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The subject of this paper is the stability of completely controllable systems defined on a smooth manifold.
It is known that the controllability sets of symmetric systems generate singular foliations. In the case when
the controllability sets have the same dimension, a regular foliation arises. Thus, the possibility of applying
the methods of foliation theory to control theory problems arises. This paper presents some of the authors’
results on the possibility of applying the theorems on the stability of leaves to the problems on the stability
of completely controllable systems and on the geometry of attainability sets. Smoothness throughout the
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Introduction

This paper contains some results of the first author on the stability of control systems, which
were published in papers [1-7]; some examples of control systems were suggested by the second
author.

The paper deals with the control system

= f(z,u), €M, uwelUCR™ (0.1)

where M is a connected smooth (of class C'>°) manifold of dimension n, for each v € U the
vector field f(-,u) is smooth of class C'*°, and the mapping f: M x U — T'M is continuous,
U is a compact set.

Admissible controls for the system (0.1) are piecewise constant functions u: [0,7] — U,
where 0 < T < oo. The trajectory of system (0.1) is a piecewise smooth mapping x: [0,7] — M
satisfying the equality © = f(x(t),u(t)) for all ¢ € [0,T]\F, where u: [0,7] — U is some
admissible control with a set £ of discontinuity points, which consists of a finite number of
points.

We say that from a point z; € M one can get to a point x5 € M in time 7T’ if there exists
a trajectory x: [0,7] — M of system (0.1) such that x(0) = z; and z(T) = z5. The set of
points M from which one can get to n € M will be called the controllability set with the target
point 1 and will be denoted by G,,. By definition, we put n € G,, for n € M.

Let M be a smooth manifold of dimension n, D be the family of smooth vector fields defined
on the manifold M. The family D may contain a finite or infinite number of smooth vector fields.

For a point z € M, by t — X*(x) we denote the integral curve of the vector field X passing
through the point x at ¢ = 0. The mapping ¢ — X*(z) is defined on some domain I(z), which in
the general case depends not only on the field X, but also on the initial point .

Definition 1 (see [8,9]). The orbit L(z) of a family D of vector fields passing through a point x
is defined as the set of points y from M for which there are real numbers %4, ¢o, ..., ; and vector
fields X1, X, ..., X} from D (where k is an arbitrary natural number) such that

y = X0 (L (X (@)
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It is clear that an orbit is a smooth curve (one-dimensional manifold) if D consists of one
vector field.

It was proved in [8, 9] that each orbit of a family of smooth vector fields has a differential
structure with respect to which it is a smooth submanifold immersed in M (see also [10-12]).
Recall that a submanifold N C M is called immersed in M if the canonical injection i: N — M
is a differentiable map of maximum rank.

Each orbit has two topologies: its own topology as an immersed submanifold and the induced
topology from M. The proper topology of an orbit is stronger than the topology induced from M.
Indeed, if © € L(x(), where x € M, V(z) is an open set in M containing x, then L(zo) NV (x)
is an open set in the induced topology L(z¢). For each point y € L(x¢) NV (x) the image of the
point y under i: L(z) — M is contained in V' (x), and by virtue of the continuity of the mapping 4,
there exists a neighborhood U(y) of a point in the topology L(x¢) such that U(y) C V(z). This
implies that L(zo) NV (x) is open in the topology L(xy).

As examples show, even when D consists of one vector field, these two topologies do not
always coincide. For example, for an irrational winding of a torus, these topologies are different
for all trajectories.

Numerous studies have been devoted to the study of the geometry and topology of the orbits
of vector fields [1-14].

Definition 2. An orbit L is called proper if the canonical injection i: L — M is an injection, that
is, when the topology of the leaf coincides with the induced topology from M.

The orbits of the family of C"-vector fields generate a singular C"-foliation for » > 1. This
follows from the works of P. Stefan [8] and H. Sussmann [9].

Let V(M) be the set of all smooth (of class C*) vector fields defined on M. The set V(M)
is a Lie algebra in which the commutator of two vector fields X, Y € V(M) is their Lie brack-
et [X,Y].

Let A(D) denote the smallest Lie subalgebra containing D and A, (D) = {X (z): X € A(D)}
for all z € M. The resulting distribution = — A, (D) is involutive, and if dim A, (D) = const =
= k for all x € M, then by the Frobenius theorem it is completely integrable. In this case, each
orbit is a leaf of the k-dimensional foliation F' [11,12].

