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THE STABILITY OF COMPLETELY CONTROLLABLE SYSTEMS

The subject of this paper is the stability of completely controllable systems defined on a smooth manifold.

It is known that the controllability sets of symmetric systems generate singular foliations. In the case when

the controllability sets have the same dimension, a regular foliation arises. Thus, the possibility of applying

the methods of foliation theory to control theory problems arises. This paper presents some of the authors’

results on the possibility of applying the theorems on the stability of leaves to the problems on the stability

of completely controllable systems and on the geometry of attainability sets. Smoothness throughout the

work will mean smoothness of class C∞.
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Introduction

This paper contains some results of the first author on the stability of control systems, which

were published in papers [1–7]; some examples of control systems were suggested by the second

author.

The paper deals with the control system

ẋ = f(x, u), x ∈M, u ∈ U ⊂ R
m, (0.1)

where M is a connected smooth (of class C∞) manifold of dimension n, for each u ∈ U the

vector field f(·, u) is smooth of class C∞, and the mapping f : M × U → TM is continuous,

U is a compact set.

Admissible controls for the system (0.1) are piecewise constant functions u : [0, T ] → U ,

where 0 < T <∞. The trajectory of system (0.1) is a piecewise smooth mapping x : [0, T ] →M

satisfying the equality ẋ = f(x(t), u(t)) for all t ∈ [0, T ]\E, where u : [0, T ] → U is some

admissible control with a set E of discontinuity points, which consists of a finite number of

points.

We say that from a point x1 ∈ M one can get to a point x2 ∈ M in time T if there exists

a trajectory x : [0, T ] → M of system (0.1) such that x(0) = x1 and x(T ) = x2. The set of

points M from which one can get to η ∈ M will be called the controllability set with the target

point η and will be denoted by Gη. By definition, we put η ∈ Gη for η ∈M .

Let M be a smooth manifold of dimension n, D be the family of smooth vector fields defined

on the manifold M . The family D may contain a finite or infinite number of smooth vector fields.

For a point x ∈ M , by t → X t(x) we denote the integral curve of the vector field X passing

through the point x at t = 0. The mapping t→ X t(x) is defined on some domain I(x), which in

the general case depends not only on the field X , but also on the initial point x.

Definition 1 (see [8, 9]). The orbit L(x) of a family D of vector fields passing through a point x

is defined as the set of points y from M for which there are real numbers t1, t2, . . . , tk and vector

fields X1, X2, . . . , Xk from D (where k is an arbitrary natural number) such that

y = X tk
k (X

tk−1

k−1
(. . . (X t1

1 (x)) . . .)).
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It is clear that an orbit is a smooth curve (one-dimensional manifold) if D consists of one

vector field.

It was proved in [8, 9] that each orbit of a family of smooth vector fields has a differential

structure with respect to which it is a smooth submanifold immersed in M (see also [10–12]).

Recall that a submanifold N ⊂M is called immersed in M if the canonical injection i : N →M

is a differentiable map of maximum rank.

Each orbit has two topologies: its own topology as an immersed submanifold and the induced

topology from M . The proper topology of an orbit is stronger than the topology induced from M .

Indeed, if x ∈ L(x0), where x ∈ M , V (x) is an open set in M containing x, then L(x0) ∩ V (x)
is an open set in the induced topology L(x0). For each point y ∈ L(x0) ∩ V (x) the image of the

point y under i : L(x) →M is contained in V (x), and by virtue of the continuity of the mapping i,

there exists a neighborhood U(y) of a point in the topology L(x0) such that U(y) ⊂ V (x). This

implies that L(x0) ∩ V (x) is open in the topology L(x0).

As examples show, even when D consists of one vector field, these two topologies do not

always coincide. For example, for an irrational winding of a torus, these topologies are different

for all trajectories.

Numerous studies have been devoted to the study of the geometry and topology of the orbits

of vector fields [1–14].

Definition 2. An orbit L is called proper if the canonical injection i : L→M is an injection, that

is, when the topology of the leaf coincides with the induced topology from M .

The orbits of the family of Cr-vector fields generate a singular Cr-foliation for r ≥ 1. This

follows from the works of P. Stefan [8] and H. Sussmann [9].

