных п.п. отображений. В [1, 2] был, в частности, поставлен вопрос о существовании п.п. по Вейлю и п.п. по Безиковичу сечений многозначных п.п. отображений. Известно, что п.п. по Бору многозначные отображения не всегда имеют п.п. по Бору сечения [3]. Существование п.п. по Степанову сечений многозначных п.п. по Степанову отображений было впервые доказано в [4] на основе результатов Фришковского [5]. В [6–9] исследовались п.п. по Степанову сечения, удовлетворяющие разнообразным дополнительным условиям. Существование п.п. по Вейлю сечений многозначных п.п. по Вейлю отображений доказано в [10–12].

В § 1 даны определения и сформулированы некоторые утверждения о п.п. по Безиковичу функциях, которые необходимы в дальнейшем (относительно определений и свойств п.п. функций см., например, [13, 14]). В § 2 приведены основные результаты работы. В § 3 и § 4 содержатся доказательства соответственно теорем 1 и 8.

§ 1. Некоторые свойства почти периодических по Безиковичу функций

Пусть (\mathcal{U}, ρ) — полное метрическое пространство, \overline{A} — замыкание множества $A \subseteq \mathcal{U}$, $U_r(x) = \{y \in \mathcal{U} : \rho(x,y) < r\}$, $x \in \mathcal{U}$, r > 0; meas —

мера Лебега на \mathbb{R} . Функция $f:\mathbb{R} \to \mathcal{U}$ называется элементарной, если существуют точки $x_j \in \mathcal{U}$ и непересекающиеся измеримые (по Лебегу) множества $T_j \subseteq \mathbb{R}$, $j \in \mathbb{N}$ такие, что meas $\mathbb{R} \setminus \bigcup_j T_j = 0$ и $f(t) = x_j$ для всех $t \in T_j$. Обозначим такую функцию через $f(.) = \sum_j x_j \chi_{T_j}(.)$ (где $\chi_T(.)$ — характеристическая функция множества $T \subseteq \mathbb{R}$). Для любых функций $f_j: \mathbb{R} \to \mathcal{U}, \ j \in \mathbb{N}$ определим функцию $\sum_j f_j(.)\chi_{T_j}(.): \mathbb{R} \to \mathcal{U}$, совпадающую с функцией $f_j(.)$ на множестве T_j , $j \in \mathbb{N}$ (обозначение $\sum_j f_j(.)\chi_{T_j}(.)$ будет использоваться не только в случае, когда пространство $\mathcal{U} = (\mathcal{H}, \|.\|)$ нормированное, но и в случае метрического пространства $\mathcal{U} = (\mathcal{U}, \rho)$, однако никаких линейных операций над такими функциями производиться не будет). Функция $f: \mathbb{R} \to \mathcal{U}$ (сильно) измерима, если для любого $\varepsilon > 0$ существует элементарная функция $f_\varepsilon: \mathbb{R} \to \mathcal{U}$ такая, что

ess sup
$$\rho(f(t), f_{\varepsilon}(t)) < \varepsilon$$
.

Пусть $M(\mathbb{R},\mathcal{U})$ — пространство измеримых функций $f:\mathbb{R}\to\mathcal{U}$ (функции, совпадающие при почти всех (п.в.) $t\in\mathbb{R}$, отождествляются), $(L^\infty(\mathbb{R},\mathcal{U}),D_\infty)$ — пространство в существенном ограниченных функций из $M(\mathbb{R},\mathcal{U})$ с метрикой

$$D_{\infty}(f,g) = \operatorname{ess sup}_{t \in \mathbb{P}} \rho(f(t),g(t)), \ f,g \in L^{\infty}(\mathbb{R},\mathcal{U}).$$

Фиксируем точку $x_0 \in \mathcal{U}$. Для $p \geqslant 1$ обозначим

$$M_p(\mathbb{R},\mathcal{U}) \doteq \{ f \in M(\mathbb{R},\mathcal{U}) : \sup_{\xi \in \mathbb{R}} \int_{\xi}^{\xi+1} \rho^p(f(t),x_0) dt < +\infty \}.$$

На множестве $M_p(\mathbb{R},\mathcal{U})$ определим метрику

$$D_p^{(S)}(f,g) = \left(\sup_{\xi \in \mathbb{R}} \int_{\xi}^{\xi+1} \rho^p(f(t), g(t)) dt\right)^{1/p}, \ f, g \in M_p(\mathbb{R}, \mathcal{U}).$$

Если $\mathcal{U}=(\mathcal{H},\|.\|)$ — банахово пространство ($\rho(x,y)=\|x-y\|,\ x,y\in\mathcal{H};\ \|x\|=|x|,\$ если $\ x\in\mathbb{R}$), то через

$$||f||_{\infty} = \operatorname{ess \ sup} ||f(t)||, \ f \in L^{\infty}(\mathbb{R}, \mathcal{H})$$

И

$$||f||_p^{(S)} = \left(\sup_{\xi \in \mathbb{R}} \int_{\xi}^{\xi+1} ||f(t)||^p dt\right)^{1/p}, \ f \in M_p(\mathbb{R}, \mathcal{H})$$

обозначим нормы на линейных пространствах $L^{\infty}(\mathbb{R},\mathcal{H})$ и $M_p(\mathbb{R},\mathcal{H})$, $p \geqslant 1$, соответственно.

В дальнейшем (без пояснений) будет использоваться обозначение \mathcal{H} для банахова пространства, при этом удобно будет считать банахово пространство $\mathcal{H} = (\mathcal{H}, \|.\|)$ комплексным. Если банахово пространство \mathcal{H} вещественное, то можно рассмотреть его комплексификацию $\mathcal{H}+i\mathcal{H}$, отождествляя пространство \mathcal{H} с вещественным подпространством.

Множество $T\subseteq\mathbb{R}$ называется *относительно плотным*, если существует число a>0 такое, что $[\xi,\xi+a]\cap T\neq\emptyset$ для всех $\xi\in\mathbb{R}$. Число $\tau\in\mathbb{R}$ называется (ε,D_∞) -почти периодом функции $f\in L^\infty(\mathbb{R},\mathcal{U})$, где $\varepsilon>0$, если $D_\infty(f(.),f(.+\tau))<\varepsilon$. Непрерывная функция $f\in C(\mathbb{R},\mathcal{U})\cap L^\infty(\mathbb{R},\mathcal{U})$ принадлежит пространству $CAP(\mathbb{R},\mathcal{U})$ п.п. по Бору функций, если для любого $\varepsilon>0$ множество (ε,D_∞) -почти периодов функции f относительно плотно. Число $\tau\in\mathbb{R}$ называется $(\varepsilon,D_p^{(S)})$ -почти периодом функции $f\in M_p(\mathbb{R},\mathcal{U}),\ p\geqslant 1$, если $D_p^{(S)}(f(.),f(.+\tau))<\varepsilon$. Функция $f\in M_p(\mathbb{R},\mathcal{U}),\ p\geqslant 1$ принадлежит пространству $S_p(\mathbb{R},\mathcal{U})$ п.п. по Степанову функций степени $p\geqslant 1$, если для любого $\varepsilon>0$ относительно плотно множество $(\varepsilon,D_p^{(S)})$ -почти периодов функции f.

На пространстве \mathcal{U} определим также метрику $\rho'(x,y) = \min\{1, \rho(x,y)\},$ $x,y \in \mathcal{U}; \ (\mathcal{U},\rho')$ — полное метрическое пространство. На множестве $M(\mathbb{R},\mathcal{U}) = M_1(\mathbb{R},(\mathcal{U},\rho'))$ введем метрику

$$D^{(S)}(f,g) = \sup_{\xi \in \mathbb{R}} \int_{\xi}^{\xi+1} \rho'(f(t),g(t)) dt, \ f,g \in M(\mathbb{R},\mathcal{U}).$$

Пусть $S(\mathbb{R},\mathcal{U}) \doteq S_1(\mathbb{R},(\mathcal{U},\rho'))$ (п.п. по Степанову функция $f \in S(\mathbb{R},\mathcal{U})$ определяется как п.п. по Степанову функция степени 1, принимающая значения в метрическом пространстве (\mathcal{U},ρ')). Справедливы вложения $CAP(\mathbb{R},\mathcal{U}) \subseteq S_p(\mathbb{R},\mathcal{U}) \subseteq S_1(\mathbb{R},\mathcal{U})$.

Последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ называется f-возвращающей для функции $f \in S(\mathbb{R}, \mathcal{U})$, если $D^{(S)}(f(.), f(. + \tau_j)) \to 0$ при $j \to +\infty$. Если $f \in CAP(\mathbb{R}, \mathcal{U}) \subseteq S(\mathbb{R}, \mathcal{U})$, то последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ является f-возвращающей тогда и только тогда, когда $D_\infty(f(.), f(. + \tau_j)) \to 0$ при $j \to +\infty$. Если $f \in S_p(\mathbb{R}, \mathcal{U}) \subseteq S(\mathbb{R}, \mathcal{U}), \ p \geqslant 1$, то последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ является f-возвращающей в том и только в том случае, если $D_p^{(S)}(f(.), f(. + \tau_j)) \to 0$ при $j \to +\infty$.

Для функций $f \in S(\mathbb{R}, \mathcal{U})$ через $\mathrm{Mod}\, f$ обозначается множество чисел $\lambda \in \mathbb{R}$ таких, что $e^{i\lambda \tau_j} \to 1$ ($i^2 = -1$) при $j \to +\infty$ для всех f-возвращающих последовательностей τ_j . Множество $\mathrm{Mod}\, f$ является модулем (аддитивной группой) в \mathbb{R} . Если функция $f \in S(\mathbb{R}, \mathcal{U})$ не совпадает почти всюду (п.в.) с постоянной функцией, то $\mathrm{Mod}\, f$ — счетный

модуль (в противном случае $\mathrm{Mod}\, f = \{0\}$). Если $\mathcal{U} = (\mathcal{H}, \|.\|)$ — банахово пространство, то для функций $f \in S_1(\mathbb{R}, \mathcal{H})$ множество $\mathrm{Mod}\, f$ является модулем показателей Фурье (частот) функции f.

Для любой функции $f \in S_p(\mathbb{R}, \mathcal{H})$ и любого $\varepsilon > 0$ существует функция $f_{\varepsilon} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что $\|f - f_{\varepsilon}\|_p^{(S)} < \varepsilon$ и $\operatorname{Mod} f_{\varepsilon} \subseteq \operatorname{Mod} f$ (более того, показатели Фурье функции f_{ε} принадлежат множеству показателей Фурье функции f). Если $f \in S(\mathbb{R}, \mathcal{H})$, то для любого $\varepsilon > 0$ найдется функция $f_{\varepsilon} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что $D^{(S)}(f, f_{\varepsilon}) < \varepsilon$ и $\operatorname{Mod} f_{\varepsilon} \subseteq \operatorname{Mod} f$.

Пусть $\mathcal{M}_p(\mathbb{R},\mathcal{U}),\ p\geqslant 1$ — пространство Марцинкевича, то есть множество функций $f\in M(\mathbb{R},\mathcal{U}),$ для которых $\rho(f(.),x_0)\in L^p_{\mathrm{loc}}(\mathbb{R},\mathbb{R})$ и

$$\overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{-b}^{b} \rho^{p}(f(t), x_{0}) dt < +\infty.$$

На множестве $\mathcal{M}_p(\mathbb{R},\mathcal{U})$ вводится полуметрика

$$D_p^{(B)}(f,g) = \left(\overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{-b}^{b} \rho^p(f(t),g(t)) dt \right)^{1/p}, \ f,g \in \mathcal{M}_p(\mathbb{R},\mathcal{U}).$$

Для банахова пространства $\mathcal{U} = (\mathcal{H}, \|.\|)$ определим также полунорму

$$||f||_p^{(B)} = \left(\overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{-b}^b ||f(t)||^p dt\right)^{1/p}, f \in \mathcal{M}_p(\mathbb{R}, \mathcal{H}).$$

Если для функций $f,g\in\mathcal{M}_p(\mathbb{R},\mathcal{U})$ ввести отношение эквивалентности: $f\sim g$ тогда и только тогда, когда $D_p^{(B)}(f,g)=0$, то фактор-пространство $(\mathcal{M}_p(\mathbb{R},\mathcal{U})/\sim,D_p^{(B)})$ становится полным метрическим пространством [15]. Имеем $M_p(\mathbb{R},\mathcal{U})\subseteq\mathcal{M}_p(\mathbb{R},\mathcal{U})$ и $D_p^{(B)}(f,g)\leqslant D_p^{(S)}(f,g)$ для всех функций $f,g\in M_p(\mathbb{R},\mathcal{U})$.