The study of the geometry and topology of the orbits of vector fields is important in control
theory and in the theory of differential games [13, 14].

Control system (0.1) generates a family of vector fields

D={f(,u):ueU}. (0.2)

If u: [0,7] — U is an admissible control with discontinuity points ¢y, to, ..., t,,, where 0 < t; <
<ty <...<tly<T,and z: [0,T] — M is the corresponding trajectory of system (0.1), then
the restriction of z to [t;, t;41], where i = 0, 1, ..., m, to = 0, t,,.1 = T, is the integral curve of
some vector field X;.; from D. Therefore, if 2(0) = x;, 2(T") = x2, then it holds the equality

xy = X (X (. (X () <),

whereTi:ti—ti_l,i: 1, 2, e, M.
Consequently, the set GG, is a subset of the orbit L(n) of the family D for every n € M.

Definition 3. System (0.1) is called symmetric if, for every u € U there exists v € U such that
f(z,v) = —f(z,u) forall z € M.
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Obviously, if system (0.1) is symmetric, then the set G, coincides with the orbit L(n) of the
family vector fields D from (0.2). Thus, the controllability sets of symmetric control system (0.1)
generate a singular foliation F'. If dim A, (D) = k for all = € M, then each orbit is a leaf of the
k-dimensional foliation F' [7].

Definition 4. We say that system (0.1) is controllable from the point 1 if G,, = L(n).

Definition 5. We say that system (0.1) is completely controllable on L(n,) if G, = L(n) for
every n € L(ny) where 1y € M.

By the definition of an orbit, for each € M the set L(n) is an invariant set of system (0.1),
that is, every trajectory of system (0.1) starting on it stays on it. Therefore, if the purpose of
control is to bring system (0.1) to a point n € M then it is sufficient to consider the system only
on L(n), since it is impossible to get to the point 1 from the points M \ L(n).

Let L = L(no) be some orbit of the family D, and system (0.1) is completely controllable
on L. Consider the question of under what conditions completely controllable system (0.1)
on L(no) will be completely controllable on orbits L(7) if the point 7 is sufficiently close to 7.

In the case when the orbit L is a compact set, this question was solved in [13]. In [13] it was
proved that if the foliation /' is regular and L is a compact leaf with a finite holonomy group,
then the complete controllability of system (0.1) on L implies that system (0.1) is completely
controllable on all leaves sufficiently close to L.

In this paper, we will consider this question when the orbit L is not a compact set. It turns
out that this question is closely related to the question of the stability of the leaf L(7) of the
foliation F, as well as the continuity of the map n — L(n).

In § 1, stability theorems are discussed for the leaves of the foliation F. In §2, using the
theorems of the first section, sufficient conditions for the “stability” of a completely controllable
system (0.1) are obtained. In the § 3, the control system under consideration, the right-hand side
of which continuously depends on a certain parameter, and the question of sufficient conditions
for the stability of a completely controllable system with respect to a parameter, are studied.

§ 1. Stability theorems for foliations

Let F' be a k-dimensional foliation. J. Reeb proved the following theorem on the stability of
a compact leaf in 1944 [14].

Theorem 1. Let L be a compact leaf of a foliation F. If the holonomic group of the leaf L is
finite, then for every open set V containing L there exists an open invariant set Vi such that
L C Vo CV, every leaf from V| is compact, and has a finite holonomy group.

In 1976, at an international conference in Rio de Janeiro, Hector raised the question of the
possibility of generalizing Reeb theorem to non-compact leaves [13]. In 1977, the Japanese
mathematician T. Inaba constructed an example that showing that when the codimension of a
foliation is greater than one, then Reeb theorem cannot be generalized for non-compact proper
leaves [16]. Thus, Hector’s question about a generalization of Reeb theorem to non-compact
leaves needs to be considered only for foliations of codimension one.

Let dim A, (D) =n—1 forall z € M. Then F is a foliation of dimension n — 1 (codimension
one). Suppose that the foliation F' is transversally orientable, that is, there is a nondegenerate
smooth vector field X on M that is transversal to the leaves of F'.

Let Ly be a proper leaf of the foliation F', and » > 0. We put

U-={ye M:ply, Ly <r},
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where p(y, Ly) is the distance from the point y to the leaf L,. Obviously, for every r > 0, the
set U, is an open set.
In 1977, T. Inaba in the same paper [16] proved the following theorem.