Let V (M) be the set of all smooth (of class C∞) vector fields defined on M . The set V (M)
is a Lie algebra in which the commutator of two vector fields X, Y ∈ V (M) is their Lie brack-

et [X, Y ].

Let A(D) denote the smallest Lie subalgebra containing D and Ax(D) = {X(x) : X ∈ A(D)}
for all x ∈M . The resulting distribution x→ Ax(D) is involutive, and if dimAx(D) = const =
= k for all x ∈ M , then by the Frobenius theorem it is completely integrable. In this case, each

orbit is a leaf of the k-dimensional foliation F [11, 12].

The study of the geometry and topology of the orbits of vector fields is important in control

theory and in the theory of differential games [13, 14].

Control system (0.1) generates a family of vector fields

D = {f(·, u) : u ∈ U}. (0.2)

If u : [0, T ] → U is an admissible control with discontinuity points t1, t2, . . . , tm, where 0 < t1 <

< t2 < . . . < tm < T , and x : [0, T ] → M is the corresponding trajectory of system (0.1), then

the restriction of x to [ti, ti+1], where i = 0, 1, . . . , m, t0 = 0, tm+1 = T , is the integral curve of

some vector field Xi+1 from D. Therefore, if x(0) = x1, x(T ) = x2, then it holds the equality

x2 = X tm
m (X

tm−1

m−1 (. . . (X
t1
1 (x1)) . . .)),

where τi = ti − ti−1, i = 1, 2, . . . , m.

Consequently, the set Gη is a subset of the orbit L(η) of the family D for every η ∈M .

Definition 3. System (0.1) is called symmetric if, for every u ∈ U there exists v ∈ U such that

f(x, v) = −f(x, u) for all x ∈M .
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Obviously, if system (0.1) is symmetric, then the set Gη coincides with the orbit L(η) of the

family vector fields D from (0.2). Thus, the controllability sets of symmetric control system (0.1)

generate a singular foliation F . If dimAx(D) = k for all x ∈ M , then each orbit is a leaf of the

k-dimensional foliation F [7].

Definition 4. We say that system (0.1) is controllable from the point η if Gη = L(η).

Definition 5. We say that system (0.1) is completely controllable on L(η0) if Gη = L(η0) for

every η ∈ L(η0) where η0 ∈M .

By the definition of an orbit, for each η ∈ M the set L(η) is an invariant set of system (0.1),

that is, every trajectory of system (0.1) starting on it stays on it. Therefore, if the purpose of

control is to bring system (0.1) to a point η ∈ M then it is sufficient to consider the system only

on L(η), since it is impossible to get to the point η from the points M \ L(η).
Let L = L(η0) be some orbit of the family D, and system (0.1) is completely controllable

on L. Consider the question of under what conditions completely controllable system (0.1)

on L(η0) will be completely controllable on orbits L(η0) if the point η is sufficiently close to η0.

In the case when the orbit L is a compact set, this question was solved in [13]. In [13] it was

proved that if the foliation F is regular and L is a compact leaf with a finite holonomy group,

then the complete controllability of system (0.1) on L implies that system (0.1) is completely

controllable on all leaves sufficiently close to L.

In this paper, we will consider this question when the orbit L is not a compact set. It turns

out that this question is closely related to the question of the stability of the leaf L(η0) of the

foliation F , as well as the continuity of the map η → L(η).
In § 1, stability theorems are discussed for the leaves of the foliation F . In § 2, using the

theorems of the first section, sufficient conditions for the “stability” of a completely controllable

system (0.1) are obtained. In the § 3, the control system under consideration, the right-hand side

of which continuously depends on a certain parameter, and the question of sufficient conditions

for the stability of a completely controllable system with respect to a parameter, are studied.

§ 1. Stability theorems for foliations

Let F be a k-dimensional foliation. J. Reeb proved the following theorem on the stability of

a compact leaf in 1944 [14].

Theorem 1. Let L be a compact leaf of a foliation F . If the holonomic group of the leaf L is

finite, then for every open set V containing L there exists an open invariant set V0 such that

L ⊂ V0 ⊂ V , every leaf from V0 is compact, and has a finite holonomy group.

