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UNIFORM DISTRIBUTION OF POINTS ON HYPERSURFACES: SIMULATION
OF RANDOM EQUIPROBABLE ROTATIONS

The paper describes a universal method for simulation of uniform distributions of points on smooth regular
surfaces in Euclidean spaces of various dimensions. The authors give an interpretation of a set of possible
values of Rodrigues—Hamilton parameters used to describe a rigid rotation as a set of points of a three-
dimensional hypersphere in four-dimensional Euclidean space. The relationship between random equiprobable
rotations of a rigid body and a uniform distribution of points on the surface of a three-dimensional hypersphere
in four-dimensional Euclidean space is established.
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Introduction

In spite of the simplicity of the statement, the problem of the uniform distribution of points on
the surfaces is complicated. The consideration of particular types of surfaces together with different
approaches can lead to the appearance of a particular solution for each individual case. For example,
there are several well-known techniques for the uniform distribution of points on a plane and on the
surface of a sphere [1-3]. But methods for the uniform distribution of points on the surface of an
ellipsoid [5] and surfaces defined by explicit form equations [6,7] are less known.

In addition to papers which describe methods for the uniform distribution of points on surfaces
in three-dimensional space, a number of works is devoted to methods for the uniform distribution of
points on the surface of a hypersphere [2,4,5]. Also, there are methods for the uniform distribution
of points on the surface of a hyperellipsoid [5]. Among researchers whose works are most often cited
in the context of the problem of the uniform distribution of points on the surface of a hypersphere,
one should mention G. Marsaglia [1], and M. E. Muller [2]. It should be noted that a separate page
on the Internet site Wolfram MathWorld [4] is also devoted to this problem.

The methods mentioned above are suitable either for particular surfaces or generalized to a nar-
row class of surfaces. However, taking into account that the problem of the uniform distribution
of points on different surfaces is important for a large amount of applied and fundamental research
and, in particular, for methods of statistical and simulation mathematical modeling, there is a need
to find a more universal method for the uniform distribution of points on surfaces and hypersurfaces.

In this paper the method developed by the authors to simulate the uniform distribution of points
on smooth regular surfaces in Euclidean spaces of different dimensionality is briefly described.

One of possible applications of the proposed method is its use in the problems associated with
the rotation of three-dimensional Euclidean space. Such rotations can be described by the group
of orthogonal matrices SO(3), which can be displayed on a three-dimensional hypersphere in four-
dimensional Euclidean space [8]. Taking into account that in [9] general relationship of transforma-
tions groups and surfaces in multidimensional Euclidean spaces is considered, the proposed approach
can be useful in a wide spectrum of scientific problems.

In this paper the possibility of using the uniform distribution of points on a three-dimensional
hypersphere in four-dimensional Euclidean space to define equiprobable rotations of a rigid body is
established.



30 N.P. Kopytov, E. A. Mityushov
MATHEMATICS 2015. Vol. 25. No. 1

§ 1. Simulation of the uniform distribution of points on smooth regular surfaces in
Euclidean spaces of different dimensionality

In [10-14], the method for the uniform distribution of points on smooth regular surfaces in three-
dimensional and multi-dimensional Euclidean spaces was presented by the authors. The method
consists of the following stages.

1. Finding the density function of the joint distribution of surface parameters corresponding to
the uniform distribution of points on the surface.

2. Generating values of parameters using the density function (obtained at stage 1) of the joint
distribution and subsequent calculation of the coordinates of points.

The consideration of the problem of the uniform distribution of points on smooth regular surfaces
requires a number of strict mathematical definitions.

Definition 1. Distribution of points on a smooth regular surface is called uniform if, under
conditions of random tossing a point on this surface, the probability of its occurrence in any region
of this surface is proportional to the area of this region.

Definition 2. The geometrical probability of hitting a point in an element of the smooth regular
surface, under conditions of random tossing a point on this surface, is defined by the equality

P(X €dS) = %

Here X is the point of the surface whose position is determined by a random vector, dS is the area
of the surface element, and S is the whole surface area.