Theorem 2. Let M be a compact manifold of dimension 3, F' be a transversally orientable
foliation of codimension one, L is a proper leaf of F. Then, if the fundamental group of the
leaf Ly is finitely generated and the holonomy group H(Ly) is trivial, then for every r > 0 there
exists an open invariant set V such that L. C V C U,, each leaf of 'V is diffeomorphic to the
leaf Ly, and the restriction of F' to V is a bundle with fiber L.

Let Ly be a proper leaf of F'. Suppose that for each point x € L, there exists a number
r = r, > 0 such that for each horizontal curve

h:[0,1] = U, ={y € M: p(y, Lo) <1}

starting at x, and for each path v: [0, 1] — Lg starting at z = h(0) (vertical path), there exists a
continuous mapping (vertical-horizontal homotopy) ¢: [0, 1]x [0, 1] — M such that ¢)(¢,0) = v(t)
for t € [0,1], ¥(0,s) = h(s) for s € [0, 1]. A smooth curve h: [0,1] — M is called horizontal if

dhts) € H(h(s)), where H(z) = {\X(z): X\ € R}, X-transverse to F vector field on M. Under

this condition, the following generalization of the theorem of J. Reeb takes place [7].

Theorem 3. Let F' be a transversally orientable foliation of codimension one on M, Lg be a
relatively compact proper leaf with a finitely generated fundamental group. Then, if the holonomy
group of the leaf Ly is trivial, then for every r > 0 there exists an open invariant set V such that
Lo CV C U, every leaf from V is diffeomeorphic to the leaf Ly, and the restriction of F to 'V
is a bundle over R with fiber L.

Remark 1. A compact leaf is always an immersed submanifold of M, i.e., it is a proper leaf. It
is known that the fundamental group of a compact manifold is a finitely generated group.

In what follows, assume that the foliation is Riemannian.

Definition 6. A foliation F is said to be Riemannian if every geodesic orthogonal at some point
to a leaf of F' remains orthogonal to all leaves F’ at all its points.

Regular Riemannian foliations were introduced by Reinhart in [19] and studied by many
authors, in particular, in [5,17,18,20]. P. Molino introduced singular Riemannian foliations in
his monograph [18]. Singular Riemannian foliations arise in the classical problem of Riemannian
geometry on the action of the group of isometries. If the set D consists of Killing vector fields
orbits of the family D generate singular Riemannian foliations.

Let us recall the notion of a Killing vector field [22].

Definition 7. The vector field X on M is called a Killing vector field if the one-parameter group
of local transformations x — X*(z), generated by the field X, consists of isometries.

Remark 2. A vector field X on Riemannian manifold (M, g) is a Killing vector field if and only
if Lxg = 0, where Ly g denotes the Lie derivative of the metric g with respect to X. The equality
Lxg = 0 is equivalent to the condition

Xg(YV, Z) = g([X7 Y]’Z) +Q(K [X’ Z]),

where Y, Z are arbitrary smooth vector fields, and [X, Y] is a Lie bracket of vector fields X,
Y [12].
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The geometry of singular Riemannian foliations generated by orbits of Killing vector fields
are studied in papers [21-26].

Let (M, g) be a Riemannian manifold of dimension n, F' is a singular Riemannian foliation
on M. In this case the following generalization of Reeb theorem holds [5].

Theorem 4. Let (M, g) be a complete Riemannian manifold of dimension n and L is a proper
leaf of F'. Then, for each r > 0 there exists an open invariant neighborhood V' of the leaf L such
that L C 'V C U, and the restriction of F to V is a smooth bundle with base L.

In the case when F' is a regular foliation of codimension one the following theorem is true [5].

Theorem 5. Let F' be a Riemannian foliation of codimension one on a complete Riemannian
manifold (M, g), L is a compact leaf. Then, for every open set V containing L, there exists an
open invariant neighborhood U of the leaf I such that L C U C V and U consists of compact
leaves diffeomorphic to L.

§ 2. Stability of completely controllable systems

In this section, using the results of § 1, we obtain sufficient conditions for the “stability” of a
completely controllable system (0.1). Admissible controls are piecewise constant functions taking
values from U.

By using Reeb stability theorem the following theorem was proved in [13].

Theorem 6. Let Lo be a compact leaf of a foliation F' with a finite holonomy group. Then,
if system (0.1) is completely controllable on Ly, then it is completely controllable on leaves
sufficiently close to Ly.