In 1976, at an international conference in Rio de Janeiro, Hector raised the question of the

possibility of generalizing Reeb theorem to non-compact leaves [13]. In 1977, the Japanese

mathematician T. Inaba constructed an example that showing that when the codimension of a

foliation is greater than one, then Reeb theorem cannot be generalized for non-compact proper

leaves [16]. Thus, Hector’s question about a generalization of Reeb theorem to non-compact

leaves needs to be considered only for foliations of codimension one.

Let dimAx(D) = n−1 for all x ∈M . Then F is a foliation of dimension n−1 (codimension

one). Suppose that the foliation F is transversally orientable, that is, there is a nondegenerate

smooth vector field X on M that is transversal to the leaves of F .

Let L0 be a proper leaf of the foliation F , and r > 0. We put

Ur = {y ∈M : ρ(y, L0) < r} ,
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where ρ(y, L0) is the distance from the point y to the leaf L0. Obviously, for every r > 0, the

set Ur is an open set.

In 1977, T. Inaba in the same paper [16] proved the following theorem.

Theorem 2. Let M be a compact manifold of dimension 3, F be a transversally orientable

foliation of codimension one, L0 is a proper leaf of F . Then, if the fundamental group of the

leaf L0 is finitely generated and the holonomy group H(L0) is trivial, then for every r > 0 there

exists an open invariant set V such that L ⊂ V ⊂ Ur, each leaf of V is diffeomorphic to the

leaf L0, and the restriction of F to V is a bundle with fiber L0.

Let L0 be a proper leaf of F . Suppose that for each point x ∈ L0 there exists a number

r = rx > 0 such that for each horizontal curve

h : [0, 1] → Ur = {y ∈M : ρ(y, L0) < r}

starting at x, and for each path v : [0, 1] → L0 starting at x = h(0) (vertical path), there exists a

continuous mapping (vertical-horizontal homotopy) ψ : [0, 1]×[0, 1] →M such that ψ(t, 0) = v(t)
for t ∈ [0, 1], ψ(0, s) = h(s) for s ∈ [0, 1]. A smooth curve h : [0, 1] → M is called horizontal if
dh(s)

ds
∈ H(h(s)), where H(x) = {λX(x) : λ ∈ R}, X-transverse to F vector field on M . Under

this condition, the following generalization of the theorem of J. Reeb takes place [7].

Theorem 3. Let F be a transversally orientable foliation of codimension one on M , L0 be a

relatively compact proper leaf with a finitely generated fundamental group. Then, if the holonomy

group of the leaf L0 is trivial, then for every r > 0 there exists an open invariant set V such that

L0 ⊂ V ⊂ Ur, every leaf from V is diffeomeorphic to the leaf L0, and the restriction of F to V

is a bundle over R with fiber L0.

Remark 1. A compact leaf is always an immersed submanifold of M , i. e., it is a proper leaf. It

is known that the fundamental group of a compact manifold is a finitely generated group.

In what follows, assume that the foliation is Riemannian.

Definition 6. A foliation F is said to be Riemannian if every geodesic orthogonal at some point

to a leaf of F remains orthogonal to all leaves F at all its points.

Regular Riemannian foliations were introduced by Reinhart in [19] and studied by many

authors, in particular, in [5, 17, 18, 20]. P. Molino introduced singular Riemannian foliations in

his monograph [18]. Singular Riemannian foliations arise in the classical problem of Riemannian

geometry on the action of the group of isometries. If the set D consists of Killing vector fields

orbits of the family D generate singular Riemannian foliations.

Let us recall the notion of a Killing vector field [22].

Definition 7. The vector field X on M is called a Killing vector field if the one-parameter group

of local transformations x→ X t(x), generated by the field X , consists of isometries.

Remark 2. A vector field X on Riemannian manifold (M, g) is a Killing vector field if and only

if LXg = 0, where LXg denotes the Lie derivative of the metric g with respect to X . The equality

LXg = 0 is equivalent to the condition

Xg(Y, Z) = g([X, Y ], Z) + g(Y, [X,Z]),

where Y , Z are arbitrary smooth vector fields, and [X, Y ] is a Lie bracket of vector fields X ,

Y [12].
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The geometry of singular Riemannian foliations generated by orbits of Killing vector fields

are studied in papers [21–26].

