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ON FINITE SPECTRUM ASSIGNMENT PROBLEM IN BILINEAR SYSTEMS

WITH STATE DELAY

We consider a bilinear control system defined by a linear time-invariant system of differential equations with
delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control.
One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop
system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of
the system under which the criterion was found for solvability of this finite spectrum assignment problem.
This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection
of these rank conditions with the property of consistency for truncated system without delay is shown.
Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously
obtained results on spectrum assignment for linear systems with static output feedback with delay and for
bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with
delay. An illustrative example is considered.
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Introduction

Stabilization problems for bilinear systems with delays were studied in many papers; see, e.g.,
[1–5] for continuous-time systems, [6–8] for discrete-time systems. In the papers [1–3], on the
basis of the Lyapunov–Krasovsky method, the conditions are given for stabilization of the systems
by means of state feedback. These conditions are expressed in terms of solutions for algebraic
Riccati equations [1], of linear matrix inequalities [2, 3]. For obtaining sufficient conditions for
global asymptotic stabilization by static state feedback [4, 5] and by dynamic output feedback [4],
the LaSalle invariance principle is applied. The problem of stabilization by means of output feedback
for discrete-time systems with delay is considered in [7,8]. Conditions for stabilization are presented
and the procedure for constructing a stabilizing regulator is given. In the present paper, we obtain
conditions for arbitrary finite spectrum assignability for time-delay bilinear systems by stationary
feedback and, as a consequence, stabilization conditions both for continuous-time and discrete-time
systems.

§1. Continuous-time systems with delay

Let K = C or K = R; K
n = {x = col (x1, . . . , xn) : xi ∈ K} is the linear space of vectors

over K; Mm,n(K) is the space of m × n-matrices over K; Mn(K) := Mn,n(K); I ∈ Mn(K) is the
identity matrix; T is the transposition of a vector or a matrix; ∗ is the Hermitian conjugation, i.e.,

A∗ = A
T
; χ(H;λ) and SpH are the characteristic polynomial and the trace of a matrix H ∈Mn(K),

respectively.
Consider a bilinear time-invariant differential system with delay in the state variable of the

following form:

ẋ(t) = A0x(t) +B0x(t− h) +
( r∑

j=1

ujAj

)
x(t) +

( s∑

ℓ=1

vℓBℓ

)
x(t− h), t > 0, (1.1)
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with initial conditions x(τ) = µ(τ), τ ∈ [−h, 0]; here Aj, Bℓ ∈ Mn(K), j = 0, r, ℓ = 0, s;
h > 0 is a constant delay, µ : [−h, 0] → K

n is a continuous function; x ∈ K
n is a state vector,

u = col (u1, . . . , ur) ∈ K
r, v = col (v1, . . . , vs) ∈ K

s are control vectors.
In [9] the following linear time-invariant differential control system with delay was considered:

ẋ(t) = Ax(t) + Px(t− h) +Hw(t), t > 0, (1.2)

y(t) = C∗x(t), (1.3)

where A,P ∈ Mn(K), H ∈ Mn,m(K), C ∈ Mn,k(K), h > 0 is a constant delay, x ∈ K
n is a state

vector, w ∈ K
m and y ∈ K

k are input and output vectors, respectively. For the system (1.2), (1.3)
in [9] the controller is constructed as linear static output feedback with delay

w(t) = Q0y(t) +Q1y(t− h), t > 0, (1.4)

where Q0, Q1 ∈Mm,k(K) are constant. The corresponding closed-loop system (1.2), (1.3), (1.4) has
the form

ẋ(t) = (A+HQ0C
∗)x(t) + (P +HQ1C

∗)x(t− h). (1.5)

In [9, § 1] sufficient conditions are obtained for assigning an arbitrary finite spectrum for the system
(1.5). The system (1.5) can be considered as a particular case of the system (1.1). In fact, every
system (1.5), where H = [h1, . . . , hm], C = [c1, . . . , ck], hi, cj ∈ K

n, Q0 = {αij}, Q1 = {βij},
αij, βij ∈ K, i = 1,m, j = 1, k, can be rewritten in the form (1.1), where r = s = mk, A0 = A,
B0 = P , A1 = B1 = h1c

∗

1, A2 = B2 = h1c
∗

2, . . . , Ak = Bk = h1c
∗

k, Ak+1 = Bk+1 = h2c
∗

1, . . . ,
A2k = B2k = h2c

∗

k, . . . , Ar = hmc
∗

k, u = col (α11, α12, . . . , α1k, α21, . . . , α2k, . . . , αm1, . . . , αmk),
v = col (β11, β12, . . . , β1k, β21, . . . , β2k, . . . , βm1, . . . , βmk).