Функция $f \in \mathcal{M}_p(\mathbb{R},\mathcal{U}), p \geqslant 1$ принадлежит пространству $B_p(\mathbb{R},\mathcal{U})$ n.n. по Безиковичу функций степени p, если для любого $\varepsilon > 0$ существует функция $f_{\varepsilon} \in S_p(\mathbb{R},\mathcal{U})$ такая, что $D_p^{(B)}(f,f_{\varepsilon}) < \varepsilon$.

В силу теоремы Фреше [16] метрическое пространство (\mathcal{U}, ρ) может быть изометрически вложено в некоторое банахово пространство \mathcal{H} , поэтому приведенное определение пространства $B_p(\mathbb{R}, \mathcal{U})$ эквивалентно следующему определению: функция $f \in \mathcal{M}_p(\mathbb{R}, \mathcal{U})$ принадлежит пространству $B_p(\mathbb{R}, \mathcal{U})$, если для некоторого банахова пространства \mathcal{H} , в которое метрическое пространство (\mathcal{U}, ρ) изометрически вкладывается (и следовательно, для всех таких банаховых пространств \mathcal{H}), и для любого $\varepsilon > 0$ существует функция $f_{\varepsilon} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что $\|f - f_{\varepsilon}\|_p^{(B)} < \varepsilon$ (где $\|.\|_p^{(B)} -$ полунорма на пространстве $\mathcal{M}_p(\mathbb{R}, \mathcal{H})$ и предполагается, что функция f принимает значения в \mathcal{H}).

Для функций $f,g\in M(\mathbb{R},\mathcal{U})=\mathcal{M}_1(\mathbb{R},(\mathcal{U},\rho'))$ обозначим

$$D^{(B)}(f,g) = \overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{-b}^{b} \rho'(f(t), g(t)) dt.$$

Пусть $B(\mathbb{R}, \mathcal{U}) \doteq B_1(\mathbb{R}, (\mathcal{U}, \rho'))$ — пространство *п.п.* по Безиковичу функций (определяемых как п.п. по Безиковичу функции степени 1, принимающие значения в метрическом пространстве (\mathcal{U}, ρ')). Справедливы вложения $S(\mathbb{R}, \mathcal{U}) \subseteq B(\mathbb{R}, \mathcal{U})$ и $S_p(\mathbb{R}, \mathcal{U}) \subseteq B_p(\mathbb{R}, \mathcal{U}) \subseteq B_1(\mathbb{R}, \mathcal{U}) \subseteq B(\mathbb{R}, \mathcal{U})$.

Последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ называется f -возвращающей для функции $f \in B(\mathbb{R}, \mathcal{U})$, если $D^{(B)}(f(.), f(.+\tau_j)) \to 0$ при $j \to +\infty$. Если $f \in S(\mathbb{R}, \mathcal{U}) \subseteq B(\mathbb{R}, \mathcal{U})$, то последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ является f -возвращающей в том и только в том случае, если $D^{(S)}(f(.), f(.+\tau_j)) \to 0$ при $j \to +\infty$. Если $f \in B_p(\mathbb{R}, \mathcal{U}) \subseteq B(\mathbb{R}, \mathcal{U}), \ p \geqslant 1$, то последовательность $\tau_j \in \mathbb{R}, \ j \in \mathbb{N}$ является f -возвращающей тогда и только тогда, когда $D_p^{(B)}(f(.), f(.+\tau_j)) \to 0$ при $j \to +\infty$. (Множество f -возвращающих последовательностей определяется только самой п.п. функцией и не зависит от того, какому именно из рассматриваемых пространств п.п. функций функция f считается принадлежащей.)

Для функций $f \in B(\mathbb{R}, \mathcal{U})$ (по аналогии с функциями $f \in S(\mathbb{R}, \mathcal{U})$) обозначим через $\mathrm{Mod}\, f$ множество (модуль) чисел $\lambda \in \mathbb{R}$ таких, что $e^{i\lambda \tau_j} \to 1$ при $j \to +\infty$ для любой f-возвращающей последовательности τ_j . Если для некоторой постоянной функции $y(t) \equiv y \in \mathcal{U}, \ t \in \mathbb{R}$ имеем $D^{(B)}(f(.), y(.)) = 0$, то $\mathrm{Mod}\, f = \{0\}$. Если $D^{(B)}(f(.), y(.)) \neq 0$ для всех постоянных функций $y(t) \equiv y \in \mathcal{U}, \ t \in \mathbb{R}$, то $\mathrm{Mod}\, f$ — счетный модуль.

Пусть $f \in B(\mathbb{R}, \mathcal{U})$ и $\tau_j \in \mathbb{R}$, $j \in \mathbb{N}$ — такая последовательность, что $e^{i\lambda\tau_j} \to 1$ при $j \to +\infty$ для всех чисел $\lambda \in \operatorname{Mod} f$, тогда τ_j — f-возвращающая последовательность.

Для функции $f \in B_1(\mathbb{R}, \mathcal{H})$ через $\Lambda\{f\}$ будем обозначать множество показателей Фурье, то есть множество чисел $\lambda \in \mathbb{R}$, для которых

$$\lim_{b \to +\infty} \frac{1}{2b} \int_{-b}^{b} e^{-i\lambda t} f(t) dt \neq 0$$

(предел существует для всех чисел $\lambda \in \mathbb{R}$). Модуль Mod f функции $f \in B_1(\mathbb{R}, \mathcal{H})$ совпадает с модулем показателей Фурье $\lambda \in \Lambda\{f\}$, то есть с наименьшим модулем (аддитивной группой) в \mathbb{R} , содержащим множество $\Lambda\{f\}$.

Если $\Lambda_j \subseteq \mathbb{R}$ — произвольные модули (индекс j может принадлежать любому непустому индексному множеству), то через $\sum\limits_j \Lambda_j$ (или через Λ_1+

 $\cdots + \Lambda_n$ для конечного числа модулей Λ_j , $j=1,\ldots,n$) обозначается сумма модулей, определяемая как наименьший модуль в \mathbb{R} , содержащий все множества Λ_j .

Пусть $f \in B(\mathbb{R}, \mathcal{U})$, $f_j \in B(\mathbb{R}, \mathcal{U}_j)$, $j \in \mathbb{N}$, где \mathcal{U}_j — (полные) метрические пространства. Тогда $\mathrm{Mod}\, f \subseteq \sum_j \mathrm{Mod}\, f_j$ в том и только в том случае, если всякая f_j -возвращающая для всех $j \in \mathbb{N}$ последовательность $\tau_k \in \mathbb{R}$, $k \in \mathbb{N}$ является f-возвращающей. В частности, если $f_j \in B(\mathbb{R}, \mathcal{U}_j)$, j = 1, 2, то вложение $\mathrm{Mod}\, f_1 \subseteq \mathrm{Mod}\, f_2$ имеет место тогда и только тогда, когда всякая f_2 -возвращающая последовательность $\tau_k \in \mathbb{R}$, $k \in \mathbb{N}$ является f_1 -возвращающей.

Если $f \in M(\mathbb{R}, \mathcal{U}), f_j \in B(\mathbb{R}, \mathcal{U}), j \in \mathbb{N},$ и $D^{(B)}(f, f_j) \to 0$ при $j \to +\infty$, то $f \in B(\mathbb{R}, \mathcal{U})$ и $\operatorname{Mod} f \subseteq \sum_j \operatorname{Mod} f_j$.

Предложение 1. Для любой функции $f \in B_p(\mathbb{R}, \mathcal{H}), p \geqslant 1$ (где \mathcal{H} — комплексное банахово пространство) и любого $\varepsilon > 0$ существует функция $f_{\varepsilon} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что $\|f - f_{\varepsilon}\|_p^{(B)} < \varepsilon$ и $\Lambda\{f_{\varepsilon}\} \subseteq \Lambda\{f\}$. Если $f \in B(\mathbb{R}, \mathcal{H})$, то для любого $\varepsilon > 0$ найдется функция $f_{\varepsilon} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что $D^{(B)}(f, f_{\varepsilon}) < \varepsilon$ и $\Lambda\{f_{\varepsilon}\} \subseteq Mod f$.

Предложение 2. Для любой функции $f \in B_p(\mathbb{R}, \mathcal{U}), p \geqslant 1$ и любого $\varepsilon > 0$ существует функция $f_{\varepsilon} \in S_1(\mathbb{R}, \mathcal{U}) \cap L^{\infty}(\mathbb{R}, \mathcal{U}) \subseteq S_p(\mathbb{R}, \mathcal{U})$ такая, что $D_p^{(B)}(f, f_{\varepsilon}) < \varepsilon$ и $\operatorname{Mod} f_{\varepsilon} \subseteq \operatorname{Mod} f$. Если $f \in B(\mathbb{R}, \mathcal{U})$, то для любого $\varepsilon > 0$ найдется функция $f_{\varepsilon} \in S_1(\mathbb{R}, \mathcal{U}) \cap L^{\infty}(\mathbb{R}, \mathcal{U})$ такая, что $D^{(B)}(f, f_{\varepsilon}) < \varepsilon$ и $\operatorname{Mod} f_{\varepsilon} \subseteq \operatorname{Mod} f$.

Лемма 1. Пусть (U, ρ) и (V, ρ_V) — (полные) метрические пространства и $\mathcal{F}: U \to V$ — такая функция, что для некоторой константы $C \geqslant 0$ и всех $u_1, u_2 \in U$ справедлива оценка

$$\rho_{\mathcal{V}}(\mathcal{F}(u_1), \mathcal{F}(u_2)) \leqslant C \rho(u_1, u_2)$$
.

Тогда для любой функции $f \in B(\mathbb{R}, \mathcal{U})$ имеем $\mathcal{F}(f(.)) \in B(\mathbb{R}, \mathcal{V})$ и $\operatorname{Mod} \mathcal{F}(f(.)) \subseteq \operatorname{Mod} f(.)$. Если $f \in B_p(\mathbb{R}, \mathcal{U})$, $p \geqslant 1$, то также $\mathcal{F}(f(.)) \in B_p(\mathbb{R}, \mathcal{V})$.

Лемма 1 непосредственно вытекает из определения пространств $B(\mathbb{R},\mathcal{U})$ и $B_p(\mathbb{R},\mathcal{U}), \ p\geqslant 1.$

Следствие 1. Пусть $f \in B(\mathbb{R}, \mathcal{U}), x \in \mathcal{U}$. Тогда $\rho(f(.), x) \in B(\mathbb{R}, \mathbb{R})$ $u \operatorname{Mod} \rho(f(.), x) \subseteq \operatorname{Mod} f(.)$.

Для банахова пространства $(\mathcal{H}, \|.\|)$ и чисел a>0 определим функции

$$\mathcal{H}\ni h o \mathcal{F}_{\mathcal{H}}^a(h)=\left\{egin{array}{ll} h\,,& ext{если }\|h\|\leqslant a\,,\ a\|h\|^{-1}h\,,& ext{если }\|h\|>a\,. \end{array}
ight.$$

Для всех $h_1, h_2 \in \mathcal{H}$ имеем $\|\mathcal{F}_{\mathcal{H}}^a(h_1) - \mathcal{F}_{\mathcal{H}}^a(h_2)\| \leqslant 2 \|h_1 - h_2\|$, поэтому следующая лемма 2 является следствием леммы 1.

Лемма 2. Если $f \in B(\mathbb{R}, \mathcal{H})$, то для любого a > 0 функция $\mathcal{F}_{\mathcal{H}}^{a}(f(.))$ принадлежит множеству $B(\mathbb{R}, \mathcal{H}) \cap L^{\infty}(\mathbb{R}, \mathcal{H}) \subset B_{1}(\mathbb{R}, \mathcal{H})$ и справедливо вложение $\operatorname{Mod} \mathcal{F}_{\mathcal{H}}^{a}(f(.)) \subseteq \operatorname{Mod} f(.)$.

Для измеримого множества $T \subseteq \mathbb{R}$ обозначим

$$\widetilde{\varkappa}(T) = \overline{\lim_{b \to +\infty}} \frac{1}{2b} \text{ meas } [-b, b] \backslash T.$$

Для любых измеримых множеств имеем $T_1, T_2 \subseteq \mathbb{R}$ имеем $\widetilde{\varkappa}(T_1 \cap T_2) \leqslant \widetilde{\varkappa}(T_1) + \widetilde{\varkappa}(T_2)$.