By Reeb’s theorem, if L is a compact leaf with a finite holonomy group, then for every open
set V' containing L, there exists an open invariant set U such that L, C U C V, U consists of
compact leaves. Thus, Reeb’s theorem allows one to obtain a sufficient condition for the local
stability of a completely controllable system in the case when L is compact. As the following
examples show, this theorem is not true if L is a non-compact leaf or L is a compact leaf whose
holonomy group is not a finite group.

Example 1. Let M = R?\{(0,0)} with Cartesian coordinates (z, y), the family D consists of one
vector field 5

dy
where p = 22 + y%. The circle S* = {(z,y): 2? + y? = 1} is a limit cycle for the system

X(a,9) = (L= p)r —y) -+ (2 (1= ply)

t=—y+{L—pz, yg=z+{1-ply (2.1)

since the vector field X tangents S! at its each point.

If we take S' as the compact leaf L, then system (2.1) is completely controllable on Lj.
Other trajectories are not closed; therefore, system (2.1) is not completely controllable on other
trajectories. The holonomy group of the L is a cyclic group.

Example 2. Let
M = Rg\{(l‘th’xS): X1 = T9 = O}’

with coordinates (1, z2, x3), D = {X1, X2, X3}, where

0 0 0 0 0 0
X =x,— — X9 = —29— — X3 =- _—— —
1= 9z, + T2 oy 2 Ta oz, + $1ax27 3 90(@1’18361 (x)xo Oy’
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o(x) = ¥((2? + 23)23), ¢: R' — R is a smooth function of class C* such that ¢(t) > 0 for
—1<t<1land¢(t)=0for |t| > 1.

The orbits of the family D define a two-dimensional foliation £’ on the M, where for the
point 1y = (29, 3, 3) the orbit L(r) coincides with the intersection M () II(23) where I1(29) is
the plane in R* defined by the equation x3 = 9.

Consider a control system
i':f(l',U), u e U:{ulau27u3}7 (22)

where f(x,u;) = X;(z), 1 =1, 2, 3.

We put B; = {x € M: X3(x) # 0}, B, = M\By. For g = (29,29, 0) the leaf L(n,) does
not intersect with By, and therefore system ??(4) is completely controllable Ly = L(1,). For each
leaf L such that the intersection L N By # (), it is impossible to get from the points L N By to the
points of the set L N By # (.

Consequently, system (2.2) is not completely controllable on leaves L different from Ly. The
holonomy group of the leaf L is trivial, but it is not a compact leaf. In this example although
the leaf L is not relatively compact, it is locally stable.

This fact shows that if system (0.1) is completely controllable on the leaf L, satisfying the
conclusion of Theorem 3, then this does not imply that system (0.1) is completely controllable
on close leaves. Therefore, in the case when L, is a non-compact leaf, additional conditions are
needed on system (0.1), which would guarantee the “stability” of system (0.1) that is completely
controllable on L.

Definition 8. A control system (0.1) is called normally-locally controllable (in short, N-locally
controllable) near a point p € L(n), if for any T' > 0 there exists a neighborhood V' of the point p
in L(n), such that from each point of the set V' one can reach the point p in time less than 7.

Definition 9. We say that system (0.1) is completely controllable (or N-locally controllable) on
an invariant set S C M, if it is completely controllable (or /N-locally controllable) on each leaf
from S.

Theorem 3 of § 2 allows us to prove the following theorem [7].

Theorem 7. Let dim A, (D) =n— 1 for all x € M, and F is a transversally orientable foliation,
the leaf Ly satisfies the conditions of Theorem 3. If system (0.1) is N-locally controllable on L
(closure in M), then there exists an invariant neighborhood V' of the leaf L such that system (0.1)
is completely controllable on each leaf from V.

Now let us return to the case dim A, (D) = k for all z € M, where 0 < k < n. In this
case, F'is a k-dimensional foliation. Suppose that the foliation /' is a Riemannian foliation with
respect to the Riemannian metric g. A necessary and sufficient condition for being Riemannian
was given in [5]. This condition applies to vector fields from D and the Riemannian metric g.

The following result was obtained in [7].

Theorem 8. Let (M, g) be a complete Riemannian manifold and Ly be a relatively compact leaf
of the foliation F. Then, if system (0.1) is N-locally controllable on Ly (the closure of Lg)
then there exists an invariant neighborhood V of the leaf Ly such that on each leaf of V the
system (0.1) is completely controllable.
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§ 3. Stability of completely controllable systems with respect to the parameter

Consider a system of equations with a parameter
= f(z,u,a), €M, uweU, (3.1

where M is a smooth (of class C"*!, r > 1) connected manifold of dimension n with some
Riemannian metric g, U is a nonempty compact subset R”, the parameter « takes values from
some open set A C RY.