In the present paper, we obtain sufficient conditions for assigning an arbitrary finite spectrum for
the system (1.1). These results extend the results [9, § 1] from the system (1.5) to the system (1.1).

Denote by

ϕ(λ, e−λh) = det
[
λI −

(
A0 +

r∑

j=1

ujAj

)
− e−λh

(
B0 +

s∑

ℓ=1

vℓBℓ

)]

the characteristic function of the system (1.1). This function is quasi-polynomial. The characteristic
equation ϕ(λ, e−λh) = 0 of the system (1.1) has the form

λn +

n∑

i=1

i∑

k=0

δikλ
n−ie−λhk = 0. (1.6)

Here δik depend on Aj , Bℓ, uj, vℓ. The set σ = {λ ∈ C : ϕ(λ, e−λh) = 0} of the roots of (1.6) is
called the spectrum of the system (1.1). If K = R, then the spectrum σ is symmetric with respect
to the real axis. In general, the spectrum σ of a system with delay (1.1) is countable. If δik = 0
for all i = 1, n, k = 1, i in the equation (1.6), then the characteristic quasi-polynomial is polynomial
and the spectrum σ is finite. Consider the problem of assigning an arbitrary finite spectrum σ for
the system (1.1) by constant control.

Definition 1. We say that the system (1.1) is arbitrary finite spectrum assignable by constant

control if for any γi ∈ K, i = 1, n, there exist u ∈ K
r, v ∈ K

s such that:

ϕ(λ, e−λh) = λn + γ1λ
n−1 + . . . + γn.

Suppose that the coefficients of the system (1.1) have the following special form: the matrix A0

has the lower Hessenberg form with non-zero superdiagonal entries; for some p ∈ {1, . . . , n}, the
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first p− 1 rows and the last n− p columns of Aj, j = 1, r, are equal to zero, i.e.,

A0 =




a11 a12 0 . . . 0
a21 a22 a23 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an−1,1 an−1,2 . . . . . . . . an−1,n

an1 an2 . . . . . . . . ann



, ai,i+1 6= 0, i = 1, n− 1; (1.7)

Aj =

(
0 0

Âj 0

)
, Âj ∈Mn−p+1,p(K), j = 1, r. (1.8)

For that system without delay (i.e., for the case Bℓ = 0, ℓ = 0, s) it was proved in [10] (see
also [11]) that the system is arbitrary finite spectrum assignable by constant control iff the rank of
the matrix Γ = {Sp (AjA

i−1
0 )n,ri,j=1} is equal to n. Here we extend this result to systems with delay.

Suppose that the matrices Bℓ, ℓ = 0, s, of the system (1.1) have the special form as well: the first
p− 1 rows and the last n− p columns of Bℓ, ℓ = 0, s, are equal to zero, i.e.,

Bℓ =

(
0 0

B̂ℓ 0

)
, B̂ℓ ∈Mn−p+1,p(K), ℓ = 0, s, p ∈ {1, . . . , n}. (1.9)

The number p in (1.9) is the same as in (1.8).
Let χ(A0;λ) = λn + α1λ

n−1 + . . . + αn. Set α0 := 1. From the matrix A0, we construct the
matrices

Fν = α0A
ν
0 + α1A

ν−1
0 + . . .+ ανI, ν = 0, n − 1. (1.10)

Further, we will use the following lemma (see [12, Lemma 1]).

Lemma 1. Suppose a matrix A0 has the form (1.7) and a matrix D ∈Mn(K) has the following

form for some p ∈ {1, . . . , n}:

D =

(
0 0
D1 0

)
, D1 ∈Mn−p+1,p(K). (1.11)

Let χ(A0 +D;λ) = λn + γ1λ
n−1 + . . . + γn. Then γi = αi − Sp (DFi−1) for all i = 1, . . . , n.