Пусть $f,g \in M(\mathbb{R},\mathcal{U})$, $\varepsilon \in (0,1]$ и $\delta > 0$. Если $\widetilde{\varkappa}(\{t \in \mathbb{R} : \rho(f(t),g(t)) \leqslant \varepsilon\}) < \delta$, то $D^{(B)}(f,g) \leqslant \varepsilon + \delta$. Если $D^{(B)}(f,g) \leqslant \varepsilon \delta$, то $\widetilde{\varkappa}(\{t \in \mathbb{R} : \rho(f(t),g(t)) \leqslant \varepsilon\}) \leqslant \varepsilon^{-1}D^{(B)}(f,g) \leqslant \delta$. Поэтому (см. также предложение 1) справедлива лемма 3.

Лемма 3. Для любой функции $f \in B(\mathbb{R}, \mathcal{H})$ и любых чисел $\varepsilon, \delta > 0$ существует функция $f_{\varepsilon, \delta} \in CAP(\mathbb{R}, \mathcal{H})$ такая, что

$$\widetilde{\varkappa}(\{t \in \mathbb{R} : ||f(t) - f_{\varepsilon,\delta}(t)|| < \varepsilon\}) < \delta$$

 $u \ \Lambda\{f_{\varepsilon,\delta}\} \subseteq \operatorname{Mod} f.$

Следующая лемма 4 является следствием леммы 3 и теоремы Фреше.

Лемма 4. Пусть $f \in B(\mathbb{R}, \mathcal{U})$. Тогда $\widetilde{\varkappa}(\{t \in \mathbb{R} : \rho(f(t), x_0) \leqslant a\}) \to 0$ при $a \to +\infty$.

Лемма 5. Пусть $f \in B_p(\mathbb{R}, \mathcal{U}), p \geqslant 1$. Тогда

$$\overline{\lim_{b \to +\infty}} \ \frac{1}{2b} \ \int_{\{t \in [-b,b]: \rho(f(t),x_0) > a\}} \ \rho^p(f(t),x_0) \, dt \to 0$$

 $npu \ a \to +\infty.$

Лемма 5 является следствием предложения 2. Для доказательства леммы 6, обобщающей лемму 4, необходимо воспользоваться леммой 4, предкомпактностью множества $\bigcup_{t\in\mathbb{R}}g(t)\subset\mathcal{H}$ для любой функции $g\in CAP\left(\mathbb{R},\mathcal{H}\right)$ и теоремой Фреше.

Лемма 6. Пусть $f \in B(\mathbb{R}, \mathcal{U})$. Тогда для любых $\varepsilon, \delta > 0$ найдутся точки $x_j \in \mathcal{U}, \ j = 1, \dots, N$ (где $N \in \mathbb{N}$) такие, что

$$\widetilde{\varkappa}(\{t \in \mathbb{R} : f(t) \in \bigcup_{j=1}^{N} U_{\delta}(x_{j})\}) < \varepsilon.$$

Следствие 2. Пусть $f \in B(\mathbb{R}, \mathcal{U})$. Тогда существуют точки $x_j \in \mathcal{U}$, $j \in \mathbb{N}$ такие, что

- 1) meas $\{t \in \mathbb{R} : f(t) \notin \overline{\bigcup_{j \in \mathbb{N}} x_j}\} = 0$,
- 2) для всех $\delta > 0$

$$\widetilde{\varkappa}\left(\left\{t \in \mathbb{R} : f(t) \in \bigcup_{j=1}^{N} U_{\delta}(x_{j})\right\}\right) \to 0$$
(1.1)

 $npu\ N \to +\infty.$

Лемма 7. Пусть $f_1, f_2 \in B(\mathbb{R}, \mathcal{H})$. Тогда $f_1 + f_2 \in B(\mathbb{R}, \mathcal{H})$ и $\mathrm{Mod}(f_1 + f_2) \subseteq \mathrm{Mod} f_1 + \mathrm{Mod} f_2$. Если $f \in B(\mathbb{R}, \mathcal{H})$ и $g \in B(\mathbb{R}, \mathbb{C})$, то также $gf \in B(\mathbb{R}, \mathcal{H})$ и $\mathrm{Mod} gf \subseteq \mathrm{Mod} f + \mathrm{Mod} g$.

Лемма 7 означает, что пространство $B(\mathbb{R},\mathcal{H})$ является $B(\mathbb{R},\mathbb{C})$ – модулем.

Для $h \in (\mathcal{H}, \|.\|)$ обозначим

$$\operatorname{sgn} h = \begin{cases} \|h\|^{-1}h, & \operatorname{если} h \neq 0, \\ 0, & \operatorname{если} h = 0. \end{cases}$$

Лемма 8. Пусть $f \in B(\mathbb{R}, \mathcal{H})$. Предположим, что

$$\widetilde{\varkappa}\left(\left\{t \in \mathbb{R} : \|f(t)\| \geqslant \delta\right\}\right) \to 0$$
 (1.2)

при $\delta \to +0$. Тогда $\operatorname{sgn} f(.) \in B_1(\mathbb{R}, \mathcal{H})$ и $\operatorname{Mod} \operatorname{sgn} f(.) \subseteq \operatorname{Mod} f(.)$ (более того, для множества $T = \{t \in \mathbb{R} : f(t) = 0\}$ справедливо равенство $\|\chi_T(.)\|_1^{(B)} = 0$).

Доказательство. Определим функции $f_j(t) \doteq j\mathcal{F}_{\mathcal{H}}^{1/j}(f(t)),$ $j \in \mathbb{N}, \ t \in \mathbb{R}$. Из леммы 2 вытекает, что $f_j \in B_1(\mathbb{R},\mathcal{H})$ и $\mathrm{Mod}\, f_j \subseteq \mathrm{Mod}\, f$. С другой стороны, из условия (1.2) получаем, что $\|\chi_T(.)\|_1^{(B)} = 0$ и $\|\mathrm{sgn}\, f(.) - f_j(.)\|_1^{(B)} \to 0$ при $j \to +\infty$. Следовательно, $\mathrm{sgn}\, f(.) \in B_1(\mathbb{R},\mathcal{H})$ и $\mathrm{Mod}\, \mathrm{sgn}\, f(.) \subseteq \sum_i \mathrm{Mod}\, f_j \subseteq \mathrm{Mod}\, f(.)$.

Для функций $f,g \in \mathcal{M}_p(\mathbb{R},\mathcal{U}), p \geqslant 1$ положим

$$\beta_p(f,g) = \lim_{\delta \to +0} \left(\sup_{T \subseteq \mathbb{R} : \widetilde{\varkappa}(\mathbb{R} \setminus T) \leq \delta} \frac{\overline{\lim}}{b \to +\infty} \frac{1}{2b} \int_{T \cap [-b,b]} \rho^p(f(t),g(t)) dt \right)^{1/p}.$$

Функция $\beta_p(.,.)$ является полуметрикой (удовлетворяет неравенству треугольника) и $\beta_p(f,g)\leqslant D_p^{(B)}(f,g)$ для всех $f,g\in\mathcal{M}_p(\mathbb{R},\mathcal{U})$. Обозначим

$$\mathcal{M}_{p}^{0}(\mathbb{R},\mathcal{U}) \doteq \{ f \in \mathcal{M}_{p}(\mathbb{R},\mathcal{U}) : \beta_{p}(f(.),x_{0}(.)) = 0 \},$$

где $x_0(t) \equiv x_0$, $t \in \mathbb{R}$ (множество $\mathcal{M}_p^0(\mathbb{R}, \mathcal{U})$ не зависит от выбора точки $x_0 \in \mathcal{U}$); $L^{\infty}(\mathbb{R}, \mathcal{U}) \subseteq \mathcal{M}_p^0(\mathbb{R}, \mathcal{U})$.

Лемма 9. Для всех $p \geqslant 1$

$$B_p(\mathbb{R},\mathcal{U}) = B(\mathbb{R},\mathcal{U}) \bigcap \mathcal{M}_p^0(\mathbb{R},\mathcal{U}).$$

 \mathcal{A} о к а з а т е л ь с т в о. Имеем $B_p(\mathbb{R},\mathcal{U})\subseteq B(\mathbb{R},\mathcal{U})$. С другой стороны, для любой функции $f\in B_p(\mathbb{R},\mathcal{U})$ и любого $\varepsilon>0$ (в соответствии с предложением 2) существует функция $f_\varepsilon\in S_p(\mathbb{R},\mathcal{U})\cap L^\infty(\mathbb{R},\mathcal{U})$ такая, что $D_p^{(B)}(f,f_\varepsilon)<\varepsilon$. Откуда

$$\beta_p(f(.), x_0(.)) \leqslant \beta_p(f(.), f_{\varepsilon}(.)) + \beta_p(f_{\varepsilon}(.), x_0(.)) \leqslant$$
$$\leqslant \beta_p(f(.), f_{\varepsilon}(.)) \leqslant D_p^{(B)}(f, f_{\varepsilon}) < \varepsilon$$

и, следовательно (так как число $\varepsilon > 0$ можно выбирать сколь угодно малым), $\beta_p(f(.),x_0(.)) = 0$. Последнее равенство означает, что $B_p(\mathbb{R},\mathcal{U}) \subseteq \mathcal{M}_p^0(\mathbb{R},\mathcal{U})$. Докажем теперь вложение $B(\mathbb{R},\mathcal{U}) \cap \mathcal{M}_p^0(\mathbb{R},\mathcal{U}) \subseteq B_p(\mathbb{R},\mathcal{U})$. В соответствии с теоремой Фреше можно считать, что $\mathcal{U} = (\mathcal{H},\|.\|)$ — банахово пространство. Пусть $f \in B(\mathbb{R},\mathcal{H}) \cap \mathcal{M}_p^0(\mathbb{R},\mathcal{H}) \subset \mathcal{M}_p(\mathbb{R},\mathcal{H})$. Из леммы 4 и определения множества $\mathcal{M}_p^0(\mathbb{R},\mathcal{H})$ получаем, что для любого $\varepsilon > 0$ существует число $a = a(\varepsilon, f) > 0$ такое, что

$$\overline{\lim_{b\to +\infty}} \left(\frac{1}{2b} \int_{\{t\in [-b,b]: \|f(t)\|\geqslant a\}} \|f(t)\|^p dt \right)^{1/p} < \frac{\varepsilon}{2}.$$

Тогда $\mathcal{F}_{\mathcal{H}}^a(f(.)) \in B(\mathbb{R},\mathcal{H}) \cap L^{\infty}(\mathbb{R},\mathcal{H}) \subset B_p(\mathbb{R},\mathcal{H})$ и

$$||f(.) - \mathcal{F}_{\mathcal{H}}^{a}(f(.))||_{p}^{(B)} \leqslant$$

$$\leqslant \overline{\lim_{b\to +\infty}} \left(\frac{1}{2b} \int_{\{ t \in [-b,b] : \|f(t)\| > a \}} \|f(t)\|^p dt \right)^{1/p} < \frac{\varepsilon}{2}.$$

С другой стороны, существует функция $f_{a,\varepsilon} \in CAP(\mathbb{R},\mathcal{H})$ такая, что $\|f_{a,\varepsilon}\|_{\infty} \leqslant a$ и $\|\mathcal{F}^a_{\mathcal{H}}(f(.)) - f_{a,\varepsilon}(.)\|_p^{(B)} < \frac{\varepsilon}{2}$. Поэтому

$$||f - f_{a,\varepsilon}||_p^{(B)} \leqslant$$

$$\leqslant \|f(.) - \mathcal{F}_{\mathcal{H}}^{a}(f(.))\|_{p}^{(B)} + \|\mathcal{F}_{\mathcal{H}}^{a}(f(.)) - f_{a,\varepsilon}(.)\|_{p}^{(B)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

В силу произвольности выбора числа $\varepsilon > 0$ отсюда следует, что $f \in B_p(\mathbb{R}, \mathcal{H})$.