Definition 3. The probability density f(uy,us,...,uy,) of the joint distribution of parameters
defining the position of a point randomly thrown on a smooth regular surface is defined by the
equality

P(X €dS) = f(u1,ug, ..., upy)duydug ... diy,.

The following statement can be formulated on the basis of these definitions.

Theorem. Let the functions

xl(ulau2a cee ,Um), IEQ(Ul,’UQ, .. )um)) ey ZCn(Ul,UQ, cee )um))
where (ui,ug,...,uy) € D, define a smooth regular m-dimensional surface in n-dimensional Eu-
clidean space. Then the density of the distribution of parameters ui,us,..., U, determining the

uniform distribution of points on this surface is defined by the function

\/g s (ul,uQ,...,um)eD;
flur,ug, ... uy) = //.../\/gduldm o dugy, (1.1)
D
0, (uy,ug,...,um) ¢ D.

Here g = det (g;5) is the determinant of the matrix of the metric tensor on the surface. The matrix
of the metric tensor on the surface has the form

gir 912 --- Gim
(gij) = g21 922 --- 92m ’
gm1 9m2 .-+ Gmm
" Oz, Oz

where 4,5 =1,2,...,m, g;; = E
kZ::lauz auj'
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Fig. 1. The uniform distribution of points on the surface of torus

P r o o f. By Definition 2, the geometric probability of hitting any point X in a surface element

dS equals
dsS

For smooth regular surfaces in multidimensional Euclidean space, the following expressions are valid:

P(X €dS)

dS = \/gdui duy ... duy,

S://.../\/Eduldw...dum.
D

P(XEdS)— \/EdulduQ...dum

_//.../D@duldw..dum'

Taking into account Definition 3, the probability density is defined by the expression

_ V9

The theorem is proved.

Consequently,

The generation of values of parameters uy, ug, . .. , Uy, using the density function f(uy,us, ..., uy)
of the joint distribution via generalized Neumann method (the acceptance-rejection method) pro-
vides the uniform distribution of points on the given surface.

Figures 1 and 2 show the uniform distribution of points on the surface of the torus and on
the surface of the Klein bottle in three-dimensional Euclidean space, which was obtained using the
described above method.
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Fig 2. The uniform distribution of points on the surface of Klein bottle

§ 2. Rodrigues—Hamilton parameters and the simulation of equiprobable rotations
of a rigid body using the uniform distribution of points on the surface
of a three-dimensional hypersphere in four-dimensional Euclidean space

The most common way to describe the rotation of a rigid body is the use of Euler angles v, 9, .
The density function of the joint distribution of Euler angles used to describe and simulate the set
of equiprobable rigid body rotations is well known [15,16]:

sin 9
82’

As it is known [17, 18], another way to describe rotations of a rigid body is related with using
the parameters of Rodrigues—Hamilton Ag, A1, A2, A3, which are also components of a quaternion
of rotation A = Ag + A1 + jA2 + kAs. Rodrigues—Hamilton parameters satisfy the normalization
condition

fW,9,¢) = (2.1)

N AA+AN+A; =1 (2.2)

and are associated with Euler angles by the relations

¢+@, A :singcos¢_¢, Ao :sinésinq’z)_@, Agzcosﬁsinqb—'—@,
2 2 2 2 2 2 2
where 0 < ¢ < 2w, 0 <9 <, 0 < < 27,

Using the geometrical interpretation of a quaternion as a four-dimensional vector of the complex
space, to each quaternion A = A\g + A1 + jAo + kA3 we assign the point with coordinates z1 = A,
Ta = A1, 3 = A2, 4 = A3 in four-dimensional Euclidean space. By relation (2.2), coordinates of
every point will satisfy the condition