From the system (1.1) we construct the matrices Γ0 ∈Mn,r(K), Γ1 ∈Mn,s(K), Λ1 ∈Mn,1(K):

Γ0 =




Sp (A1) Sp (A2) . . . Sp (Ar)
Sp (A1A0) Sp (A2A0) . . . Sp (ArA0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sp (A1A
n−1
0 ) Sp (A2A

n−1
0 ) . . . Sp (ArA

n−1
0 )


, (1.12)

Γ1 =




Sp (B1) Sp (B2) . . . Sp (Bs)
Sp (B1A0) Sp (B2A0) . . . Sp (BsA0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sp (B1A
n−1
0 ) Sp (B2A

n−1
0 ) . . . Sp (BsA

n−1
0 )


, Λ1 =




Sp (B0)
Sp (B0A0)
. . . . . . . . . . . .

Sp (B0A
n−1
0 )


; (1.13)

and construct the matrix ∆1 = [Γ1, Λ1] ∈Mn,s+1(K).

Theorem 1. Suppose that the matrices of the system (1.1) have the special form (1.7), (1.8),
(1.9). Then the system (1.1) is arbitrary finite spectrum assignable by constant control iff the

following conditions hold:

rankΓ0 = n, (1.14)

rankΓ1 = rank∆1. (1.15)
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P r o o f. Suppose the matrices of the system (1.1) have the form (1.7), (1.8), (1.9). Consider
the problem of assigning an arbitrary finite spectrum. Let a polynomial

q(λ) = λn + γ1λ
n−1 + . . . + γn (1.16)

with numbers γi ∈ K be given. One needs to find u ∈ K
r, v ∈ K

s such that the characteristic
quasi-polynomial ϕ(λ, e−λh) of the system (1.1) satisfies the equality

ϕ(λ, e−λh) = q(λ). (1.17)

Denote

D =
r∑

j=1

ujAj + e−λh
(
B0 +

s∑

ℓ=1

vℓBℓ

)
. (1.18)

We have

ϕ(λ, e−λh) = det
(
λI − (A0 +D)

)
= χ(A0 +D;λ). (1.19)

It follows from conditions (1.8), (1.9) that the matrix (1.18) has the form (1.11). Taking into account
(1.19), (1.17), (1.16), condition (1.7) and applying Lemma 1, we obtain that the system (1.1) is
arbitrary finite spectrum assignable by constant control iff there exist u ∈ K

r, v ∈ K
s such that for

all i = 1, n the following equalities hold:

γi = αi − Sp
(( r∑

j=1

ujAj

)
Fi−1

)
− e−λh Sp

((
B0 +

s∑

ℓ=1

vℓBℓ

)
Fi−1

)
. (1.20)

Equalities (1.20) hold iff

γi = αi − Sp
(( r∑

j=1

ujAj

)
Fi−1

)
, Sp

((
B0 +

s∑

ℓ=1

vℓBℓ

)
Fi−1

)
= 0, i = 1, . . . , n. (1.21)

Taking into account the definition (1.10) of the matrices Fν (and using denotation A0
0 := I), we

have

Sp
(( r∑

j=1

ujAj

)
Fi−1

)
=

i−1∑

ν=0

αi−1−ν

( r∑

j=1

uj Sp (AjA
ν
0)
)
, i = 1, . . . , n,

Sp
((
B0 +

s∑

ℓ=1

vℓBℓ

)
Fi−1

)
=

i−1∑

ν=0

αi−1−ν

(
Sp (B0A

ν
0) +

s∑

ℓ=1

vℓ Sp (BℓA
ν
0)
)
, i = 1, . . . , n.