Пусть $(\operatorname{cl}_b \mathcal{U}, \operatorname{dist})$ — метрическое пространство непустых замкнутых ограниченных подмножеств $A \subseteq \mathcal{U}$ с метрикой Хаусдорфа

$$\operatorname{dist}(A,B) = \operatorname{dist}_{\rho}(A,B) = \max \left\{ \sup_{x \in A} \rho(x,B), \sup_{x \in B} \rho(x,A) \right\}, \ A,B \in \operatorname{cl}_b \mathcal{U},$$

где $\rho(x,F)=\inf_{y\in F}\rho(x,y)$ — расстояние от точки $x\in\mathcal{U}$ до непустого множества $F\subseteq\mathcal{U}$. Метрическое пространство $(\mathrm{cl}_b\mathcal{U},\mathrm{dist})$ является полным. Пусть $\mathrm{cl}\mathcal{U}$ — совокупность непустых замкнутых подмножеств $A\subseteq\mathcal{U}$. На $\mathrm{cl}\mathcal{U}=\mathrm{cl}_b(\mathcal{U},\rho')$ определяется метрика Хаусдорфа $\mathrm{dist}_{\rho'}$, соответствующая метрике ρ' . Метрическое пространство $(\mathrm{cl}\mathcal{U},\mathrm{dist}_{\rho'})$ также полное. Так как $\mathrm{dist}'(A,B)\doteq\min\{1,\mathrm{dist}(A,B)\}=\mathrm{dist}_{\rho'}(A,B)$ для всех $A,B\in\mathrm{cl}_b\mathcal{U}$, то вложение $(\mathrm{cl}_b\mathcal{U},\mathrm{dist}')\subseteq(\mathrm{cl}\mathcal{U},\mathrm{dist}_{\rho'})$ изометрично. Пространства $B(\mathbb{R},\mathrm{cl}_b\mathcal{U})$ и $B_p(\mathbb{R},\mathrm{cl}_b\mathcal{U}),\ p\geqslant 1,\ n.n.\ no\ Безиковичу\ многозначных\ отображений <math>\mathbb{R}\ni t\to F(t)\in\mathrm{cl}_b\mathcal{U}$ определяются как пространства п.п. по Безиковичу функций, принимающих значения в метрическом пространстве $(\mathrm{cl}_b\mathcal{U},\mathrm{dist})$. Положим $B(\mathbb{R},\mathrm{cl}\mathcal{U})\doteq B_1(\mathbb{R},(\mathrm{cl}\mathcal{U},\mathrm{dist}_{\rho'}))$. Справедливы вложения $B_p(\mathbb{R},\mathrm{cl}_b\mathcal{U})\subseteq B_1(\mathbb{R},\mathrm{cl}_b\mathcal{U})\subseteq B(\mathbb{R},\mathrm{cl}\mathcal{U})$.

§ 2. Основные результаты

Пусть $B(\mathbb{R})$ — совокупность измеримых подмножеств $T\subseteq\mathbb{R}$, для которых $\chi_T\in B_1(\mathbb{R},\mathbb{R})$. Для множеств $T\in B(\mathbb{R})$ положим $\mathrm{Mod}\,T\doteq\mathrm{Mod}\,\chi_T$.

Лемма 10. Пусть $T_1, T_2 \in B(\mathbb{R})$. Тогда $T_1 \bigcup T_2 \in B(\mathbb{R})$, $T_1 \cap T_2 \in B(\mathbb{R})$, $T_1 \setminus T_2 \in B(\mathbb{R})$, и модули $\operatorname{Mod} T_1 \bigcup T_2$, $\operatorname{Mod} T_1 \cap T_2$ и $\operatorname{Mod} T_1 \setminus T_2$ являются подмножествами (подгруппами) модуля $\operatorname{Mod} T_1 + \operatorname{Mod} T_2$.

Лемма 10 следует из леммы 7 (пространство $B(\mathbb{R},\mathbb{C})$ п.п. по Безиковичу функций $f:\mathbb{R}\to\mathbb{C}$ является алгеброй).

Для произвольного модуля $\Lambda \subseteq \mathbb{R}$ обозначим через $\mathfrak{M}^{(B)}(\Lambda)$ совокупность последовательностей $T_j \subseteq \mathbb{R}, \ j \in \mathbb{N},$ непересекающихся множеств $T_j \in B(\mathbb{R})$ таких, что $\operatorname{Mod} T_j \subseteq \Lambda, \ \operatorname{meas} \mathbb{R} \backslash \bigcup_j T_j = 0$ и $\widetilde{\varkappa}(\bigcup_{j \leqslant n} T_j) \to 0$ при $n \to +\infty$. Будем считать, что в $\mathfrak{M}^{(B)}(\Lambda)$ содержатся и соответствующие конечные последовательности $T_j, \ j = 1, \ldots, N$, которые всегда можно дополнить до счетных последовательностей, добавляя пустые множества. Множества T_j последовательностей $\{T_j\} \in \mathfrak{M}^{(B)}(\Lambda)$ будут также нумероваться с помощью нескольких индексов.

Лемма 11. Пусть $\Lambda \subseteq \mathbb{R}$ — произвольный модуль u $\{T_j^{(s)}\} \in \mathfrak{M}^{(B)}(\Lambda)$, s=1,2. Тогда $\{T_j^{(1)} \cap T_k^{(2)}\}_{j,k} \in \mathfrak{M}^{(B)}(\Lambda)$.

Лемма 11 является следствием леммы 10.

Если $\{T_j\} \in \mathfrak{M}^{(B)}(\Lambda)$ и $J \subseteq \mathbb{N}$ — произвольное непустое множество, то $\bigcup_{j \in J} T_j \in B(\mathbb{R})$ и $\operatorname{Mod} \bigcup_{j \in J} T_j \subseteq \sum_{j \in J} \operatorname{Mod} T_j$. Если $\|\chi_{T_j}\|_1^{(B)} = 0$ для всех $j \in J$, то также $\|\chi \bigcup_{j \in J} T_j\|_1^{(B)} = 0$.

Следующая лемма 12 вытекает из леммы 7 и теоремы Фреше.

Лемма 12. Пусть $\{T_j\} \in \mathfrak{M}^{(B)}(\mathbb{R})$ и $f_j \in B(\mathbb{R},\mathcal{U}), j \in \mathbb{N}$. Тогда

$$\sum_{j} f_{j}(.)\chi_{T_{j}}(.) \in B(\mathbb{R}, \mathcal{U})$$

u

$$\operatorname{Mod} \sum_{j} f_{j}(.)\chi_{T_{j}}(.) \subseteq \sum_{j} \operatorname{Mod} f_{j} + \sum_{j} \operatorname{Mod} T_{j}. \tag{2.1}$$

З а м е ч а н и е 1. В условиях леммы 12 для индексов $j \in \mathbb{N}$, для которых $\|\chi_{T_j}\|_1^{(B)} = 0$ (в этом случае $\operatorname{Mod} T_j = \{0\}$), можно выбирать произвольные функции $f_j \in M(\mathbb{R}, \mathcal{U})$ и исключить эти индексы при суммировании в правой части (2.1).

Теорема 1. Пусть $f \in B(\mathbb{R}, \mathcal{U})$. Тогда для любого $\varepsilon > 0$ найдутся последовательность $\{T_j\}_{j\in\mathbb{N}} \in \mathfrak{M}^{(B)}(\operatorname{Mod} f)$ и точки $x_j \in \mathcal{U}$, $j \in \mathbb{N}$ такие, что $\rho(f(t), x_j) < \varepsilon$ для всех $t \in T_j$, $j \in \mathbb{N}$.

Теорема 1 доказана в § 3. Эта теорема играет ключевую роль в данной работе. Аналогичные результаты (о равномерной аппроксимации элементарными п.п. функциями) для п.п. по Степанову и п.п. по Вейлю функций

получены соответственно в [6, 8] и [10, 12]. Для п.п. по Степанову функций более сильные утверждения (в том числе п.п. вариант теоремы Лузина) содержатся в [17] и [18, 19] (в двух последних работах п.п. по Степанову функции рассматриваются также на относительных компактах Бора).

Следствие 3. Пусть $f \in B(\mathbb{R}, \mathbb{R})$. Тогда для любых $a \in \mathbb{R}$ и $\varepsilon > 0$ существует множество $T \in B(\mathbb{R})$ такое, что $\operatorname{Mod} T \subseteq \operatorname{Mod} f$, $f(t) < a + \varepsilon$ при всех $t \in T$ и f(t) > a при n.s. $t \in \mathbb{R} \setminus T$.

Теорема 1 доказывается с помощью теоремы 8. В [20] приведено другое доказательство теоремы 1, основанное на теореме 2.

Теорема 2 (см. [20]). Пусть $f \in B(\mathbb{R}, \mathbb{R})$. Тогда найдется не более чем счетное множество $Y_f \subset \mathbb{R}$ такое, что для всех $\lambda \in \mathbb{R} \setminus Y_f$ справедливо включение $\{t \in \mathbb{R} : f(t) > \lambda\} \in B(\mathbb{R})$, $\operatorname{Mod} \{t \in \mathbb{R} : f(t) > \lambda\} \subseteq \operatorname{Mod} f$ и $\|\chi_{\{t \in \mathbb{R} : f(t) = \lambda\}}\|_1^{(B)} = 0$.

Следствие 3 также непосредственно вытекает из теоремы 2.

Теорема 3. Пусть (\mathcal{U}, ρ) — полное метрическое пространство, $F \in B(\mathbb{R}, \operatorname{cl} \mathcal{U})$ и $g \in B(\mathbb{R}, \mathcal{U})$. Тогда для любого $\varepsilon > 0$ существует функция $f \in B(\mathbb{R}, \mathcal{U})$ такая, что $\operatorname{Mod} f \subseteq \operatorname{Mod} F + \operatorname{Mod} g$, $f(t) \in F(t)$ п.в. и $\rho(f(t), g(t)) < \rho(g(t), F(t)) + \varepsilon$ п.в. Если, более того, $F \in B_p(\mathbb{R}, \operatorname{cl}_b \mathcal{U})$ для некоторого $p \geqslant 1$, то также $f \in B_p(\mathbb{R}, \mathcal{U})$.

Доказательство. Фиксируем число $\varepsilon \in (0,1]$. Выберем числа $\gamma_n > 0, n \in \mathbb{N}$ так, что $\sum_{n=1}^{+\infty} (\gamma_n + \gamma_{n+1}) < \frac{1}{6}$. Из лемм 10, 11 и теоремы 1 следует, что для каждого $n \in \mathbb{N}$ существуют множества $F_j^{(n)} \in \mathrm{cl}\,\mathcal{U}$, точки $g_j^n \in \mathcal{U}$ и непересекающиеся измеримые (по Лебегу) множества $T_j^{(n)} \subseteq \mathbb{R}$, $j \in \mathbb{N}$ такие, что $\{T_j^{(n)}\}_{j \in \mathbb{N}} \in \mathfrak{M}^{(B)}(\mathrm{Mod}\,F + \mathrm{Mod}\,g)$, функции F(t) и g(t) определены для всех $t \in \bigcup_j T_j^{(n)}$ и для всех $t \in T_j^{(n)}$, $j \in \mathbb{N}$ имеем $\mathrm{dist}_{\rho'}(F(t), F_j^{(n)}) < \gamma_n \varepsilon < 1$ и $\rho(g(t), g_j^n) < \gamma_n \varepsilon$. Положим $T = \bigcap_n \bigcup_j T_j^{(n)}$; meas $\mathbb{R} \setminus T = 0$. В силу леммы 11 для всех $n \in \mathbb{N}$

$$\{T_{j_1}^{(1)} \bigcap \cdots \bigcap T_{j_n}^{(n)}\}_{j_s \in \mathbb{N}, \ s=1,\dots,n} \in \mathfrak{M}^{(B)}(\operatorname{Mod} F + \operatorname{Mod} g).$$

Каждому числу $n \in \mathbb{N}$ и каждому набору $\{j_1, \ldots, j_n\}$ индексов $j_s \in \mathbb{N}$, $s = 1, \ldots, n$, для которых $T_{j_1}^{(1)} \cap \cdots \cap T_{j_n}^{(n)} \neq \emptyset$, поставим в соответствие

некоторую точку $f_{j_1...j_n} \in F_{j_n}^{(n)} \subseteq \mathcal{U}$. Эти точки определяются последовательно для $n=1,2,\ldots$. При n=1 точки $f_{j_1} \in F_{j_1}^{(1)}$ выберем так, чтобы выполнялись неравенства

$$\rho(f_{j_1}, g_{j_1}^1) < \frac{\varepsilon}{6} + \rho(g_{j_1}^1, F_{j_1}^{(1)}).$$

