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Introduction

A random walk {N, P = [p(a,b)]} where N is a countable infinite state space and P =
= [p(a,b)] is a matrix of a transition probabilities {p(a, )} is recurrent if the walk starting at
a state e returns to e infinitely often. If the random walk is reversible (that is, there exists a
function ¢(z) > 0 such that ¢(a)p(a,b) = ¢(b)p(a,b) for any pair of states a, b) then there
are known necessary and sufficient conditions for the random walk to be recurrent, proved by
using methods from normed spaces. But when the random walk is not reversible, these methods
are not of use. Many problems in a random walk are solved by considering it as a reversible
Markov chain. We show that the reversible condition can be ignored by using potential theoretic
techniques for some random walk problems. Many authors have investigated random walks in
an infinite network using the Laplace operator, recall S. McGuinness [1], V. Anandam [2, 3],
K. Abodayeh, V. Anandam [4, 5], C.St.J. A. Nash-Williams [6], T. Lyons [7], W. Woess [8],
J.M. Cohen et al. [9], F. Colonna, M. Tjani [10], J. M. Cohen et al. [11]. In [6], Nash—Williams
explained a random walk on an electrical network with the help of probabilistic methods.

Later in [7], T. Lyons studied the Royden criterion in Riemann surfaces, giving a necessary and
sufficient condition for a reversible countable state Markov chain to be transient. V. Anandam [2]
studied random walks in an infinite network without reversible conditions and proved the Nash—
Williams criterion by using potential theoretic methods. In [12], V. Anandam and M. Damlakhi
studied these potential theoretic methods in finite networks with the help of perturbed Laplace
operators. K. Abodayeh, V. Anandam in [13, 14] investigated Schrodinger networks and their
Cartesian product and supersolutions of discrete Schrodinger equations. In [15], N. Nathiya,
Ch. Amulya Smyrna studied the developments of infinite Schrodinger networks in the Euclidean
spaces. In [16], V. Anandam studied recurrent or transient random walk on an infinite tree with the
help of reversibility condition and transition probabilities matrix. Whereas in this article, we have
developed the potential theoretic methods without the condition of reversibility. With the help
of this condition, we have studied the potential theoretic methods on infinite random walks. For
example, among other results, it is shown that the random walk {N, P = [p(a, b)]}, reversible or
not, is recurrent if in the associated infinite network { NV, p(a, b)} there exists a function v(a) > 0
outside a finite set such that (1 — p)v(a) > 0 and r}l—{go v(a) = oo, or if every function s(a) > 0

on N such that (1 — p)s(a) > 0 is constant, by making extensive use of Dirichlet solutions and
balayage.
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§ 1. Infinite network

In this section, an abridged version of potential theory on infinite graphs, relevant to the
study of random walks, is given. It is mainly taken from [3]. Let N be an infinite graph with
a countable infinite number of vertices and countable number of edges. If a and b are two
vertices joined by an edge, say that a and b are neighbours denoted by a ~ b. The graph is
connected if for any two vertices a and b, there exists a path {a = ag, a1, ...,a, = b}, a; ~ a; 41
for0 <i<n-—1;ifa=band n > 3 in this path, say that there is a self-loop at the vertex a; say
that the graph is locally-finite if every vertex has only a finite number of neighbours. A collection
of real numbers ¢(a,b) > 0 defines a set of transition indices {¢(a, b)} on the graph, provide that
t(a,b) > 0 if and only if @ ~ b, t(a,b) and t(b,a) need not have the same value. An infinite
graph N that is connected, locally finite, without self-loops and provided with a set of transition
indices {t(a, b)} is here referred to as an infinite network { N, t(a,b)}.

Let A be a subset of N. A vertex a € A is an interior vertex of A if all the neighbours b ~ a

are also in A. Let A denote the collection of all the interior vertices of A, the set 0A = A\ A is
referred to as the boundary of A. If u(a) is a real-valued function on A, the Laplacian at a vertex
a € A is defined as Au(a) = > t(a,b) [u(b) — u(a)]. A real-valued function u(a) on A is said

b~a
to be upper A-function on A if Au(a) < 0 at every vertex a € A and lower A-function on A if

Au(a) > 0 at every vertex a € ;1, and A-function on A if it is both upper A-function and lower
A-function on A. A non-negative upper A-function p(a) on A is called a basis function if it has
the following property: for any lower A-function v(a) on A such that v(a) < p(a), one should
have v(a) > 0.