Therefore the equalities (1.21) are equivalent to two systems of linear equations

i−1∑

ν=0

αi−1−ν

( r∑

j=1

uj Sp (AjA
ν
0)
)
= αi − γi, i = 1, . . . , n, (1.22)

i−1∑

ν=0

αi−1−ν

( s∑

ℓ=1

vℓ Sp (BℓA
ν
0)
)
= −

i−1∑

ν=0

αi−1−ν Sp (B0A
ν
0), i = 1, . . . , n, (1.23)

with r unknown variables u1, . . . , ur and with s unknown variables v1, . . . , vs. Let us rewrite (1.22),
(1.23) in the vector form. Let us construct the matrices

G :=




1 0 0 . . . 0
α1 1 0 . . . 0
α2 α1 1 . . . 0
. . . . . . . . . . . . . . .

αn−1 αn−2 αn−3 . . . 1



, (1.24)
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and (1.12), (1.13). Denote w0 := col (α1 − γ1, . . . , αn − γn) ∈ K
n. Then one can rewrite systems

(1.22), (1.23) in the vector form

GΓ0u = w0, (1.25)

GΓ1v = −GΛ1. (1.26)

Taking into account that detG = 1 6= 0, we see that the system (1.25) is resolvable with respect
to u (over K) for any pregiven γi ∈ K, i = 1, n, iff condition (1.14) holds, and the system (1.26) is
resolvable with respect to v (over K) iff condition (1.15) holds. Finding u, v from (1.25), (1.26), we
assign a desirable polynomial (1.16) as the characteristic function for the system (1.1). �

Remark 1. Suppose that the system (1.1) has the form (1.5). Suppose that for this system (1.5)
the sufficient conditions of [9, § 1] hold for assigning an arbitrary finite spectrum, i.e., the matrices
of the system have the special form and the matrices

C∗H, C∗A0H, . . . , C∗An−1
0 H

are linearly independent. One can check that, in this case, the coefficients of the system (1.5)
(which is considered as the system (1.1)) have the form (1.7), (1.8), (1.9) and conditions (1.14),
(1.15) hold. Thus, Theorem 1 extends the results of [9, § 1] from systems (1.5) to systems (1.1). �

Remark 2. Suppose that the system (1.1) does not have delay, i.e., Bℓ = 0, ℓ = 0, r. Then
condition (1.15) holds. In that case, Theorem 1 coincides with [10, Theorem 2]. Thus, Theorem 1
extends the results of [10] from bilinear systems without delay to bilinear systems (1.1) with
delay. �

Consider a problem of stabilization for the system (1.1) by constant control: one needs to
construct u ∈ K

r, v ∈ K
s such that the system (1.1) is asymptotically stable. The system (1.1)

is asymptotically stable if the spectrum σ lies in the left half-plane ω = {λ ∈ C : Reλ < 0}.
If the system (1.1) is arbitrary finite spectrum assignable by constant control, then choosing the
polynomial (1.16) in such a way that its roots belong to ω, one can obtain asymptotical stability for
the system (1.1). Thus, the following obvious corollary follows from Theorem 1.

Corollary 1. Suppose that the matrices of the system (1.1) have the special form (1.7), (1.8),
(1.9). Suppose conditions (1.14), (1.15) hold. Then the system (1.1) is asymptotically stabilizable

by constant control.

For the system (1.1), let us construct the “truncated system” (without delay) assuming Bℓ = 0,
ℓ = 0, s:

ẋ(t) =
(
A0 +

r∑

j=1

ujAj

)
x(t). (1.27)

Denote by X(t, s) the transition matrix of the free system ẋ(t) = A0x(t). Hence, X(t, s) = e(t−s)A0 .

Definition 2. The system (1.27) is said to be consistent on [t0, t1] if for any H ∈ Mn(K) there
exists a piecewise continuous control function û : [t0, t1] → K

r such that the solution of the n × n-
matrix initial value problem

Ż(t) = A0Z(t) +

r∑

j=1

(
ûj(t)Aj

)
X(t, t0), Z(t0) = 0,

satisfies condition Z(t1) = H.
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The property of consistency was introduced in [13] for continuous-time systems (1.27), which are
not necessarily time-invariant. Time-invariant consistent systems (1.27) with continuous time were
investigated in [14, 15]. It was proved in [14, Assertion 5] that, for system (1.27) with a cyclic
matrix A0 (in particular, with A0 of the form (1.7)), the property of consistency is sufficient for
condition (1.14) to be fulfilled. Thus, the following theorem holds.