Если точки $f_{j_1...j_{n-1}}\in F_{j_{n-1}}^{(n-1)}$ уже найдены при некотором $n\geqslant 2$, то выберем точки $f_{j_1...j_{n-1}j_n}\in F_{j_n}^{(n)}$ так, что

$$\rho(f_{j_{1}...j_{n-1}}, f_{j_{1}...j_{n-1}j_{n}}) = \rho'(f_{j_{1}...j_{n-1}}, f_{j_{1}...j_{n-1}j_{n}}) \leqslant$$

$$\leq 2 \operatorname{dist}_{\rho'}(F_{j_{n-1}}^{(n-1)}, F_{j_{n}}^{(n)}) < 2 (\gamma_{n-1} + \gamma_{n}) \varepsilon < \frac{\varepsilon}{3} \leqslant \frac{1}{3}.$$
(2.2)

Определим теперь функции

$$f(n;t) = \sum_{j_1, \dots, j_n} f_{j_1 \dots j_n} \chi_{T_{j_1}^{(1)} \cap \dots \cap T_{j_n}^{(n)}}(t) , \ t \in T , \ n \in \mathbb{N}.$$

Из лемм 11 и 12 получаем, что $f(n;.) \in B(\mathbb{R},\mathcal{U})$ и $\mathrm{Mod}\, f(n;.) \subseteq \mathrm{Mod}\, F + \mathrm{Mod}\, g$. Из (2.2) следует, что при всех $t \in T$ и $n \geqslant 2$ выполняется неравенство

$$\rho(f(n-1;t), f(n;t)) < 2(\gamma_{n-1} + \gamma_n)\varepsilon.$$
(2.3)

Так как метрическое пространство \mathcal{U} полное, то из (2.3) вытекает, что последовательность функций $f(n;.), n \in \mathbb{N}$ сходится при $n \to +\infty$ равномерно на множестве T (поэтому и в метрике $D^{(B)}$) к функции $f(.) \in B(\mathbb{R},\mathcal{U})$, для которой $\mathrm{Mod}\, f \subseteq \sum_{n} \mathrm{Mod}\, f(n;.) \subseteq \mathrm{Mod}\, F + \mathrm{Mod}\, g$.

Имеем $f(n;t) \in F_{j_n}^{(n)}$ и $\operatorname{dist}_{\rho'}(F(t),F_{j_n}^{(n)}) < \gamma_n \varepsilon < \frac{1}{6}$ при всех $t \in T_{j_n}^{(n)} \cap T$. Отсюда (так как $\gamma_n \to 0$ при $n \to +\infty$) следует, что $f(t) \in F(t)$ при всех $t \in T$ (при п.в. $t \in \mathbb{R}$). Каждому числу $t \in T$ поставим в соответствие бесконечный набор нидексов $\{j_1,\ldots,j_n,\ldots\}$ таким образом, что $t \in T_{j_n}^{(n)}$, $n \in \mathbb{N}$. В результате (для всех $t \in T$) получаем

$$\rho(f(t), g(t)) \leqslant \sum_{n=1}^{+\infty} \rho(f_{j_1 \dots j_n}, f_{j_1 \dots j_n j_{n+1}}) + \rho(f_{j_1}, g_{j_1}^1) + \rho(g_{j_1}^1, g(t)) <$$

$$< 2 \sum_{j=1}^{+\infty} (\gamma_n + \gamma_{n+1}) \varepsilon + \frac{\varepsilon}{3} + \rho(g_{j_1}^1, F_{j_1}^{(1)}) <$$

$$<\frac{2\varepsilon}{3}+|\rho(g_{j_1}^1\,,F_{j_1}^{(1)})-\rho(g_{j_1}^1\,,F(t))|+|\rho(g_{j_1}^1\,,F(t))-\rho(g(t),F(t))|+\rho(g(t),F(t))<$$

2008. № 1

МАТЕМАТИКА

$$<\frac{2\varepsilon}{3} + \gamma_1 \varepsilon + \gamma_1 \varepsilon + \rho(g(t), F(t)) < \varepsilon + \rho(g(t), F(t)).$$

Если $F \in B_p(\mathbb{R}, \operatorname{cl}_b \mathcal{U}) \subseteq B(\mathbb{R}, \operatorname{cl} \mathcal{U}), \ p \geqslant 1$, то $f \in B_p(\mathbb{R}, \mathcal{U})$. Действительно, при п.в. $t \in \mathbb{R}$ справедлива оценка

$$\rho(f(t), x_0) \leqslant \sup_{x \in F(t)} \rho(x, x_0) = \text{dist}(F(t), \{x_0\})$$

и $\operatorname{dist}(F(.), \{x_0\}) \in \mathcal{M}_p^0(\mathbb{R}, \mathbb{R})$. Следовательно (см. лемму 9), $f(.) \in B(\mathbb{R}, \mathcal{U}) \cap \mathcal{M}_p^0(\mathbb{R}, \mathcal{U}) = B_p(\mathbb{R}, \mathcal{U})$.

Следствие 4. Пусть (\mathcal{U}, ρ) — полное сепарабельное метрическое пространство u $F \in B(\mathbb{R}, \operatorname{cl}\mathcal{U})$. Тогда существуют функции $f_j \in B(\mathbb{R}, \mathcal{U})$, $j \in \mathbb{N}$ такие, что $\operatorname{Mod} f_j \subseteq \operatorname{Mod} F$ u $F(t) = \bigcup_j f_j(t)$ при n.s. $t \in \mathbb{R}$ (если $F \in B_p(\mathbb{R}, \operatorname{cl}_b\mathcal{U}) \subseteq B(\mathbb{R}, \operatorname{cl}\mathcal{U})$, $p \geqslant 1$, то все функции f_j принадлежат пространству $B_p(\mathbb{R}, \mathcal{U})$).

Доказательство. Пусть точки $x_k \in \mathcal{U}, k \in \mathbb{N}$ образуют счетное плотное множество в метрическом пространстве \mathcal{U} . В соответствии с теоремой 3 для всех $k,n \in \mathbb{N}$ найдем функции $f_{k,n} \in B(\mathbb{R},\mathcal{U})$ такие, что $\mathrm{Mod}\, f_{k,n} \subseteq \mathrm{Mod}\, F, \ f_{k,n}(t) \in F(t)$ п.в. и $\rho(f_{k,n}(t),x_k) < 2^{-n} + \rho(x_k,F(t))$ п.в. Более того, в случае $F \in B_p(\mathbb{R},\mathrm{cl}_b\mathcal{U}), \ p \geqslant 1$ также имеем $f_{k,n} \in B_p(\mathbb{R},\mathcal{U}), \ k,n \in \mathbb{N}$. Теперь осталось перенумеровать функции $f_{k,n}$ с помощью одного индекса $j \in \mathbb{N}$.

Доказательство следующей теоремы 4 аналогично доказательству теоремы 1.3 из [10] (в которой рассматривались п.п. по Вейлю функции и многозначные отображения). Для доказательства теоремы 4 необходимо использовать теорему 3, следствие 3 и леммы 10 и 12. Аналогичный (теореме 4) результат для п.п. по Степанову функций и многозначных отображений приведен в [18, 19].

Теорема 4. Пусть (\mathcal{U}, ρ) — полное метрическое пространство, $F \in B(\mathbb{R}, \operatorname{cl} \mathcal{U})$ и $g \in B(\mathbb{R}, \mathcal{U})$. Тогда для любой неубывающей функции $[0, +\infty) \ni t \to \eta(t) \in \mathbb{R}$, для которой $\eta(0) = 0$ и $\eta(t) > 0$ при t > 0, существует функция $f \in B(\mathbb{R}, \mathcal{U})$ такая, что $\operatorname{Mod} f \subseteq \operatorname{Mod} F + \operatorname{Mod} g$, $f(t) \in F(t)$ п.в. и $\rho(f(t), g(t)) \leqslant \rho(g(t), F(t)) + \eta(\rho(g(t), F(t)))$ п.в. Если, кроме того, $F \in B_p(\mathbb{R}, \operatorname{cl} \mathcal{U}) \subseteq B(\mathbb{R}, \operatorname{cl} \mathcal{U})$, $p \geqslant 1$, то $f \in B_p(\mathbb{R}, \mathcal{U})$.

Следующие теоремы также доказываются (с использованием теорем 1, 3 и лемм 10, 11 и 12) аналогично соответствующим утверждениям для п.п. по Степанову [9, 18, 19] и п.п. по Вейлю [11] функций и многозначных отображений.

Точки $x_j \in \mathcal{U}, \ j=1,\ldots,n$ образуют ε -сеть для (непустого) множества $F\subseteq \mathcal{U}, \ \varepsilon>0,$ если $F\subseteq \bigcup_j U_\varepsilon(x_j).$

Теорема 5. Пусть (\mathcal{U}, ρ) — полное метрическое пространство, $F \in B(\mathbb{R}, \operatorname{cl}_b \mathcal{U})$ и $\varepsilon > 0$, $n \in \mathbb{N}$. Предположим, что при n.в. $t \in \mathbb{R}$ существуют точки $x_j(t) \in F(t)$, $j = 1, \ldots, n$, образующие ε -сеть для множества F(t). Тогда для любого $\varepsilon' > \varepsilon$ найдутся функции $f_j \in B(\mathbb{R}, \mathcal{U})$, $j = 1, \ldots, n$ такие, что $\operatorname{Mod} f_j \subseteq \operatorname{Mod} F$, $f_j(t) \in F(t)$ n.s. и при n.s. $t \in \mathbb{R}$ точки $f_j(t)$, $j = 1, \ldots, n$ образуют ε' -сеть для множества F(t).

Следствие 5. Пусть (\mathcal{U}, ρ) — компактное метрическое пространство. Тогда многозначное отображение $\mathbb{R} \ni t \to F(t) \in \operatorname{cl} \mathcal{U} = \operatorname{cl}_b \mathcal{U}$ принадлежит пространству $B(\mathbb{R},\operatorname{cl} \mathcal{U}) = B_1(\mathbb{R},\operatorname{cl}_b \mathcal{U})$ тогда и только тогда, когда для каждого $\varepsilon > 0$ найдутся число $n \in \mathbb{N}$ и функции $f_j \in B(\mathbb{R},\mathcal{U}) = B_1(\mathbb{R},\mathcal{U}), \ j = 1,\ldots,n$ такие, что $f_j(t) \in F(t)$ п.в. и точки $f_j(t), \ j = 1,\ldots,n$ при п.в. $t \in \mathbb{R}$ образуют ε -сеть для множества F(t) (более того, функции f_j для многозначного отображения $F \in B(\mathbb{R},\operatorname{cl} \mathcal{U})$ можно выбирать таким образом, что $\operatorname{Mod} f_j \subseteq \operatorname{Mod} F$).

Теорема 6. Пусть (\mathcal{U}, ρ) — компактное метрическое пространство. Тогда многозначное отображение $\mathbb{R} \ni t \to F(t) \in \mathrm{cl}\,\mathcal{U}$ принадлежит пространству $B(\mathbb{R},\mathrm{cl}\,\mathcal{U})$ тогда и только тогда, когда существуют функции $f_j \in B(\mathbb{R},\mathcal{U}), \ j \in \mathbb{N}$ такие, что $F(t) = \bigcup_j f(t)$ п.в. и множество $\{f_j(.): j \in \mathbb{N}\}$ предкомпактно в метрическом пространстве $L^\infty(\mathbb{R},\mathcal{U})$ (более того, функции f_j для многозначного отображения $F \in B(\mathbb{R},\mathrm{cl}\,\mathcal{U})$ могут быть выбраны таким образом, что $\mathrm{Mod}\, f_j \subseteq \mathrm{Mod}\, F$).

Для непустого множества $F\subseteq\mathcal{U}$ будем использовать обозначение $F^{\delta}=\{x\in\mathcal{U}: \rho(x,F)<\delta\},\ \delta>0.$

Теорема 7. Пусть (\mathcal{U}, ρ) — полное метрическое пространство, $F \in B(\mathbb{R}, \operatorname{cl}_b \mathcal{U})$, $\varepsilon > 0$, $\delta > 0$, $n \in \mathbb{N}$, u $g_j \in B(\mathbb{R}, \mathcal{U})$, $j = 1, \ldots, n$. Предположим, что при п.в. $t \in \mathbb{R}$ множество точек $x_j(t) = g_j(t)$, для которых $g_j(t) \in (F(t))^\delta$, может быть дополнено (если состоит меньше чем из n точек) до n точек $x_j(t) \in (F(t))^\delta$, $j = 1, \ldots, n$, образующих ε -сеть для множества F(t) (совпадающие точки c разными индексами здесь рассматриваются как разные точки). Тогда для любого $\varepsilon' > \varepsilon + \delta$ существуют функции $f_j \in B(\mathbb{R}, \mathcal{U})$, $j = 1, \ldots, n$ такие, что $\operatorname{Mod} f_j \subseteq \operatorname{Mod} F + \sum_{k=1}^n \operatorname{Mod} g_k$, $f_j(t) \in F(t)$ п.в., $f_j(t) = g_j(t)$ при п.в. $t \in \{\tau \in \mathbb{R} : g_j(\tau) \in F(\tau)\}$ и точки $f_j(t)$, $j = 1, \ldots, n$ при п.в. $t \in \mathbb{R}$ образуют ε' -сеть для множества F(t).