§2. Some properties of upper A-functions

1. If u,(a) is a sequence of upper A-functions on A and if u(a) = lim u,(a) exists and is

n—oo

real-valued, then u(a) is upper A-function on A, also Au(a) = lim Au,(a).

n—oo

2. If {v;(a)} is the family ¢ of all upper A-functions on A majorized by on upper A-func-
tion u(a) on A, then the family ¢ is upper-directed and h(a) = supv;(a) is a A-func-
¥

tion u(a) on A. It is easy to remark that p(a) = u(a) — h(a) is a basis function on A.
Consequently, one can assert: if u(a) is an upper A-function on A majorizing a lower
A-function then u(a) is the sum of a basis function p(a) on A and its greatest A-function
minorant h(a); this decomposition as the sum of a basis function and the greatest A-function
minorant is also unique. This is usually referred to as the Riesz decomposition.

3. Dirichlet solution: Many properties (like condenser principle, balayage, reduced func-
tions etc.) in the study of basis functions on an infinite network appear as solutions to
problems which are actually variations of a generalized Dirichlet problem. We shall refer
to the following result [3, Theorem 3.1.7] as a

Generalized Dirichlet solution: Let /' be a subset in the network { N, ¢(a,b)} and A C F.
Suppose f(a) is a real-valued function defined on F'//A such that v < f < u on F'//A where
u is an upper A-function on F' and v is a lower A-function on F. Then there exists a
function h(a) on F such that v < h < won F; h(a) = f(a) on F/A; and Au(a) = 0

at every vertex in A. Moreover, h can be so chosen that if A, is another such function on F
having these three properties, then h; < h. However if the set A contains only a finite
number of vertices, then the solution i (a) is uniquely determined.
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4. Reduced functions and balayage: Suppose s(a) > 0 is an upper A-function on a subset A
and £ C A. Let ¢ be the family of all the non-negative upper A-functions u(a) on A

which majorize s(a) on E. Then (RF(z)), = in{b u(a) is referred to as (the reduced
ue

function in the case of potential theory on topological spaces) the balayage of s(a) on E in
the subset A. We leave out A when it is the whole set V.

Note that v(a) = (R%(a)) , is a non-negative upper A-function on A such that v(a) < s(a)
on A; v(a) = s(a) on E; and Av(a) = 0 if a € A/E. If there exists a basis function p(a)
on A such that s(a) < p(a) on A, then v(a) is a basis function on A.

5. Parabolic and hyperbolic networks: In the study of lower A-functions, upper A-functions
in the Euclidean case, there is a marked difference between R? and R",n > 3, because
of the fact that any non-negative upper A-function in R? is constant (recall Liouville’s
Theorem) while non-constant positive upper A-functions exist in R”,n > 3 (recall the
Newtonian gravitational kernel in R®). However, there are many similarities also in these

1

two cases since the potential theory is based on the logarithmic kernel log Tl in R? while
1

la—b|*

in R? it is based on the Newtonian Kernel

To consider these two different cases in the context of an infinite network { N, ¢}, let us say
that it is a parabolic network if any non-negative upper A-function on N is constant and it is a
hyperbolic network if there are non-constant positive upper A-functions (and hence positive basis
functions) on N. There are various distinguishing properties to differentiate between these two
types of networks. One such is given now by using the Dirichlet solution.

Let e be a fixed vertex in N. Let {A,} be a sequence of finite sets such that e € A,

A, C jlnﬂ forn > 1and N = U,A,. Let h,(a) be the Dirichlet solution in A,, with boundary

values 1 at e and 0 on 0A,, then extended by 0 outside A,. Then {h,} is an increasing sequence

of bounded functions on N, 0 < h,(a) < 1. Let h(a) = lim h,(a). The function h = 1 if and
n—o0

only if V is a parabolic network. Otherwise it is hyperbolic; notice that in this case h(a) = R{(a).

§ 3. Random walks

A random walk {N, P = [p(a, b)]} behaves in some case (when the matrix P is irreducible)
similar to an infinite network { X, p(a, b)} with the restriction ) p(a, b)u(b). A real-valued func-

tion u(a) is said to be upper A-function if Pu(a) < u(a) for all a. If u(a) is a function such
that u(a) > —oo for all @ € N, Pu(a) < u(a) is finite at one vertex ¢, then u(a) is real-valued
on N and consequently upper A-function. For u(c) > Pu(c) implies that u(a) is real-valued for
all a ~ c; this leads to the conclusion that u(a) is real-valued on N since N is connected.