Theorem 2. Suppose that the matrices of the system (1.1) have the special form (1.7), (1.8),
(1.9). Suppose that the truncated system (1.27) is consistent and condition (1.15) holds. Then the

system (1.1) is arbitrary finite spectrum assignable by constant control.

Remark 3. Suppose that system (1.1) does not have delay, i.e., Bℓ = 0, ℓ = 0, r. Then condition
(1.15) holds. In that case Theorem 2 coincides with the assertion (1 =⇒ 3) of Theorem 2 in [14].
Thus, Theorem 1 together with Theorem 2 extends Theorem 2 of [14] from bilinear systems without
delay (1.27) to bilinear systems (1.1) with delay. �

§2. Discrete-time systems with delay

Consider a bilinear time-invariant discrete-time system with delay in the state variable of the
following form:

x(t+ 1) = A0x(t) +B0x(t− h) +
( r∑

j=1

ujAj

)
x(t) +

( s∑

ℓ=1

vℓBℓ

)
x(t− h), (2.1)

t = 0, 1, 2, . . ., with initial conditions x(τ) = µ(τ), τ = −h, . . . , 0; here Aj , Bℓ ∈ Mn(K), j = 0, r,
ℓ = 0, s; h > 0 is an integer constant delay; x ∈ K

n is a state vector, u = col (u1, . . . , ur) ∈ K
r,

v = col (v1, . . . , vs) ∈ K
s are control vectors.

Denote by

ψ(λ) = det
[
λI −

(
A0 +

r∑

j=1

ujAj

)
− λ−h

(
B0 +

s∑

ℓ=1

vℓBℓ

)]

the characteristic function of the system (2.1). This function is rational. The characteristic equation
ψ(λ) = 0 of the system (2.1) has the form

λn +
n∑

i=1

i∑

k=0

δikλ
n−i−hk = 0. (2.2)

The set ρ = {λ ∈ C : ψ(λ) = 0} of the roots of (2.2) is called the spectrum of the system (2.1).
If K = R, then the spectrum ρ is symmetric with respect to the real axis. The spectrum ρ of
a discrete-time system with delay (2.1) consists of a finite amount N > n of numbers λm ∈ C,
m = 1, N , in general. Iff δik = 0 for all i = 1, n, k = 1, i in the equation (2.2), then the spectrum ρ

consists of exactly n points (with accounting the multiplicity). Consider the problem of assigning
an arbitrary n-point spectrum ρ for the system (2.1) by constant control.

Definition 3. We say that the system (2.1) is arbitrary n-point spectrum assignable by constant

control if for any γi ∈ K, i = 1, n, there exist u ∈ K
r, v ∈ K

s such that:

ψ(λ) = λn + γ1λ
n−1 + . . .+ γn.

Theorem 3. Suppose that the matrices of the system (2.1) have the special form (1.7), (1.8),
(1.9). Then the system (2.1) is arbitrary n-point spectrum assignable by constant control iff

conditions (1.14), (1.15) hold.

The proof of Theorem 3 is identical to the proof of Theorem 1.
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Corollary 2. Suppose that the matrices of the system (2.1) have the special form (1.7), (1.8),
(1.9). Suppose conditions (1.14), (1.15) hold. Then the system (2.1) is asymptotically stabilizable

by constant control.

For the system (2.1), consider the truncated system

x(t+ 1) =
(
A0 +

r∑

j=1

ujAj

)
x(t). (2.3)

Denote by X(t, s) the transition matrix of the free system x(t+1) = A0x(t). Hence, X(t, s) = At−s
0 ,

t > s.

Definition 4. The system (2.3) is said to be consistent on [t0, t1) ⊂ Z [16] if, for any matrix
H ∈ Mn(K), there exists a û(t) = col

(
û1(t), . . . , ûr(t)

)
, t = t0, . . . , t1 − 1, such that the solution of

the n× n-matrix initial value problem

Z(t+ 1) = A0Z(t) +

r∑

j=1

(
ûj(t)Aj

)
X(t, t0), Z(t0) = 0,

satisfies condition Z(t1) = H.