Let (M, g) be a Riemannian manifold of dimension n, F is a singular Riemannian foliation

on M . In this case the following generalization of Reeb theorem holds [5].

Theorem 4. Let (M, g) be a complete Riemannian manifold of dimension n and L is a proper

leaf of F . Then, for each r > 0 there exists an open invariant neighborhood V of the leaf L such

that L ⊂ V ⊂ Ur and the restriction of F to V is a smooth bundle with base L.

In the case when F is a regular foliation of codimension one the following theorem is true [5].

Theorem 5. Let F be a Riemannian foliation of codimension one on a complete Riemannian

manifold (M, g), L is a compact leaf. Then, for every open set V containing L, there exists an

open invariant neighborhood U of the leaf F such that L ⊂ U ⊂ V and U consists of compact

leaves diffeomorphic to L.

§ 2. Stability of completely controllable systems

In this section, using the results of § 1, we obtain sufficient conditions for the “stability” of a

completely controllable system (0.1). Admissible controls are piecewise constant functions taking

values from U .

By using Reeb stability theorem the following theorem was proved in [13].

Theorem 6. Let L0 be a compact leaf of a foliation F with a finite holonomy group. Then,

if system (0.1) is completely controllable on L0, then it is completely controllable on leaves

sufficiently close to L0.

By Reeb’s theorem, if L0 is a compact leaf with a finite holonomy group, then for every open

set V containing L0 there exists an open invariant set U such that L0 ⊂ U ⊂ V , U consists of

compact leaves. Thus, Reeb’s theorem allows one to obtain a sufficient condition for the local

stability of a completely controllable system in the case when L0 is compact. As the following

examples show, this theorem is not true if L0 is a non-compact leaf or L0 is a compact leaf whose

holonomy group is not a finite group.

Example 1. Let M = R
2\{(0, 0)} with Cartesian coordinates (x, y), the family D consists of one

vector field

X(x, y) =
(

(1− ρ)x− y
) ∂

∂x
+
(

x+ (1− ρ)y
) ∂

∂y

where ρ = x2 + y2. The circle S1 = {(x, y) : x2 + y2 = 1} is a limit cycle for the system

ẋ = −y + (1− ρ)x, ẏ = x+ (1− ρ)y (2.1)

since the vector field X tangents S1 at its each point.

If we take S1 as the compact leaf L0, then system (2.1) is completely controllable on L0.

Other trajectories are not closed; therefore, system (2.1) is not completely controllable on other

trajectories. The holonomy group of the L0 is a cyclic group.

Example 2. Let

M = R
3\{(x1, x2, x3) : x1 = x2 = 0},

with coordinates (x1, x2, x3), D = {X1, X2, X3}, where

X1 = x1
∂

∂x1
+ x2

∂

∂x2
, X2 = −x2

∂

∂x1
+ x1

∂

∂x2
, X3 = −ϕ(x)x1

∂

∂x1
− ϕ(x)x2

∂

∂x2
,
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ϕ(x) = ψ
(

(x21 + x22)x
2
3

)

, ψ : R1 → R
1 is a smooth function of class C∞ such that ψ(t) > 0 for

−1 < t < 1 and ψ(t) = 0 for
∣

∣t
∣

∣ ≥ 1.

The orbits of the family D define a two-dimensional foliation F on the M , where for the

point η0 =
(

x01, x
0
2, x

0
3

)

the orbit L(η0) coincides with the intersection M
⋂

Π(x03) where Π(x03) is

the plane in R3 defined by the equation x3 = x03.

Consider a control system

ẋ = f(x, u), u ∈ U = {u1, u2, u3}, (2.2)

where f(x, ui) = Xi(x), i = 1, 2, 3.

We put B1 = {x ∈ M : X3(x) 6= 0}, B2 = M\B1. For η0 = (x01, x
0
2, 0) the leaf L(η0) does

not intersect with B1, and therefore system ??(4) is completely controllable L0 = L(η0). For each

leaf L such that the intersection L ∩B2 6= ∅, it is impossible to get from the points L ∩B2 to the

points of the set L ∩B1 6= ∅.