We write —A = (I — P). The infinite network { N, p(a, b)} associated with the random walk
{N, P} is referred to as a parabolic network if every positive upper A-function in {N,p(a,b)}
is constant; if there exists a non-A-function positive upper A-function on {N, p(a, b)}, then it is
referred to as a hyperbolic network.

Let us start with a time-homogeneous Markov chain that is a discrete-time stochastic pro-
cess {N,}, n = 0,1,2,..., where N,, takes values in the state space N with a countable in-
finite states [17]. For any two states a,b the transition probability from a to b is denoted by
p(a,b) = Prob{N; = b, Ny = a}. Thus, the set N with the transition numbers p(a, b) can be
considered as an infinite network in which a and b are neighbours if and only if p(a,b) > 0;
at this stage /N may or may not be a connected graph. Denote by P the infinite matrix of the
transition probabilities {p(a,b)}. In {V, p(a, )}, just as p(a, b) represents the probability that the
walker starting at the state b reaches the state a, p™(a, b) represents the probability that the walker
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starting at b reaches a in n steps. Actually p™(a, b) is the entry in the a'* column and the b row
of the matrix p". Take p° = I. Let us assume that given any two states a and b, there exist
integers m and n such that p"(a,b) > 0 and p"(b,a) > 0; in this case the matrix P is referred
to as irreducible. When P is irreducible, the infinite graph {N,p(a,b)} is actually connected
so that it is an infinite network in the earlier sense. When the matrix P is irreducible, we also
refer to {N, P} = {N, P = [p(a,b)]} as a random walk with the state space /N and the transition
probability matrix P determined by the process { N, }.

Definition 1. An irreducible Markov chain {N,} on N is said be recurrent if for each state a,
the chain returns to a infinitely often. That is, Prob { N,, = a for infinitely many n} = 1.

Since the transition probabilities matrix is assumed to be irreducible, then starting from
a state b the walker can reach any other state a in finite steps. Consequently certain variations in
the above definition can be proposed:

(i) suppose e is a fixed state and a is any other state; then {N,,} is recurrent if and only if the
walker starting from a reaches e infinitely often;

(i1) if the irreducible chain visits a state infinitely often, then it also visits every other state in
N infinitely often.

Definition 2. An irreducible Markov chain {N,} on N is called transient if it is not recurrent.
Thus, transient means that the chain visits any state only a finite number of times and then
wanders off to the state at infinity.

Thus, the division of random walks into two groups, recurrent and transient, depends on the
situation whether the Markov chain {/N,} returns to any starting state infinitely often or only
a finite number of times. This distinction is manifested in different forms in the classification
of random walks as shown below and we also interpret these results in the context of infinite
networks associated with the respective random walks.

The following passage up to the proof of Proposition 4 is mainly based on Lawler [17, Sec-
tion 2.2]. Fix a state e and assume that Vy; = e. Consider the random variable R which gives

m
the total number of visits to e including the initial visit. Write R = Y x {V, = e} where

n=0
X 1is the characteristic function. When the chain is recurrent, R is identically co. That is, if
m

R, = Z x {N, =e}, then R,, — oo when m — oo. Now the expectation is E(R,,) =

= Z Prob{N, =e} = Z p"(e, e). Hence in the case of recurrence Z p*(e,e) = oc.
Note that R < oo w1th probablhty 1 if the chain is transient. In thls case the expectation of R

is E(R) = [Z X {Nx _e}} :EOProb{Nn:e}:n;Op”(e,e).

Proposition 1. The Markov chain is transient if and only if Y p™(e,e) < oc.
n=0

o0

P ro o f From the above narrative, if ) p"(e,e) < oo then the chain cannot be recurrent. Con-
n=0

versely, assume that the chain is transient. That is, the chain {/N,} returns to e only a finite

number of times. Let ¢ be the probability of the first return of {N,} to e. Note that ¢ # 1
since the chain is transient: if ¢ = 1 then with probability 1 the chain always returns to e and by
continuing we see that the probability is 1 for the chain to returns to e infinitely often; that is the
chain is recurrent.
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In the case of transience, R = 1 if and only if the chain never returns to e, hence the probability
is 1 — ¢; and R = m if and only if the chain returns (m — 1) times and does not return for the

m!" time, hence the probability is ¢~ !(1 — ¢q). Consequently, E(R) = Y. m-Prob{R =m} =
m=1