The property of consistency was introduced in [16] for discrete-time systems (2.3), which are not
necessarily time-invariant. Consistent systems (2.3) with discrete time were investigated in [16,17].
It was proved in [17, Assertion 3] that, for time-invariant system (2.3) with a cyclic matrix A0 (in
particular, with A0 of the form (1.7)), the property of consistency is sufficient for condition (1.14)
to be fulfilled. Thus, the following theorem holds.

Theorem 4. Suppose that the matrices of the system (2.1) have the special form (1.7), (1.8),
(1.9). Suppose that the truncated system (2.3) is consistent, and condition (1.15) holds. Then the

system (2.1) is arbitrary n-point spectrum assignable by constant control.

Remark 4. Suppose that system (2.1) does not have delay, i.e., Bℓ = 0, ℓ = 0, r. Then condition
(1.15) holds. In that case, Theorem 4 coincides with the assertion (1 =⇒ 3) of Theorem 6 in [17].
Thus, Theorem 3 together with Theorem 4 extends Theorem 6 of [17] from bilinear systems without
delay (2.3) to bilinear systems (2.1) with delay. �

Remark 5. The condition r > n is obviously necessary both for condition (1.14) and for the
property of consistency of the truncated system (see [14, Corollary 5] for continuous-time systems
and [17, Corollary 7] for discrete-time systems). Nevertheless, there is no necessary estimation to
s for condition (1.15) to be fulfilled.

§3. Example

Consider an example illustrating Theorem 1. Suppose K = C, n = 3, r = 3, s = 2, p = 2 and
matrices of the system (1.1) have the following form:

A0 =



0 1 0
0 0 1
1 0 0


, A1 =




0 0 0
−1 0 0
1 0 0


, A2 =



0 0 0
i 0 0
0 i 0


, A3 =



0 0 0
0 −i 0
i 0 0


,

B0 =



0 0 0
0 i 0
1 0 0


, B1 =



0 0 0
i 1 0
0 −i 0


, B2 =



0 0 0
1 −1 0
i −1 0


.

(3.1)
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Matrices (3.1) of the system (1.1) have the special form (1.7), (1.8), (1.9). We have α1 = 0, α2 = 0,
α3 = −1. Let’s calculate the matrices (1.24), (1.12), (1.13):

G =



1 0 0
0 1 0
0 0 1


, Γ0 =




0 0 −i
−1 2i 0
1 0 i


, Γ1 =



1 −1
0 0
0 i


, Λ1 =



i

0
1


. (3.2)

Obviously, conditions (1.14), (1.15) hold. Hence, by Theorem 1, the system (1.1) with the matrices
(3.1) is arbitrary finite spectrum assignable by constant control. Let us construct that control
u ∈ K

3, v ∈ K
2. Suppose, for example, that:

q(λ) = (λ+ 1)3.

We have γ1 = 3, γ2 = 3, γ3 = 1. Hence,

w0 = col (α1 − γ1, α2 − γ2, α3 − γ3) = col (−3,−3,−2). (3.3)

Resolving the systems (1.25), (1.26) with coefficients (3.2), (3.3), we obtain

u = col (−5, 4i,−3i), v = col (0, i). (3.4)

The system (1.1) with the matrices (3.1) and with the control (3.4) takes the form

ẋ(t) =




0 1 0
1 −3 1
−1 −4 0


x(t) +



0 0 0
i 0 0
0 −i 0


x(t− h). (3.5)

Calculating the characteristic function for the system (3.5), we obtain that

ϕ(λ) = (λ+ 1)3.

In particular the system (3.5) is asymptotically stable. �
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Задача назначения конечного спектра в билинейных системах с запаздыванием в состоянии

Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2019. Т. 29.
Вып. 1. С. 19–28.

Ключевые слова: линейные системы с запаздыванием, управление спектром, стабилизация, билинейная
система.

УДК 517.929, 517.977

DOI: 10.20537/vm190102

Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифферен-
циальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конеч-
ного спектра посредством стационарного управления. Требуется построить постоянный вектор управле-
ния таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином
с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы,
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при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий вы-
ражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых
условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о ста-
билизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты
о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыва-
нием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные
системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
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