Consequently, system (2.2) is not completely controllable on leaves L different from L0. The

holonomy group of the leaf L0 is trivial, but it is not a compact leaf. In this example although

the leaf L0 is not relatively compact, it is locally stable.

This fact shows that if system (0.1) is completely controllable on the leaf L0 satisfying the

conclusion of Theorem 3, then this does not imply that system (0.1) is completely controllable

on close leaves. Therefore, in the case when L0 is a non-compact leaf, additional conditions are

needed on system (0.1), which would guarantee the “stability” of system (0.1) that is completely

controllable on L0.

Definition 8. A control system (0.1) is called normally-locally controllable (in short, N -locally

controllable) near a point p ∈ L(η), if for any T > 0 there exists a neighborhood V of the point p

in L(η), such that from each point of the set V one can reach the point p in time less than T .

Definition 9. We say that system (0.1) is completely controllable (or N -locally controllable) on

an invariant set S ⊂ M , if it is completely controllable (or N -locally controllable) on each leaf

from S.

Theorem 3 of § 2 allows us to prove the following theorem [7].

Theorem 7. Let dimAx(D) = n− 1 for all x ∈M , and F is a transversally orientable foliation,

the leaf L0 satisfies the conditions of Theorem 3. If system (0.1) is N -locally controllable on L0

(closure in M ), then there exists an invariant neighborhood V of the leaf L0 such that system (0.1)

is completely controllable on each leaf from V .

Now let us return to the case dimAx(D) = k for all x ∈ M , where 0 < k < n. In this

case, F is a k-dimensional foliation. Suppose that the foliation F is a Riemannian foliation with

respect to the Riemannian metric g. A necessary and sufficient condition for being Riemannian

was given in [5]. This condition applies to vector fields from D and the Riemannian metric g.

The following result was obtained in [7].

Theorem 8. Let (M, g) be a complete Riemannian manifold and L0 be a relatively compact leaf

of the foliation F . Then, if system (0.1) is N -locally controllable on L0 (the closure of L0)

then there exists an invariant neighborhood V of the leaf L0 such that on each leaf of V the

system (0.1) is completely controllable.
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§ 3. Stability of completely controllable systems with respect to the parameter

Consider a system of equations with a parameter

ẋ = f(x, u, α), x ∈M, u ∈ U, (3.1)

where M is a smooth (of class Cr+1, r ≥ 1) connected manifold of dimension n with some

Riemannian metric g, U is a nonempty compact subset Rp, the parameter α takes values from

some open set A ⊂ R
q.

It is assumed that, for each α ∈ A the mapping

f(·, ·, α) : M × U → TM

is continuous, and the vector fields {f(·, u, α) : u ∈ U} are Cr-smooth vector fields (TM is the

tangent bundle of the manifold M ).

Considered admissible controls are piecewise constant functions u : [0, T ] → U , where

0 < T <∞.

Let η ∈M , Gη(α0) be the controllability set of system (3.1) with the target point η for α = α0

that is, for control system

ẋ = f(x, u, α0), x ∈M, u ∈ U, (3.2)

which is obtained from (3.1) by setting α = α0.

Recall that Gη (α0) is the set of points M from which one can get to the point η along the

trajectories of system (3.2). In what follows, we will everywhere assume that the right-hand side

of system (3.1) depends continuously on α.

In [27], the following question was considered: if system (3.2) is N -locally controllable near

the point η, then under what conditions will system (3.1) be N -locally controllable near the

point η for α sufficiently close to α0.

The following theorem is derived from the results of [27, 28].

Theorem 9. Let system (3.2) be N -locally controllable near the point η. Then if the set D0(η0) =
= {f(η0, u, α0) : u ∈ U} contains a positive basis of the tangent space Tη0M of the manifold M

at the point η0, then there exists a neighborhood V of the point α0 such that system (3.1) is

N -locally controllable near the point η0 for each α ∈ V .

Recall that a family of vectors {a1, a2, . . . , am} is called a positive basis in R
n, if for every a

there exist nonnegative numbers λ1, λ2, . . . , λm such that a = λ1a1 + λ2a2 + . . .+ λmam [28].