= > mlg™ (1 —q)] = 1T1q < 00. Comparing this with the earlier expression for F(R) in the
m=1

case of transience, we conclude that the Markov chain is transient if and only if

Zp"(e,e) < 0. O
n=0

Remark 1. For any state ¢, the walker can reach e from c in a finite number of steps. Thus, the
nature of transience does not depend on the choice of the initially fixed state e. Consequently,

the Markov chain {N,} is transient if and only if >  p™(c,¢) < oo for any state c. Instead of
n=0

the circuit probabilities like p"(c, c), we shall now take up the consideration of p"(a,b) which
is the probability that the walker starting at the state N reaches the state b in n steps. For this,
it is easier to consider { N, P = [p(a, b)]} either as a random walk or an infinite network as the
occasion demands.

Writing p"(a, b) as pj'(a), remark that

Plpp(a)] =Y pla,o)pi(c) =Y pla,c)p”(c,b) = p"(a,b) = p; ' (a),

since pj(a) denotes the probability that the walker starting from the state a reaches the state b in
o

n steps, then the expression Gy(a) = > pj(a) represents the expected number of visits to the
n=0

state b starting from the state a.

Proposition 2. If the random walk {N, P = [p(a,b)|} is transient, then the infinite network
{N,p(a,b)} associated with it is hyperbolic.

Proof We shall actually show that Gy(a) is the Green basis function on the network
{N, p(a,b)} with A-function support at {b}.

Choose a vertex b in the network N. If Gy(a) = > pi(a), then P [Gy(a)] = > pp(a) <
n=0 n=1

< Gy(a) so that Gy(a) is a positive upper A-function in the network { N, p(a, b)}.

The function Gy (a) is actually a basis function. For that note that when G (a) is real-valued,
we can write Gy(a) — P [Gy(a)] = dy(a) which is the column vector with entry 1 when b = «
and 0 in other entries. Consequently, —A [Gy(a)] = 0y(a).

If h > 0 is a A-function such that h(a) < Gy(a), then we have h(a) = P™h(a) <

< P™[Gy(a)] = > py(a) which tends to 0 when m — oo; this shows that h = 0. Hence

n=m
Gyp(a) is a basis function which in this case is the Green basis function having {b} as its A-func-
tion support. 0

Remark 2. The above theorem can be reformulated: A random walk {N, P = [p(a,b)]} is re-
current if the associated infinite network {N,p(a,b)} is parabolic. Conversely, if the Markov
chain is reversible, then the parabolicity of the network implies that the random walk is re-
current. (“Reversible” means that there exists a real-valued function ¢(a) > 0 such that
¢(a)p(a,b) = @(b)p(b,a) for any two states a,b.) This converse can be deduced [2, Theo-
rem 3.3] from McGuinness [1, p. 90]. See the very important papers of Nash-Williams [6] and
Lyons [7] in this context.
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§ 4. Infinite trees

A connected graph is called a tree if there is no cycle in it, that is there is no closed path
{ay,as,...,a,,a;} with n > 3. Thus, in an infinite tree 7', if a, b are any two vertices then there
exists a unique path connecting a to b. Suppose a random walk {7, P = [p(a,b)]} is defined in
the infinite tree 7.

Fix a vertex e in 7. Then for any a in T, if {e,a1,as,...,a, = a} is the unique path
connecting e to a, write ¢(a) = p(;’i‘:ﬂ)ﬁ ((Zif”f)af_(ff’;(iiﬂ Note that if b ~ a, then ¢(a)p(a,b) =

= ¢(b)p(b,a). Hence {T, P} is reversible, which leads to the conclusion: The random walk
{T, P = [p(a,b)]} on the infinite tree 7 is recurrent if and only if the associated network
{T,p(a,b)} is parabolic.

Proposition 3. Let {N, P = [p(a,b)]} be a random walk. Suppose there exists a function v
defined outside a finite set A in N such that (I — P)v(a) > 0 at every a € N/A and lim v(a) =
a—ro0

= oo. Then the random walk is recurrent.