Ao = cos 5 €S (2.3)

o445+ a2t =1 (2.4)
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Eq. (2.4) is identical to the equation of the three-dimensional unit hypersphere in four-
dimensional Euclidean space. Thus, a set of possible values of Rodrigues—Hamilton parameters
can be considered as a set of points on the three-dimensional unit hypersphere in four-dimensional
Euclidean space. In this case, equations (2.3) connecting Rodrigues—Hamilton parameters and Euler
angles can be used as parametric equations to define this unit hypersphere:

xlzcosgcosw—'—so acg:sinécos¢_so x3:sinﬁsin¢_¢ x4:cosﬁsin¢+@
2 2 2 2 2 2 2 2

(2.5)

where 0 < ¢ < 2w, 0 <9 <, 0 < < 27,

Now, for the hypersphere defined by equations (2.5), using formula (1.1), we can find the density
function of the joint distribution of the parameters (in this case, the Euler angles) corresponding to
the uniform distribution of points on its surface. The results of mathematical symbolic transforma-
tions give the function (2.1). From this fact, we can conclude: a set of uniformly distributed points
on the surface of the three-dimensional unit hypersphere in four-dimensional Euclidean space gives
a set of Rodrigues—Hamilton parameters which are correspond to a set of equiprobable rigid body
rotations. This is a reflection of the fact of double covering SO(3) group by a three-dimensional
hypersphere [17]. The univalent covering SO(3) group can be carried out by a half hypersphere
lying on one side of any hyperplane passing through the origin.

It should be noted that the idea of representation of random rotations by points on a three-
dimensional unit hypersphere in a four-dimensional space has already been considered in the scien-
tific literature, for example, by P. H. Roberts and D.E. Winch [19]. This idea is also mentioned in
the work of M. V. Borovkov and T.I. Savelova [20]. But the parameterization of a three-dimensional
hypersphere, which was used in [19], differs from the parameterization, which is considered in this
paper, and the question of the uniform distribution of points on a hypersphere was not considered
in [19].

Conclusions

The density function of the distribution of parameters defining the uniform distribution of points
on smooth regular surfaces in Euclidean spaces of different dimensionality is obtained in the general
form.

The relationship between random equiprobable rotations of a rigid body and the uniform dis-
tribution of points on the surface of a three-dimensional hypersphere in four-dimensional Euclidean
space is established.

In addition to uniform distributions of points on various surfaces and hypersurfaces, the investi-
gation of non-uniform distributions of points on various surfaces and hypersurfaces has also scientific
interest. The investigation of non-uniform distributions of points on surfaces can be carried out in
the framework of the proposed formalism.
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H. II. Konwmos, E. A. Mumiowos

PaBHOMepnoe paciapeagejieHne TO4YeK Ha TUIIePIIOBEPXHOCTAX: MOoJeJIMpOBaHUEe cnyqaﬁHbe paB-
HOBEPOATHBIX BpaIJ.IeHI/Iﬁ

Karouesvie caosa: paBHOMEPHOE PACIIPE/IETIEHNE TOYEK HA TMIEPIIOBEPXHOCTX, CIyJYaliHbIe TOYKHA HA TUIEP-
cdepe, KBATEPHUOHBI, CJIyYaiiHbIE BPAIIEHUSI.

VK 519.21

Onucan yHUBEPCAJTBbHBIN METO, A MOJEJINPOBAHNS PABHOMEPHBIX PACTPEIE/IEHNH TOYeK HA TJIAJKUX PEery-
JISIPHBIX MTOBEPXHOCTSX B €BKJIMIOBBIX IMPOCTPAHCTBAX PA3IUYIHON pasmeproctu. lIpemcraBiena mHTEpIpE-
Tanusd MHOYXKECTBA BO3MOXKHBIX 3Ha4UeHuil nmapamerpoB Ponpura—laMuibTona, HCMOIB3yeMbIX [IPU OMMCAHUT
BPAIEHUs TBEPIOTO Tesia KAK MHOYKECTBA TOYEK TPEXMEPHOU rurepcdepbl B 9eThIPEXMEPHOM €BKJIAIOBOM
TIPOCTPAHCTBE. YCTAHOBJIEHA CBA3b MEXKIY CIYYadHBIMA DPABHOBEPOSITHHIMHU BPAIIEHUSIMU TBEPIOTO TeNa
¥ PABHOMEDHBIM PACIPEIEIEeHNEM TOYEK HA, MOBEPXHOCTH TPEXMEPHOU rUmepcdephbl B YETHIPEXMEPHOM €B-
KJIUJIOBOM TIPOCTPAHCTRBE.
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