Пусть (\mathcal{U}, ρ) и $(\mathcal{V}, \rho_{\mathcal{V}})$ — полные метрические пространства и $C(\mathcal{U}, \mathcal{V})$ — пространство непрерывных функций $\mathcal{F}: \mathcal{U} \to \mathcal{V}$, наделенное метрикой

$$d_{C(\mathcal{U},\mathcal{V})}(\mathcal{F}_1,\mathcal{F}_2) = \sup_{x \in \mathcal{U}} \min \left\{ 1, \rho_{\mathcal{V}}(\mathcal{F}_1(x),\mathcal{F}_2(x)) \right\}, \ \mathcal{F}_1, \mathcal{F}_2 \in C(\mathcal{U},\mathcal{V}).$$

Через $\mathcal{F}(.|Y)$ обозначается ограничение функции $\mathcal{F}: \mathcal{U} \to \mathcal{V}$ на непустое подмножество $Y \subseteq \mathcal{U}$. В следующих леммах рассматривается суперпозиция п.п. по Безиковичу функций.

Лемма 13. Пусть (\mathcal{U}, ρ) и $(\mathcal{V}, \rho_{\mathcal{V}})$ — полные метрические пространства, $\mathcal{F} \in C(\mathcal{U}, \mathcal{V})$ и $f \in B(\mathbb{R}, \mathcal{U})$. Тогда $\mathcal{F}(f(.)) \in B(\mathbb{R}, \mathcal{V})$ и $\operatorname{Mod} \mathcal{F}(f(.)) \subseteq \operatorname{Mod} f(.)$.

Доказательство. Имеем $\mathcal{F}(f(.)) \in M(\mathbb{R},\mathcal{V}) = \mathcal{M}_1(\mathbb{R},(\mathcal{V},\rho'_{\mathcal{V}})).$ Пусть $\varepsilon \in (0,1],~\delta>0.$ Из теоремы 1 следует, что для каждого $k\in\mathbb{N}$ существуют последовательность $\{T_j^{(k)}\}_{j\in\mathbb{N}}\in\mathfrak{M}^{(B)}(\mathrm{Mod}\,f)$ и точки $x_j^{(k)}\in\mathcal{U},~j\in\mathbb{N}$ такие, что $\rho(f(t),x_j^{(k)})< k^{-1}$ для всех $t\in T_j^{(k)},~j\in\mathbb{N}$. Выберем числа $j(k)\in\mathbb{N},~k\in\mathbb{N},$ для которых

$$\widetilde{\varkappa}\left(\bigcup_{j=1}^{j(k)}T_j^{(k)}\right)<2^{-k}\varepsilon$$
.

Положим $X_1 = \bigcup_{j \leqslant j(1)} x_j^{(1)}$. Для каждого $k \in \mathbb{N} \backslash \{1\}$ обозначим через

 X_k множество тех точек $x_j^{(k)},\ j=1,\ldots,j(k),$ для которых для любого $k'=1,\ldots,k-1$ существует точка $x_{j'}^{(k')},\ j'=1,\ldots,j(k')$ такая, что $\rho(x_j^{(k)},x_{j'}^{(k')})< k^{-1}+(k')^{-1}< 2(k')^{-1}.$ Если $T_{j_1}^{(1)}\bigcap\cdots\bigcap T_{j_k}^{(k)}\neq\emptyset,\ k\in\mathbb{N},$ где $j_s\in\{1,\ldots,j(s)\},\ s=1,\ldots,k,$ то $x_{j_k}^{(k)}\in X_k$, поэтому из предкомпактности множества $\bigcup\limits_{k\in\mathbb{N}}X_k\subseteq\mathcal{U}$ и непрерывности функции \mathcal{F} следует

существование такого числа $k_0 \in \mathbb{N}$, что для всех $j_k = 1, \dots, j(k)$, где $k = 1, \dots, k_0$, и всех $t, t' \in T_{j_1}^{(1)} \cap \dots \cap T_{j_{k_0}}^{(k_0)}$ справедливо неравенство

$$\rho_{\mathcal{V}}(\mathcal{F}(f(t)), \mathcal{F}(f(t'))) < \delta$$
.

В случае $T_{j_1}^{(1)} \cap \cdots \cap T_{j_{k_0}}^{(k_0)} \neq \emptyset$, где $j_k \in \{1,\ldots,j(k)\}$, $k=1,\ldots,k_0$, выберем (какие-либо) числа $t_{j_1\ldots j_{k_0}} \in T_{j_1}^{(1)} \cap \cdots \cap T_{j_{k_0}}^{(k_0)}$. Положим

$$T(k_0) = \bigcap_{k=1,\dots,k_0} \bigcup_{j_k=1}^{j(k)} T_{j_k}^{(k)}.$$

Из лемм 10 и 12 следует, что

$$\mathcal{G}_{k_0}(.) \doteq \sum_{j_k = 1, \dots, j(k); \ k = 1, \dots, k_0} \mathcal{F}(f(t_{j_1 \dots j_{k_0}})) \chi_{T_{j_1}^{(1)} \cap \dots \cap T_{j_{k_0}}^{(k_0)}}(.) + y_0 \chi_{\mathbb{R} \setminus T(k_0)}(.) \in B(\mathbb{R}, \mathcal{V}),$$

где $y_0 \in \mathcal{V}$, и

$$\operatorname{Mod} \mathcal{G}_{k_0}(.) \subseteq \sum_{j_k = 1, \dots, j(k); \ k = 1, \dots, k_0} \operatorname{Mod} T_{j_k}^{(k)} \subseteq \operatorname{Mod} f(.).$$

Более того, $\rho_{\mathcal{V}}(\mathcal{F}(f(t)), \mathcal{G}_{k_0}(t)) < \delta$ для всех $t \in T(k_0)$ и

$$\widetilde{\varkappa}(T(k_0)) \leqslant \sum_{k=1,\dots,k_0} \widetilde{\varkappa}\left(\bigcup_{j_k=1}^{j(k)} T_{j_k}^{(k)}\right) < \sum_{k=1,\dots,k_0} 2^{-k} \varepsilon < \varepsilon.$$

Следовательно, $D^{(B)}(\mathcal{F}(f(.)), \mathcal{G}_{k_0}(.)) < \varepsilon + \delta$. Так как числа $\varepsilon > 0$ и $\delta > 0$ могут быть выбраны сколь угодно малыми, то из последнего неравенства следует, что $\mathcal{F}(f(.)) \in B(\mathbb{R}, \mathcal{V})$ и $\operatorname{Mod} \mathcal{F}(f(.)) \subseteq \operatorname{Mod} f(.)$.

Лемма 14. Пусть (\mathcal{U}, ρ) и $(\mathcal{V}, \rho_{\mathcal{V}})$ — полные метрические пространства. Предположим, что функция $\mathbb{R} \ni t \to \mathcal{F}(.;t) \in C(\mathcal{U}, \mathcal{V})$ принадлежит пространству $B_1(\mathbb{R}, (C(\mathcal{U}, \mathcal{V}), d_{C(\mathcal{U}, \mathcal{V})}))$ и $f \in B(\mathbb{R}, \mathcal{U})$. Тогда $\mathcal{F}(f(.);.) \in B(\mathbb{R}, \mathcal{V})$ и $\operatorname{Mod} \mathcal{F}(f(.);.) \subseteq \operatorname{Mod} \mathcal{F}(.;.) + \operatorname{Mod} f(.)$.

Доказательство. Из теоремы 1 следует, что для любого $\varepsilon > 0$ найдутся последовательность $\{T_j\}_{j\in\mathbb{N}}\in\mathfrak{M}^{(B)}(\mathrm{Mod}\,\mathcal{F}(.;.))$ и функции $\mathcal{F}_j\in C(\mathcal{U},\mathcal{V}),\ j\in\mathbb{N}$ такие, что $d_{C(\mathcal{U},\mathcal{V})}(\mathcal{F}(.;t),\mathcal{F}_j(.))<\varepsilon$ для всех $t\in T_j$, $j\in\mathbb{N}$. Из лемм 12 и 13 получаем

$$\sum_{j\in\mathbb{N}} \mathcal{F}_j(f(.)) \chi_{T_j}(.) \in B(\mathbb{R}, \mathcal{V}),$$

$$\operatorname{Mod} \sum_{j \in \mathbb{N}} \mathcal{F}_j(f(.)) \chi_{T_j}(.) \subseteq \operatorname{Mod} \mathcal{F}(.;.) + \operatorname{Mod} f(.).$$

С другой стороны, $\mathcal{F}(f(.);.) \in M(\mathbb{R},\mathcal{V}) = \mathcal{M}_1(\mathbb{R},(\mathcal{V},\rho_{\mathcal{V}}'))$ и

$$D^{(B)}(\mathcal{F}(f(.);.), \sum_{j\in\mathbb{N}} \mathcal{F}_j(f(.)) \chi_{T_j}(.)) < \varepsilon.$$

Так как число $\varepsilon > 0$ может быть выбрано сколь угодно малым, то отсюда получаем, что $\mathcal{F}(f(.);.) \in B(\mathbb{R},\mathcal{V})$ и $\operatorname{Mod} \mathcal{F}(f(.);.) \subseteq \operatorname{Mod} \mathcal{F}(.;.) + \operatorname{Mod} f(.)$.

З а м е ч а н и е 2. Из лемм 9, 12, 13 и теоремы 1 вытекает следующее утверждение. Пусть (\mathcal{U}, ρ) и $(\mathcal{V}, \rho_{\mathcal{V}})$ — полные метрические пространства, r > 0 и $p \geqslant 1$. Предположим, что функция $\mathbb{R} \ni t \to \mathcal{F}(.;t) \in C(\mathcal{U}, \mathcal{V})$ удовлетворяет следующим двум условиям:

1) для каждого $x \in \mathcal{U}$ функция $\mathbb{R} \ni t \to \mathcal{F}(.|_{U_r(x)};t) \in C(U_r(x),\mathcal{V})$ принадлежит пространству

$$B_1(\mathbb{R}, (C(U_r(x), \mathcal{V}), d_{C(U_r(x), \mathcal{V})}));$$

2) существуют число $C \geqslant 0$ и функция $A(.) \in \mathcal{M}_p^0(\mathbb{R}, \mathbb{R})$ такие, что при п.в. $t \in \mathbb{R}$ неравенство $\rho_{\mathcal{V}}(\mathcal{F}(x;t),y_0) \leqslant C\rho(x,x_0) + A(t)$ выполняется для всех $x \in \mathcal{U}$, где $x_0 \in \mathcal{U}$ и $y_0 \in \mathcal{V}$ — некоторые фиксированные точки. Тогда для любой функции $f \in B_p(\mathbb{R}, \mathcal{U})$ имеем $\mathcal{F}(f(.);.) \in B_p(\mathbb{R}, \mathcal{V})$ и

$$\operatorname{Mod} \mathcal{F}(f(.); .) \subseteq \operatorname{Mod} f(.) + \sum_{x \in \mathcal{U}} \operatorname{Mod} \mathcal{F}(.|_{U_r(x)}; .).$$

§ 3. Доказательство теоремы 1

Пусть $\mathcal{A}^{(B)}$ — совокупность множеств $\mathbb{F} \subset B(\mathbb{R},\mathbb{R})$ таких, что

$$\lim_{\tau_0 \to +0} \sup_{f \in \mathbb{F}} \sup_{\tau \in [0,\tau_0]} D^{(B)}(f(.), f(.+\tau)) = 0.$$

Если $f \in B_p(\mathbb{R}, \mathcal{U}), p \geqslant 1$, то $D_p^{(B)}(f(.), f(.+\tau)) \to 0$ при $\tau \to 0$. Если $f \in B(\mathbb{R}, \mathcal{U})$, то $D^{(B)}(f(.), f(.+\tau)) \to 0$ при $\tau \to 0$. Отсюда, в частности, следует, что $\{f(.) + a : a \in \mathbb{R}\} \in \mathcal{A}^{(B)}$ для любой функции $f \in B(\mathbb{R}, \mathbb{R})$.