P r o o f. With the existence of such a function v(a), the network { N, p(a, b)} has to be parabolic.
Otherwise, for each vertex b € N there exists the Green basis function Gy(a) which is bounded
and (I — P)Gy(a) = dp(a). Choose a large finite set F, Fy O A. Let h be the Dirichlet solution
on E with boundary values v on JF. Let v; be the function on N such that v; = h on E and
v; = v on (N/E). Define for a € N, va(a) = vi(a) + > AV1(D)Gp(a).
beOE

Then for a € 82?, (I — P)vy(a) = 0; for a € (N/E), (I — P)vi(a) > 0; for a € OF,
(I —P)va(a) = (I — P)vi(a)+ (—)(I — P)vy(a) = 0. Thus, (I — P)ve(a) > 0 on N. Now Gp(a)
is bounded on N, so that all)rgo v9(a) = oo. But this is not possible by the Minimum Principle

for vy. Consequently, the assumption that {NV, p(a,b)} is not parabolic is invalid. So the random
walk {N, P} is recurrent.

Let us consider now a random walk {T', P = [p(a, b)]} on an infinite tree 7. Fixing a vertex
e € T, let us measure distance from e. Remark that 7" is reversible and that for any a € T, |a| = n,
there is one neighbour a, |a| = n — 1; other neighbours b; are at a distance |b;| = n + 1. O

Proposition 4. Let {T, P = [p(a,b)|} be a random walk on an infinite tree. Measure distances
in T from a fixed vertex e. If p(a,a) > % for all a, then {T, P} is recurrent. If p(a,a) < 3, then
{T, P} is transient.

0]

Proof Consider the function f(n) = (+2)", 0 < a < 1, at any a, |a| = n > 1, we have

(I = P)f(n) = —[1 —2p(a,a)] 25} [%5]".

1. Suppose p(a,a) > 3 for all a. Then take 1 > o > 1. In this case %~ > 1. Hence
(I — P)f(n) > 0 outside e, and f(n) — oo at the point at infinity. Hence by Proposition 3,

{T, P} is recurrent.

2. Suppose p(a,a) < 3 for all a. Then take 0 < o < i. Hence (I — P)f(n) > 0. At
e (I —P)f(e) = — [t% —1] > 0. Hence f(n) is a positive upper A-function tending
to 0 at infinity, hence a basis function, so that {7', P} is transient. (Remark 2 following

Proposition 2.)

3. The case p(a,a) = 3: for the function s(a) = n when |a| =n > 1, (I — P)s(a) > 0;
moreover, s(a) — oco. Hence {7, P} is recurrent.
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Let {N, p(a,b)} be the infinite network associated with the random walk {N, P = [p(a,b)]}.
Let us recall the notion of reduced functions in the network [3]. If s(a) is a non-negative upper
A-function defined on a set £ and A is a subset in the interior E° of E, then [R{(a)] , = inf u(a)

uES

where  is the family of non-negative upper A-functions u(a) on E such that u(a) > s(a)
on A. UJ

Example 1. Let 7" be a homogeneous tree of degree 2 and the transition probability p(a,a) =
= 2L Consider a function s(a) = 27'*/%. Note that for any vertex a in T, |a| = n > 1. Here

|a| represents the distance between the root vertex.

Proof
As(a) e %[2-14—(71—1) _ 2—1+n] + %1[2—14—(71-1-1) _ 2—1+n]
— q+ 1 [2*1+n*1 _ 271+n] + q— 1 [271+n+1 _ 271+n]
2 2
1 —1
_4E Spgne _gorem) L U Lign _gten) < )
2 2
If p(a,a) > 1 for all a, then {T', P} is recurrent. If p(a,a) < 1, then {7, P} is transient. O

Lemma 1. Let E be a finite set e € E. Then [R$(a)| is the Dirichlet solution in E with boundary
values 1 at e and O at each vertex in OF.

Proof Let p(a) be the unique Dirichlet solution on E with boundary values 1 at e and 0
on OF. Then ¢(a) > [R{], on E. Since RS(a) is a non-negative upper A-function on E with
values 1 at e and 0 on OF, by the construction of the Dirichlet solution we have ¢(a) > [R(a)] .
This proves p(a) = [R$(a)|, on E. O

Lemma 2. Let e € E where E is a finite set. Then the probability that the walker starting at a

state a € E goes outside E before ever coming back to e is 1 — [R5 (a)] .