It is known that for the vectors a1, a2, . . . , am to form a positive basis in R
n, it is necessary

and sufficient that for each unit vector a there is ai, such that (a, ai) < 0, where (·, ·) is the

inner product [28]. Using this criterion for a positive basis and the continuity of the mapping

f(x, u, α), it is easy to show that under the conditions of Theorem 9 there exists δ > 0, such that

for ρ(η, η0) < δ and
∣

∣α − α0

∣

∣ < δ the set D(η) = {f(η, u, α) : u ∈ U} contains a positive basis

for the tangent space TηM .

Here ρ(η, η0) is the distance between the points η0 and η defined by the Riemannian metric g

on M , and |α − α0| is the Euclidean norm in R
q. Since the set D(η) contains a positive basis,

system (3.1) is N -locally controllable near each point of the set B(δ) = {η ∈ M : ρ(η, η0) < δ}
for each α, if |α− α0| < δ.

As noted in [27], if the set D(η) does not contain a positive basis, then system (3.1) may not

be N -locally controllable for α 6= α0 even if α is sufficiently close to α0.

Now we assume that system (3.2) is completely controllable and consider the question: under

what conditions will system (3.1) be completely controllable for α sufficiently close to α0.

In the case when M is a compact manifold and f smoothly depends on α, from the results

of [10] we can obtain the following proposition.
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Proposition 1. There exists δ > 0 such that system (3.1) is completely controllable for each α

from {α ∈ A : |α− α0| < δ}.

The following theorem is a generalization of the above statement to the case when f depends

continuously on α, which was proved in [7].

Theorem 10. Let K ⊂ M be a compact connected submanifold of dimension n and system (3.2)

be completely controllable on K. Then there exists δ > 0 such that system (3.1) is completely

controllable on K for each α from the set {β ∈ A : |β − α0| < δ}.

Recall that system (3.1) is completely controllable on a subset S ⊂ M if for each pair

(x, y) ∈ S × S from the point x one can get to the point y along the trajectory of system (3.1).

Remark 3. The assertion of Theorem 10 is false if the dimension of K is less than n. For

example, if the set U consists of one point, we have a family of vector fields {Xα : α ∈ A}.
Suppose that the vector field Xα0

has a closed trajectory K. It is clear that system (3.1) for

α = α0 is completely controllable on K. But, if dimM > 1 and the vector fields Xα are not

tangent to K for α 6= α0, then the system (3.1) is not completely controllable on K for α 6= α0.

Recall that the set V (M) of smooth vector fields of class C∞ is a Lie algebra with respect

to the Lie bracket [X, Y ] of vector fields X, Y ∈ V (M). We put Dα = {f(·, u, α) : u ∈ U} and

denote by Pα the smallest Lie subalgebra containing the set of vector fields Dα. Now, suppose that

for every α system (3.1) is symmetric, and for every u ∈ U a mapping f(·, u, ·) : M ×A→ TM

of class C∞. Symmetry means that if X ∈ Dα then −X ∈ Dα.

In the paper [7] the following theorem was proved.

Theorem 11. Let Pα(x) = {X(x) : X ∈ Pα}, x ∈ M . Suppose that system (3.2) is N -locally

controllable near the point η. Then, if dimPα0
(η) = n, then there exists a number δ > 0 such

that system (3.1) is N -locally controllable near the point η for each α from the set Bδ(α0) =
= {α ∈ A : |α− α0| < δ}.

Now suppose that the dimension dimPα(x) does not depend on x, but depends on α. In this

case, the following result was obtained in [7].

Theorem 12. Let system (3.1) be completely controllable for α = α0. Then there exists δ > 0
such that system (3.1) is completely controllable for each α from the set Bδ(α0).

§ 4. Geometry of the attainability set of vector fields

Consider the set D ⊂ V (M), which can contain finite or infinite number of smooth vector

fields.

Definition 10. The point y ∈ L(x) such that

y = X tk
k (X

tk−1

k−1
(. . . (X t1

1 (x)) . . .))

is said T -attainable from a point x ∈M if
∑

i ti = T .

We denote by Ax(T ) the set of all points that are T -attainable from the point x.