Для измеримого множества $T \subseteq \mathbb{R}$ обозначим

$$\varkappa\left(T\right) \doteq \widetilde{\varkappa}\left(\mathbb{R}\backslash T\right) = \overline{\lim_{b \to +\infty}} \ \frac{1}{2b} \ \mathrm{meas}\left[-b,b\right] \bigcap T \,.$$

Если T_1 , $T_2 \subseteq \mathbb{R}$ — измеримые множества, то $\varkappa\left(T_1 \cup T_2\right) \leqslant \varkappa\left(T_1\right) + \varkappa\left(T_2\right)$.

Доказательство приводимой далее теоремы 8 содержится в § 4. Частный случай этой теоремы для (одноэлементных) множеств $\mathbb{F} = \{f\}, f \in B(\mathbb{R}, \mathbb{R})$ существенно используется при доказательстве теоремы 1.

Теорема 8. Пусть $\mathbb{F} \in \mathcal{A}^{(B)}$, $\Delta > 0$, b > 0. Тогда найдется периодическая с периодом b функция $g \in C(\mathbb{R}, \mathbb{R})$ (зависящая от \mathbb{F} , Δ $(u \ b)$), для которой $||g||_{\infty} < \Delta$, u такая, что для любого $\varepsilon \in (0,1]$ найдется число $\delta = \delta(\varepsilon, \Delta) > 0$ такое, что для всех функций $f \in \mathbb{F}$ справедливо неравенство

$$\varkappa\left(\left\{t\in\mathbb{R}:|f(t)+g(t)|<\delta\right\}\right)<\varepsilon\,.$$

Д о к а з а т е л ь с т в о теоремы 1. Если $\mathrm{Mod}\, f = \{0\}$, то существует постоянная функция $f_0(t) \equiv f_0 \in \mathcal{U}, \ t \in \mathbb{R}$ такая, что $D^{(B)}(f(.), f_0(.)) = 0$, поэтому найдется множество $T \in B(\mathbb{R})$, для которого $\widetilde{\varkappa}(T) = 0$ и $\rho(f(t), f_0) < \varepsilon$ для всех $t \in T$. Отсюда (и из измеримости функции f(.)) следует доказываемое утверждение (при этом можно положить $T_1 = T$). Предположим теперь, что $\mathrm{Mod}\, f \neq \{0\}$. Пусть $x_j \in \mathcal{U}, \ j \in \mathbb{N}$ — точки, определяемые в следствии 2 для функции $f \in B(\mathbb{R}, \mathcal{U})$. Из следствия 1 получаем, что для всех $j \in \mathbb{N}$ справедливо включение $\rho(f(.), x_j) \in B(\mathbb{R}, \mathbb{R})$ и $\mathrm{Mod}\, \rho(f(.), x_j) \subseteq \mathrm{Mod}\, f(.)$. Выберем число b > 0 так, что $\frac{2\pi}{b} \in \mathrm{Mod}\, f$. Из теоремы 8 вытекает существование периодических с периодом b функций $g_j(.) \in C(\mathbb{R}, \mathbb{R}), \ j \in \mathbb{N}$, для которых $\|g_j\|_{\infty} < \frac{\varepsilon}{3}$ и

$$\varkappa(\lbrace t \in \mathbb{R} : | \rho(f(t), x_j) - \frac{2\varepsilon}{3} + g_j(t) | < \delta \rbrace) \to 0$$

при $\delta \to +0$ (вместо функций g_j можно было бы выбрать одну функцию $g_j = g_0$, $j \in \mathbb{N}$, но это не упрощает доказательство). Положим $T_j' = \{t \in \mathbb{R} : \rho(f(t), x_j) + g_j(t) \leqslant \frac{2\varepsilon}{3}\}$, $j \in \mathbb{N}$. В соответствии с леммой 8 имеем $T_j' \in B(\mathbb{R})$ и $\mathrm{Mod}\, T_j' \subseteq \mathrm{Mod}\, \rho(f(.), x_j) + \frac{2\pi}{b}\, \mathbb{Z} \subseteq \mathrm{Mod}\, f(.)$. Если $t \in T_j'$, то $\rho(f(t), x_j) < \varepsilon$. Обозначим $T_1 = T_1'$ и $T_j = T_j' \setminus \bigcup_{k < j} T_k'$ при $j \geqslant 2$. Множества T_j , $j \in \mathbb{N}$ не пересекаются и $\bigcup_{j \leqslant N} T_j = \bigcup_{j \leqslant N} T_j'$ для всех $N \in \mathbb{N}$. Из леммы 10 получаем, что $T_j \in B(\mathbb{R})$, $\mathrm{Mod}\, T_j \subseteq \mathrm{Mod}\, f$. При этом $\rho(f(t), x_j) < \varepsilon$ для всех $t \in T_j$, $j \in \mathbb{N}$ и для каждого $N \in \mathbb{N}$ и п.в. $t \in \mathbb{R} \setminus \bigcup_{j \leqslant N} T_j$ оценка $\rho(f(t), x_j) > \frac{\varepsilon}{3}$ выполняется для всех $j = 1, \ldots, N$. Следовательно (см. следствие 2), $\mathrm{meas}\, \mathbb{R} \setminus \bigcup_{j} T_j = 0$ и (см. (1.1) при $\delta = \frac{\varepsilon}{3}$) $\widetilde{\varkappa} (\bigcup_{j \leqslant N} T_j) \to 0$ при $N \to +\infty$. Последнее означает, что $\{T_j\} \in \mathfrak{M}^{(B)}(\mathrm{Mod}\, f)$.

§ 4. Доказательство теоремы 8

Воспользуемся методом доказательства, предложенным в [6] для случая п.п по Степанову функций. Вариант этого метода для п.п. по Вейлю функций использовался в [12].

Лемма 15. Пусть $\mathbb{F} \in \mathcal{A}^{(B)}$, $\Delta > 0$. Тогда для любого $\varepsilon \in (0,1]$ найдутся числа $\delta = \delta(\varepsilon, \Delta) > 0$ и $\widetilde{\alpha} = \widetilde{\alpha}(\varepsilon, \Delta, \mathbb{F}) > 0$ такие, что для всех $\alpha \geqslant \widetilde{\alpha}$ и всех функций $f \in \mathbb{F}$ выполняется оценка

$$\varkappa(\{t \in \mathbb{R} : |f(t) + \Delta \sin \alpha t | < \delta\}) < \varepsilon.$$

Доказательство. Выберем число $N=N(\varepsilon)\in\mathbb{N},$ для которого $(N+1)^{-1}<\frac{\varepsilon}{2}$ (тогда $N\geqslant 2$). Положим

$$\varepsilon' \doteq \frac{1}{2} \varepsilon N^{-1} (N+1)^{-1} \leqslant \frac{\varepsilon}{12} < 1, \ \delta' \doteq 2 \sin \frac{\pi}{2N} \sin \frac{\pi \varepsilon'}{2},$$
$$\delta = \delta(\varepsilon, \Delta) \doteq \min \left\{ 1, \frac{1}{3} \delta' \Delta \right\}.$$

Существует число $\tau_0 = \tau_0(\varepsilon, \Delta, \mathbb{F}) > 0$ такое, что для всех $f \in \mathbb{F}$ и всех $\tau \in [0, \tau_0]$ выполняется неравенство $D^{(B)}(f(.), f(.+\tau)) < \varepsilon' \delta$. Определим число $\widetilde{\alpha} = \pi \tau_0^{-1}$. Пусть $0 < \tau \leqslant \tau_0$, $\alpha \doteq \pi \tau^{-1} \geqslant \widetilde{\alpha}$. Для всех $j = 1, \ldots, N$ (и всех функций $f \in \mathbb{F}$) определим множества

$$\mathcal{L}_{j}(f,\tau) = \left\{ t \in \mathbb{R} : \left| f(t + \frac{j}{N}\tau) - f(t) \right| \geqslant \delta \right\}.$$

Имеем

$$\varkappa \left(\mathcal{L}_{j}(f,\tau)\right) \leqslant \frac{1}{\delta} \frac{\overline{\lim}}{b \to +\infty} \frac{1}{2b} \int_{-b}^{b} \min\left\{1, \left| f(t + \frac{j}{N}\tau) - f(t) \right| \right\} dt =$$

$$= \frac{1}{\delta} D^{(B)}(f(.), f(. + \frac{j}{N}\tau)) < \varepsilon'.$$

Для $j=1,\ldots,N$ рассмотрим также множества

$$\mathcal{N}_{j}(\tau) = \left\{ t \in \mathbb{R} : |\cos \alpha (t + \frac{j}{2N}\tau) \sin \frac{\alpha j}{2N}\tau | \leqslant \frac{\delta'}{2} \right\}.$$

Если $t \in \mathcal{N}_j(\tau)$, то

$$|\cos(\alpha t + \frac{j\pi}{2N})| \leqslant \frac{1}{2} \delta' \sin^{-1} \frac{\pi}{2N} = \sin \frac{\pi \varepsilon'}{2},$$

поэтому число t принадлежит одному из отрезков $[\beta_s^-, \beta_s^+], \ s \in \mathbb{Z},$ где

$$\beta_s^{\pm} = \left(s + \frac{1}{2}\right) \frac{\pi}{\alpha} - \frac{j\pi}{2N\alpha} \pm \frac{\pi\varepsilon'}{2\alpha},$$

и, следовательно, $\varkappa(\mathcal{N}_j(\tau))\leqslant \varepsilon'$. Далее будем предполагать, что к множествам $\mathcal{L}_j(f,\tau)$ добавлены все числа $t\in\mathbb{R}$, для которых хотя бы одна из функций f(t) или $f(t+\frac{j}{N}\tau)$ не определена (эти числа образуют множество нулевой меры). Положим

$$\mathcal{L}(f,\tau) = \bigcup_{j=1}^{N} \left(\bigcup_{s=0}^{N-j} (\mathcal{L}_{j}(f,\tau) - \frac{s}{N} \tau) \right)$$

МАТЕМАТИКА

2008. № 1

(здесь $\mathcal{L}_j(f,\tau) - \frac{s}{N}\tau = \{t = \eta - \frac{s}{N}\tau : \eta \in \mathcal{L}_j(f,\tau)\}$). Так как $\varkappa(\mathcal{L}_j(f,\tau)) < \varepsilon', \quad j = 1,\ldots,N$, то $\varkappa(\mathcal{L}(f,\tau)) < \frac{1}{2}N(N+1)\varepsilon' = \frac{\varepsilon}{4}$. Если $t \in \mathbb{R} \setminus \mathcal{L}(f,\tau)$, то для всех $j_1,j_2 \in \{0,1,\ldots,N\}$

$$|f(t + \frac{j_1}{N}\tau) - f(t + \frac{j_2}{N}\tau)| < \delta.$$

Положим

$$\mathcal{N}(\tau) = \bigcup_{j=1}^{N} \left(\bigcup_{s=0}^{N-j} \left(\mathcal{N}_{j}(\tau) - \frac{s}{N} \tau \right) \right).$$

Так как $\varkappa(\mathcal{N}_{j}(\tau)) < \varepsilon', \ j = 1, ..., N$, то также $\varkappa(\mathcal{N}(\tau)) < \frac{1}{2} N(N+1)\varepsilon' = \frac{\varepsilon}{4}$. Если $t \in \mathbb{R} \backslash \mathcal{N}(\tau)$, то для всех $j_{1}, j_{2} \in \{0, 1, ..., N\}$, для которых $j_{1} < j_{2}$, имеем

$$|\Delta \sin \alpha (t + \frac{j_1}{N}\tau) - \Delta \sin \alpha (t + \frac{j_2}{N}\tau)| =$$

$$= 2\Delta \mid \cos \alpha (t + \frac{j_1}{N}\tau + \frac{j_2 - j_1}{2N}\tau) \sin \alpha \frac{j_2 - j_1}{2N}\tau \mid > \Delta \delta' \geqslant 3\delta.$$

Обозначим $G(t) = f(t) + \Delta \sin \alpha t$, $t \in \mathbb{R}$. Определим множество

$$\mathcal{O}(f,\tau) = \mathbb{R} \setminus (\mathcal{L}(f,\tau) \bigcup \mathcal{N}(\tau)).$$