Proof Let ¢(a) be the probability that the walker starting at a reaches e before visiting any

state in OF. Then ¢(e) = 1, ¢(c) = 0 for ¢ € OF; moreover, for any a € E, we have ¢(a) =
= Y pla,b)p(b). This means (I — P)p(a) = 0. That is, ¢(a) is harmonic on E with boundary

b~a
values (e) =1, p(c) = 0 on OF. Hence by the above lemma 1, p(a) = [R{(a)],. This shows
that the walker starting at a € E goes outside E before ever coming to e with the probability
1—p(a) =1-[Ri(a)]p O

Theorem 1. In the random walk {N, P = [p(a,b)|}, the probability that the walker starting at
the state a goes off to infinity A without visiting e is 1 — ¢(a) = 1 — [R$(a)] which is defined with
reference to the associated network { N, p(a,b)}.

Proof Let {E,} be an increasing sequence of finite sets such that N = UFE,. For any
a in N, if a € E,, then [R{(a)], (which represents the reduced function with respect to the
finite set F,,) is defined for n > m and is an increasing sequence of upper A-functions. Since
[R{(a)],, < R{(a), then v(a) = sup [R{(a)], is an upper A-function on N and v(a) < Rf(a). On
the other hand, since v(a) is an upper A-function on N and v(e) = 1, we have v(a) > R also.
Thus, R$(a) = v(a) = lim [R{(a)],,.
n—oo

Now the probability that the walker starting at the state x and going off to infinity A without

visiting e is the limiting value of 1 — [R{(a)],, when n — oo which is 1 — R{(a). O
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Corollary 1. In the random walk { N, P = [p(a,b)]}, the probability that the walker starting at e,
after leaving e never returns to e is (I — P)R.

P ro o f. The probability (from the above Theorem 1) is

> pleb) [L=Ri(b)] =) _ple,b) [Ri(e) = R{(D)] = —A[R{(e)] = (I - P)Ri(e). O

bre b~e
Some remarks on the reduced function RS (a) in the infinite network { N, p(a,b)}.
1. The network NV is parabolic if and only if R{ =1 on V.
2. The network N is hyperbolic if and only if R{(a) is a basis function on .

3. Asin [3, Section 3.2], for each e; ~ e, denote by [e, ¢;] the subset [e, e;] = {a: there exists a
path joining a to e that passes through ¢;}; e; and e are assumed to be in [e, ¢;]. Note that
if e;, e; ate two neighbours of e, then either [e, e;] and [e, e;] are two subsets having e as the
only common vertex or [e, e;] = [e, e;]. The subset [e, ¢;] is called an S-domain if 0 is the
only bounded function h(a) on [e, ¢;] such that h(e) = 0 and —Ah(c) = (I — P)h(c) =0
for any ¢ # e. A subset [e, ¢;] is called a P-domain if it is not an S-domain. If a set [e, ;]
contains only a finite number of vertices, then it is necessarily an S-domain. The network
{N,p(a,b)} is parabolic if and only if all the subsets [e, ¢;] are S-domains. It is hyperbolic
if and only if at least one [e, ¢;] is a P-domain; in this case there may be other subsets that
are S-domains.

4. If the random walk {N, P = [p(a,b)]} is transient, it has been seen that G.(a) =

= > p"(a,e) represents the expected number of visits to the state e starting from the
n=0
state a. The function G.(a) can also be interpreted as the Green function in the hyper-

bolic network {N, p(a,b)} with A-function support at e. Now (see [3, Corollary 3.3.7]),
Ge(a) < Ge(e) for all @ € N in fact, Ge(a) = G.(e)R{(a).

5. It can also be mentioned that in the case of a transient random walk, if A is a finite set
in N, then R{* denotes the probability that the walker starting at the state a to reaches a
state in A before wandering off to infinity.
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Ecnu ciyuaitnoe OmyxnaHue Ha OECKOHEYHOM CUETHOM MPOCTPAHCTBE COCTOSHUM 0OpaTHMO, TO W3BECTHEI
HEOOXOMUMBIE M JJOCTATOYHBIE YCIOBHS IJIsl TOTO, YTOOBI 3TO OMyXIaHHe ObLIO peKyppeHTHBIM. Ecnm ot-
OpOCUTH ycJIOBHE OOpPaTHMOCTH, TO, UCIIOIB3YS JUCKPETHBIE pemenus Jupuxie u BeIMeTaHHe (TIOHATHS,
U3BECTHBIE U3 TEOPUU MOTEHIMAaa), MOXKHO YAaCTMYHO YCTAHOBHUTH HEKOTOpbIE M3 NMPHUBEIECHHBIX BBIIIE
Pe3yNIbTaTOB, KACAIOUINXCS TTOBTOPSIEMOCTH M TIEPEXOAHOCTH CIYYaHOTO Oy)KIaHMS.
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