It was proved in [9] that an orbit is a smooth manifold. Based on the same idea, we proved

in [6] the following theorem on the geometry of the set of T -attainable points.

Theorem 13. For each x ∈ M and any T , the set Ax(T ) is an immersed submanifold of the

orbit L(x) of codimension 1 or 0.
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Recall that if one additionally requires in Definition 1 of an orbit that t1, t2, . . . , tk are

nonnegative numbers, then one obtains the definition of the positive semiorbit L+(x). Another

important contribution of Sussmann in the geometry of the attainability set is the following

theorem [10].

Theorem 14. Let M be a smooth connected manifold of dimension n. There exists a system D

consisting of two vector fields such that L+(x) =M for each point x ∈M .

Using Theorem 14, we proved in [6] the following assertion.

Theorem 15. LetM be a smooth connected manifold of dimension n ≥ 2. There exists a systemD

consisting of three vector fields such that Ax(0) =M for each point x ∈M .

For manifolds with nonzero Euler characteristic, the following result is valid.

Theorem 16 (see [6]). Let M be a smooth, compact, connected manifold of dimension n ≥ 2,
whose Euler characteristic is nonzero. There exists a system D consisting of two vector fields

such that Ax(0) =M for each point x ∈M .

The following example from [6] shows that on a compact connected manifold with zero Euler

characteristic, a system consisting of two vector fields can exist such that Ax(0) = M for each

point x ∈M .

Let the three-dimensional sphere S3 ⊂ R
4 be given by equation x2+ y2+ z2+w2 = 1, where

x, y, z, w are Cartesian coordinates in R
4. We consider on the sphere S3 two Killing vector

fields:

X = −y
∂

∂x
+ x

∂

∂y
− w

∂

∂z
+ z

∂

∂w
, Y = −z

∂

∂x
+ x

∂

∂z
.

The Lie bracket [X, Y ] of vector fields X, Y has the following form:

[X, Y ] = −w
∂

∂x
− z

∂

∂y
+ y

∂

∂z
+ x

∂

∂w
.

As, at the point p(1, 0, 0, 0) ∈ S3, the vectors X(p), Y (p), and [X, Y ](p) are linearly indepen-

dent, the orbit L(p) is a three-dimensional manifold. It follows that L(p) = S3 [6].

If the sets Aq(0) for q ∈ S3 are submanifolds of the orbit L(p) of codimension 1 then they

generate Riemannian codimension one foliation on L(p) = S3. But it is known that there do

not exists two-dimensional Riemannian foliations on S3 [6]. It follows that Aq(0) = S3 for

all q ∈ S3.

For symmetric systems, the following theorem holds [6].

Theorem 17. Let a system D be symmetric and contain a complete vector field. Then for

any T ∈ R and any point x ∈M the following equality holds Ax(T ) = L(x).

Recall that a system D of vector fields is said to be symmetric if X ∈ D implies −X ∈ D.

It follows from Theorem 13 that the manifolds Ay(0) for points y ∈ L(x), either coincide

with L(x) or generate a foliation of codimension 1 on L(x). This allows one to apply the methods

of foliation theory for the study of geometry of the manifolds Ay(0). The following result was

obtained [6].

Theorem 18. Let M = R
n, a system D of vector fields consist of Killing vector fields, and, for a

point x ∈M , let the orbit of L(x) be a k-dimensional plane, 0 ≤ k ≤ n. Then, for all y ∈ L(x),
the sets Ay(0) either coincide with L(x) or are parallel hyperplanes in L(x).



90 The stability of completely controllable systems

REFERENCES

1. Narmanov A. Ya. Controllability sets of control systems that are fibers of a foliation of codimension

one, Differentsial’nye Uravneniya, 1983, vol. 19, no. 9, pp. 1627–1630 (in Russian).

http://mi.mathnet.ru/eng/de4960

2. Narmanov A. Ya. A stability theorem for noncompact leaves of a foliation of codimension one, Vestnik

Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya, 1983, no. 19 (4), pp. 100–102.

https://zbmath.org/?q=an:0564.57020

3. Narmanov A. Ya. Dependence of the control set on the target point, Differentsial’nye Uravneniya,

1985, vol. 21, no. 9, pp. 1504–1508 (in Russian). http://mi.mathnet.ru/eng/de5629

4. Narmanov A. Ya. On the dependence of the controllability set on the target point, Differential Equa-

tions, 1995, vol. 31, no. 4, pp. 555–558.