It is assumed that, for each av € A the mapping

Fl,a): Mx U —TM

is continuous, and the vector fields {f(-,u,«): u € U} are C"-smooth vector fields (7'M is the
tangent bundle of the manifold M).

Considered admissible controls are piecewise constant functions u: [0,7] — U, where
0<T < o0.

Letn € M, G, () be the controllability set of system (3.1) with the target point 7 for @ = o
that is, for control system

= f(r,u,ap), z€M, uel, (3.2)

which is obtained from (3.1) by setting o = ay.

Recall that G, (ap) is the set of points M from which one can get to the point 7 along the
trajectories of system (3.2). In what follows, we will everywhere assume that the right-hand side
of system (3.1) depends continuously on .

In [27], the following question was considered: if system (3.2) is N-locally controllable near
the point 7, then under what conditions will system (3.1) be N-locally controllable near the
point 7 for « sufficiently close to ay.

The following theorem is derived from the results of [27,28].

Theorem 9. Let system (3.2) be N-locally controllable near the point 1. Then if the set D°(n) =
= {f(no,u, ) : w € U} contains a positive basis of the tangent space T, M of the manifold M
at the point 1, then there exists a neighborhood V of the point oy such that system (3.1) is
N-locally controllable near the point 1y for each o € V.

Recall that a family of vectors {ay, as, ..., a,} is called a positive basis in R", if for every a
there exist nonnegative numbers \{, Ao, ..., A, such that a = Aja; + Asas + ... + Anan [28].
It is known that for the vectors ay, ao, ..., a,, to form a positive basis in R", it is necessary

and sufficient that for each unit vector a there is a;, such that (a,a;) < 0, where (-,-) is the
inner product [28]. Using this criterion for a positive basis and the continuity of the mapping
f(z,u, ), it is easy to show that under the conditions of Theorem 9 there exists § > 0, such that
for p(n,no) < ¢ and ‘04 — ao‘ < § the set D(n) = {f(n,u,): u € U} contains a positive basis
for the tangent space 1), M.

Here p(n,no) is the distance between the points 7y and 1 defined by the Riemannian metric g
on M, and |o — ayp| is the Euclidean norm in R?. Since the set D(n) contains a positive basis,
system (3.1) is N-locally controllable near each point of the set B(0) = {n € M: p(n,ny) < 6}
for each q, if |a — ag| < 0.

As noted in [27], if the set D(n) does not contain a positive basis, then system (3.1) may not
be N-locally controllable for o # «g even if « is sufficiently close to ay.

Now we assume that system (3.2) is completely controllable and consider the question: under
what conditions will system (3.1) be completely controllable for « sufficiently close to ay.

In the case when M is a compact manifold and f smoothly depends on «, from the results
of [10] we can obtain the following proposition.
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Proposition 1. There exists 6 > 0 such that system (3.1) is completely controllable for each o
Sfrom {a € A: | — | < 0}

The following theorem is a generalization of the above statement to the case when f depends
continuously on «, which was proved in [7].

Theorem 10. Let K C M be a compact connected submanifold of dimension n and system (3.2)
be completely controllable on K. Then there exists 6 > 0 such that system (3.1) is completely
controllable on K for each « from the set {5 € A: |5 — ap| < 0}.

Recall that system (3.1) is completely controllable on a subset S C M if for each pair
(z,y) € S x S from the point = one can get to the point y along the trajectory of system (3.1).

Remark 3. The assertion of Theorem 10 is false if the dimension of K is less than n. For
example, if the set U consists of one point, we have a family of vector fields {X,: a € A}.
Suppose that the vector field X,, has a closed trajectory K. It is clear that system (3.1) for
a = « is completely controllable on K. But, if dim M > 1 and the vector fields X, are not
tangent to K for a # «, then the system (3.1) is not completely controllable on K for o # «v.

Recall that the set V(M) of smooth vector fields of class C* is a Lie algebra with respect
to the Lie bracket [ X, Y] of vector fields X,Y € V(M). We put D, = {f(-,u,a): u € U} and
denote by P, the smallest Lie subalgebra containing the set of vector fields D,. Now, suppose that
for every a system (3.1) is symmetric, and for every v € U a mapping f(-,u,-): M x A —TM
of class C"*°. Symmetry means that if X € D, then —X € D,.