Для каждого числа $t \in \mathcal{O}(f,\tau)$ либо $|G(t+\frac{j}{N}\tau)| \geqslant \delta$ для всех $j=0,1,\ldots,N$, либо существует число $j_0 \in \{0,1,\ldots,N\}$ такое, что $|G(t+\frac{j_0}{N}\tau)| < \delta$. Пусть j_0 — наименьшее число, для которого справедливо последнее неравенство. Если $j_0 < N$, то для каждого числа $j \in \{j_0+1,\ldots,N\}$ получаем

$$|G(t+\frac{j}{N}\tau)-G(t+\frac{j_0}{N}\tau)|\geqslant$$

$$\geqslant |\Delta \sin \, \alpha(t+\frac{j}{N}\,\tau) - \Delta \sin \, \alpha(t+\frac{j_0}{N}\,\tau) \, |-|\, f(t+\frac{j}{N}\,\tau) - f(t+\frac{j_0}{N}\,\tau) \, | > 3\delta - \delta = 2\delta \,,$$

и, следовательно, $|G(t+\frac{j}{N}\,\tau)| > \delta$. Поэтому в случае $t\in\mathcal{O}(f,\tau)$ существует не более одного числа $t+\frac{j}{N}\,\tau,\ j=0,1,\ldots,N,$ для которого $|G(t+\frac{j}{N}\,\tau)| < \delta$. Положим $P=\{t\in\mathbb{R}: |G(t)|<\delta\},$

$$\widetilde{\chi}(t) \doteq \sum_{j=0}^{N} \chi_P \left(t + \frac{j}{N} \tau \right), \ t \in \mathbb{R}.$$

Имеем

$$\overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{-b}^{b} \widetilde{\chi}(t) dt = (N+1) \varkappa (P). \tag{4.1}$$

C другой стороны, $\widetilde{\chi}(t)\leqslant 1$ для всех $t\in\mathcal{O}(f,\tau)$, поэтому

$$\overline{\lim_{b \to +\infty}} \ \frac{1}{2b} \ \int_{-b}^{b} \widetilde{\chi}(t) \, dt \leqslant \tag{4.2}$$

$$\leqslant \overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{[-b,b] \cap \mathcal{O}(f,\tau)} \widetilde{\chi}(t) dt + \overline{\lim_{b \to +\infty}} \frac{1}{2b} \int_{[-b,b] \setminus \mathcal{O}(f,\tau)} \widetilde{\chi}(t) dt \leqslant
\leqslant 1 + (N+1) \varkappa (\mathcal{L}(f,\tau) \bigcup \mathcal{N}(\tau)) < 1 + \frac{1}{2} (N+1) \varepsilon.$$

Из (4.1) и (4.2) следует, что
$$\varkappa(P) < \frac{1}{N+1} + \frac{\varepsilon}{2} < \varepsilon$$
 . \Box

Следствие 6. Пусть $\mathbb{F} \in \mathcal{A}^{(B)}$, $\Delta > 0$. Тогда для любого $\varepsilon \in (0,1]$ найдутся числа $\delta = \delta(\varepsilon, \Delta) > 0$ и $\widetilde{\alpha} = \widetilde{\alpha}(\varepsilon, \Delta, \mathbb{F}) > 0$ такие, что для любой функции $g \in L^{\infty}(\mathbb{R}, \mathbb{R})$, для которой $\|g\|_{\infty} \leqslant \delta$, любого $\alpha \geqslant \widetilde{\alpha}$ и всех функций $f \in \mathbb{F}$ справедлива оценка

$$\varkappa\left(\left\{t\in\mathbb{R}:|\,f(t)+\Delta\sin\alpha t+g(t)\,|<\delta\right\}\right)<\varepsilon\,.$$

Доказательство теоремы 8. Положим $\Delta_0 = \frac{\Delta}{2}$, $f_0(.) = f(.)$ (для всех функций $f \in \mathbb{F}$). Из следствия 6 вытекает существование чисел $\delta_0 = \delta_0(\Delta) > 0$ и $\alpha_0 = \alpha_0(b, \Delta, \mathbb{F}) \in \frac{2\pi}{b} \mathbb{N}$ таких, что для всех функций $f_1(t) \doteq f_0(t) + \Delta_0 \sin \alpha_0 t$, $t \in \mathbb{R}$ и всех функций $\widetilde{g}_1 \in L^{\infty}(\mathbb{R}, \mathbb{R})$, для которых $\|\widetilde{g}_1\|_{\infty} \leq \delta_0$, имеем

$$\varkappa(\{t \in \mathbb{R} : |f_1(t) + \widetilde{g}_1(t)| < \delta_0\}) < 2^{-1}, \tag{4.3}$$

при этом $\{f_1(.): f\in \mathbb{F}\}\in \mathcal{A}^{(B)}$. Будем далее последовательно при $j=1,2,\ldots$ находить числа $\Delta_j=\Delta_j(\Delta)>0,\ \delta_j=\delta_j(\Delta)>0,\ \alpha_j=\alpha_j(b,\Delta,\mathbb{F})\in \frac{2\pi}{b}\,\mathbb{N}$ и функции $f_{j+1}\in B(\mathbb{R},\mathbb{R}),$ зависящие от f_j , Δ_j и α_j , для которых $\{f_{j+1}(.): f\in \mathbb{F}\}\in \mathcal{A}^{(B)}$. Если числа Δ_k , δ_k , α_k и функции f_{k+1} уже найдены для всех $k=0,\ldots,j-1,$ где $j\in \mathbb{N},$ то выберем число $\Delta_j=\Delta_j(\Delta)>0$ так, чтобы выполнялись неравенства $\Delta_j<2^{-(j+1)}\Delta,$ $\Delta_j\leqslant 2^{-j}\delta_0$, $\Delta_j\leqslant 2^{-(j-1)}\delta_1$, ..., $\Delta_j\leqslant 2^{-1}\delta_{j-1}$. Далее, выберем (в соответствии со следствием 6) числа $\delta_j=\delta_j(\Delta)>0$ и $\alpha_j=\alpha_j(b,\Delta,\mathbb{F})\in \frac{2\pi}{b}\,\mathbb{N}$ так, чтобы для всех функций $f_{j+1}(t)\doteq f_j(t)+\Delta_j\sin\alpha_jt,\ t\in \mathbb{R}$ и всех функций $\widetilde{g}_{j+1}\in L^\infty(\mathbb{R},\mathbb{R})$, для которых $\|\widetilde{g}_{j+1}\|_\infty\leqslant \delta_j$, выполнялось неравенство

$$\varkappa(\{t \in \mathbb{R} : |f_{j+1}(t) + \widetilde{g}_{j+1}(t)| < \delta_j\} < 2^{-j-1}, \tag{4.4}$$

при этом также имеем $\{f_{j+1}(.):f\in\mathbb{F}\}\in\mathcal{A}^{(B)}$. Продолжим неограниченно процесс нахождения чисел Δ_j , δ_j , α_j и функций f_{j+1} и определим функцию $g(t)=\sum\limits_{j=0}^{+\infty}\Delta_j\sin\,\alpha_jt$, $t\in\mathbb{R}$. Так как $\Delta_0=\frac{\Delta}{2}$ и $\Delta_j<2^{-(j+1)}\Delta$ для всех $j\in\mathbb{N}$, то функция g(.) непрерывна и периодична с периодом b. Более того,

$$||g||_{\infty} \leqslant \sum_{j=0}^{+\infty} \Delta_j < \Delta.$$

Определим также функции $g_j(t)=\sum\limits_{k=j}^{+\infty}\Delta_k\sin\,\alpha_k t\,,\;t\in\mathbb{R}\,,\;j\in\mathbb{N}\,.$ Для всех $t\in\mathbb{R}$ имеем

$$|g_j(t)| \leqslant \sum_{k=j}^{+\infty} \Delta_k \leqslant \sum_{k=j}^{+\infty} 2^{-k+j-1} \delta_{j-1} = \delta_{j-1}.$$

Поэтому из (4.3) и (4.4) получаем, что для всех чисел $j=0,1,\dots$ (и всех функций $f\in\mathbb{F}$) выполняется неравенство

$$\varkappa(\{t \in \mathbb{R} : |f(t) + g(t)| < \delta_j\} < 2^{-j-1}.$$

Теорема 8 доказана.

СПИСОК ЛИТЕРАТУРЫ

- Andres J. Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions // Differential Inclusions and Optimal Control (ed. by J. Andres, L. Górniewicz and P. Nistri). LN in Nonlin. Anal. 1998. Vol. 2. P. 35–50.
- 2. Andres J., Bersani A.M., Leśniak K. On some almost-periodicity problems in various metrics // Acta Appl. Math. 2001. Vol. 65, № 1-3. P. 35–57.
- 3. Былов Б. Ф., Виноград Р.Э., Лин В.Я., Локуциевский О.О. О топологических причинах аномального поведения некоторых почти периодических систем // Проблемы асимптотической теории нелинейных колебаний. Киев: Наукова думка, 1977.
- 4. Долбилов А. М., Шнейберг И. Я. Почти периодические многозначные отображения и их сечения // Сиб. матем. журнал. 1991. Т. 32, № 2. С. 172–175.
- 5. Fryszkowski A. Continuous selections for a class of non-convex multivalued maps // Studia Math. 1983. Vol. 76, \mathbb{N}_2 2. P. 163–174.
- 6. Данилов Л. И. Почти периодические сечения многозначных отображений // Известия Ин-та матем. и информ. УдГУ. Ижевск, 1993. Вып. 1. С. 16–78.
- 7. Данилов Л. И. О сечениях многозначных почти периодических отображений. Новосибирск. Деп. в ВИНИТИ 31.07.95, № 2340-В95. 39 с.

MATEMATИKA 2008. № 1

8. Данилов Л. И. Мерозначные почти периодические функции и почти периодические сечения многозначных отображений // Матем. сборник. 1997. Т. 188, N 10. С. 3–24.

- 9. Данилов Л. И. О почти периодических многозначных отображениях // Матем. заметки. 2000. Т. 68, № 1. С. 82–90.
- 10. Danilov L.I. On equi-Weyl almost periodic selections of multivalued maps. Preprint arXiv: math.CA/0310010, 2003.
- 11. Данилов Л.И. О почти периодических по Вейлю сечениях многозначных отображений. Ижевск. Деп. в ВИНИТИ 09.06.2004, № 981-В2004. 104 с.
- 12. Danilov L. I. On Weyl almost periodic selections of multivalued maps // J. Math. Anal. Appl. 2006. Vol. 316, № 1. P. 110–127.
- 13. Левитан Б. М. Почти-периодические функции. М.: ГИТТЛ, 1953.
- 14. Левитан Б. М., Жиков В. В. Почти периодические функции и дифференциальные уравнения. М.: Изд-во Моск. ун-та, 1978.
- 15. Marcinkiewicz J. Une remarque sur les espaces de M. Besicowitch // C. R. Acad. Sc. Paris. 1939. Vol. 208. P. 157–159.
- 16. Люстерник Л. А., Соболев В. И. Краткий курс функционального анализа. М.: Высш. шк., 1982.
- 17. Данилов Л. И. О равномерной аппроксимации почти периодических по Степанову функций // Изв. вузов. Математика. 1998. № 1. С. 10–18.
- 18. Данилов Л. И. Равномерная аппроксимация почти периодических по Степанову функций и почти периодические сечения многозначных отображений. Ижевск. Деп. в ВИНИТИ 21.02.03, № 354-B2003. 70 с.
- 19. Данилов Л. И. Равномерная аппроксимация почти периодических по Степанову функций // Известия Ин-та матем. и информ. УдГУ. Ижевск, 2004. Вып. 1 (29). С. 33–48.
- Данилов Л. И. О равномерной аппроксимации почти периодических по Вейлю и почти периодических по Безиковичу функций // Известия Ин-та матем. и информ. УдГУ. Ижевск, 2006. Вып. 1 (35). С. 33–48.

Поступила в редакцию 01.09.07

L. I. Danilov

On Besicovitch almost periodic selections of multivalued maps

We prove that Besicovitch almost periodic multivalued maps $\mathbb{R} \ni t \to F(t) \in \text{cl}\mathcal{U}$ have Besicovitch almost periodic selections, where $\text{cl}\mathcal{U}$ is the collection of non-empty closed sets of a complete metric space \mathcal{U} .

Данилов Леонид Иванович Физико-технический институт УрО РАН 426000, Россия, г. Ижевск, ул. Кирова, 132 E-mail: danilov@otf.pti.udm.ru