5. Narmanov A. Ya. On the transversal structure of the controllability sets of symmetric control systems,

Differential Equations, 1996, vol. 32, no. 6, pp. 786–789.

6. Narmanov A. Ya., Saitova S. S. On the geometry of the reachability set of vector fields, Differential

Equations, 2017, vol. 53, no. 3, pp. 311–316. https://doi.org/10.1134/S001226611703003X

7. Narmanov A. Ya. Stability of completely controllable systems, Differential Equations, 2000, vol. 36,

no. 10, pp. 1475–1483. https://doi.org/10.1007/BF02757386

8. Stefan P. Accessibility and foliations with singularities, Bulletin of the American Mathematical Society,

1974, vol. 80, no. 6, pp. 1142–1145. https://doi.org/10.1090/S0002-9904-1974-13648-7

9. Sussmann H. J. Orbits of families of vector fields and integrability of systems with singularities,

Bulletin of the American Mathematical Society, 1973, vol. 79, no. 1, pp. 197–199.

https://doi.org/10.1090/S0002-9904-1973-13152-0

10. Levitt N., Sussmann H. J. On controllability by means of two vector fields, SIAM Journal on Control,

1975, vol. 13, no. 6, pp. 1271–1281. https://doi.org/10.1137/0313079

11. Azamov A., Narmanov A. Ya. On the limit sets of orbits of systems of vector fields, Differential

Equations, 2004, vol. 40, no. 2, pp. 271–275. https://doi.org/10.1023/B:DIEQ.0000033716.96100.06

12. Narmanov A. Ya., Saitova S. S. On the geometry of orbits of Killing vector fields, Differential Equa-

tions, 2014, vol. 50, no. 12, pp. 1584–1591. https://doi.org/10.1134/S0012266114120027

13. Agrachev A., Sarychev A. Control in the spaces of ensembles of points, SIAM Journal on Control and

Optimization, 2020, vol. 58, no. 3, pp. 1579–1596. https://doi.org/10.1137/19M1273049

14. Petrov N. N. Matrix resolving functions in a linear problem of group pursuit with multiple capture,

Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 185–196 (in Russian).

https://doi.org/10.21538/0134-4889-2021-27-2-185-196

15. Gauthier J. P., Bornard G. An openness condition for the controllability of nonlinear systems, SIAM

Journal on Control and Optimization, 1982, vol. 20, no. 6, pp. 808–814.

https://doi.org/10.1137/0320058

16. Sachkov Yu. L. Coadjoint orbits and time-optimal problems for step-2 free nilpotent Lie groups, Math-

ematical Notes, 2020, vol. 108, no. 6, pp. 867–876. https://doi.org/10.1134/S0001434620110280

17. Tamura I. Topology of foliations: an introduction, AMS, 1992.

18. Schweitzer P. A. Some problems in foliation theory and related areas, Differential Topology, Foliations

and Gelfand–Fuks Cohomology: Proceedings of the Symposium held at the Pontifica Universidade
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А. Я. Нарманов, Г. М. Абдишукурова

Стабильность вполне управляемых систем

Ключевые слова: системы управления, множества управляемости, орбита векторных полей, сингу-

лярное слоение.

УДК 517.936, 517.925.53

DOI: 10.35634/vm220106

Предметом настоящей работы является вопрос о стабильности вполне управляемых систем, задан-

ных на гладком многообразии. Известно, что множества управляемости симметричных систем по-

рождают сингулярные слоения. В случае, когда множества управляемости имеют одинаковую раз-

мерность, возникает регулярное слоение. Таким образом, возникает возможность применения мето-

дов теории слоений в задачах теории управления. В данной работе излагаются некоторые результаты

авторов о возможности применения теорем о стабильности слоев для задачи о стабильности вполне

управляемых систем и для изучения геометрии множества достижимости. Гладкость всюду в работе

будет означать гладкость класса C∞.
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