In the paper [7] the following theorem was proved.

Theorem 11. Let P,(x) = {X(z): X € P,}, x € M. Suppose that system (3.2) is N-locally
controllable near the point 1. Then, if dim P, (n) = n, then there exists a number § > 0 such
that system (3.1) is N-locally controllable near the point 1 for each « from the set Bs(ag) =
={a€A: |a—ay <}

Now suppose that the dimension dim P, (z) does not depend on z, but depends on «. In this
case, the following result was obtained in [7].

Theorem 12. Let system (3.1) be completely controllable for o« = «y. Then there exists 6 > 0
such that system (3.1) is completely controllable for each o from the set Bs(ap).

§4. Geometry of the attainability set of vector fields

Consider the set D C V/(M), which can contain finite or infinite number of smooth vector
fields.

Definition 10. The point y € L(x) such that
y =X (X (- (X (@) )
is said T-attainable from a point x € M if ). t, =T.

We denote by A, (T') the set of all points that are T-attainable from the point x.
It was proved in [9] that an orbit is a smooth manifold. Based on the same idea, we proved
in [6] the following theorem on the geometry of the set of 7T’-attainable points.

Theorem 13. For each x € M and any T, the set A,(T) is an immersed submanifold of the
orbit L(x) of codimension 1 or 0.
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Recall that if one additionally requires in Definition 1 of an orbit that ¢, to, ..., {; are
nonnegative numbers, then one obtains the definition of the positive semiorbit L™ (x). Another
important contribution of Sussmann in the geometry of the attainability set is the following
theorem [10].

Theorem 14. Let M be a smooth connected manifold of dimension n. There exists a system D
consisting of two vector fields such that L™ (x) = M for each point x € M.

Using Theorem 14, we proved in [6] the following assertion.

Theorem 15. Let M be a smooth connected manifold of dimension n > 2. There exists a system D
consisting of three vector fields such that A,(0) = M for each point x € M.

For manifolds with nonzero Euler characteristic, the following result is valid.

Theorem 16 (see [6]). Let M be a smooth, compact, connected manifold of dimension n > 2,

whose Euler characteristic is nonzero. There exists a system D consisting of two vector fields
such that A,(0) = M for each point x € M.

The following example from [6] shows that on a compact connected manifold with zero Euler
characteristic, a system consisting of two vector fields can exist such that A,(0) = M for each
point x € M.

Let the three-dimensional sphere S C R* be given by equation 2% + y? + 22 + w? = 1, where
x, y, z, w are Cartesian coordinates in R*. We consider on the sphere S* two Killing vector
fields:

X——£+xﬁ—w£+zi Y——zg—kac3

~ Vo oy 0z ow’ - "oz 0z
The Lie bracket [X, Y] of vector fields X, Y has the following form:
(X,Y] = —w2 —zﬁ—l—y 0 +x£.

ox oy 9z ow

As, at the point p(1,0,0,0) € S3, the vectors X (p), Y (p), and [ X, Y](p) are linearly indepen-
dent, the orbit L(p) is a three-dimensional manifold. It follows that L(p) = S [6].

If the sets 4,(0) for ¢ € S* are submanifolds of the orbit L(p) of codimension 1 then they
generate Riemannian codimension one foliation on L(p) = S°. But it is known that there do
not exists two-dimensional Riemannian foliations on S® [6]. It follows that A,(0) = S* for
all ¢ € S3.

For symmetric systems, the following theorem holds [6].

Theorem 17. Let a system D be symmetric and contain a complete vector field. Then for
any T € R and any point © € M the following equality holds A,(T) = L(x).

Recall that a system D of vector fields is said to be symmetric if X € D implies —X € D.

It follows from Theorem 13 that the manifolds A,(0) for points y € L(x), either coincide
with L(z) or generate a foliation of codimension 1 on L(z). This allows one to apply the methods
of foliation theory for the study of geometry of the manifolds A,(0). The following result was
obtained [6].

Theorem 18. Let M = R", a system D of vector fields consist of Killing vector fields, and, for a
point © € M, let the orbit of L(x) be a k-dimensional plane, 0 < k < n. Then, for all y € L(x),
the sets A,(0) either coincide with L(x) or are parallel hyperplanes in L(z).
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HpeI[MeTOM HaCTOSIHIei/‘I pa6OTI)I SABJIACTCA BOIIPOC O CTAaOMJIBHOCTH BITOJIHE YHpaBiIA€MbIX CUCTEM, 3aJaH-
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