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∆-FUNCTIONS ON RECURRENT RANDOM WALKS

If a random walk on a countable infinite state space is reversible, there are known necessary and sufficient

conditions for the walk to be recurrent. When the condition of reversibility is dropped, by using discrete

Dirichlet solutions and balayage (concepts familiar in potential theory) one could partially retrieve some

of the above results concerning the recurrence and the transience of the random walk.
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Introduction

A random walk {N,P = [p(a, b)]} where N is a countable infinite state space and P =
= [p(a, b)] is a matrix of a transition probabilities {p(a, b)} is recurrent if the walk starting at

a state e returns to e infinitely often. If the random walk is reversible (that is, there exists a

function φ(x) > 0 such that φ(a)p(a, b) = φ(b)p(a, b) for any pair of states a, b) then there

are known necessary and sufficient conditions for the random walk to be recurrent, proved by

using methods from normed spaces. But when the random walk is not reversible, these methods

are not of use. Many problems in a random walk are solved by considering it as a reversible

Markov chain. We show that the reversible condition can be ignored by using potential theoretic

techniques for some random walk problems. Many authors have investigated random walks in

an infinite network using the Laplace operator, recall S. McGuinness [1], V. Anandam [2, 3],

K. Abodayeh, V. Anandam [4, 5], C. St. J. A. Nash–Williams [6], Т. Lyons [7], W. Woess [8],

J. M. Cohen et al. [9], F. Colonna, M. Tjani [10], J. M. Cohen et al. [11]. In [6], Nash–Williams

explained a random walk on an electrical network with the help of probabilistic methods.

Later in [7], T. Lyons studied the Royden criterion in Riemann surfaces, giving a necessary and

sufficient condition for a reversible countable state Markov chain to be transient. V. Anandam [2]

studied random walks in an infinite network without reversible conditions and proved the Nash–

Williams criterion by using potential theoretic methods. In [12], V. Anandam and M. Damlakhi

studied these potential theoretic methods in finite networks with the help of perturbed Laplace

operators. K. Abodayeh, V. Anandam in [13, 14] investigated Schrödinger networks and their

Cartesian product and supersolutions of discrete Schrödinger equations. In [15], N. Nathiya,

Ch. Amulya Smyrna studied the developments of infinite Schrödinger networks in the Euclidean

spaces. In [16], V. Anandam studied recurrent or transient random walk on an infinite tree with the

help of reversibility condition and transition probabilities matrix. Whereas in this article, we have

developed the potential theoretic methods without the condition of reversibility. With the help

of this condition, we have studied the potential theoretic methods on infinite random walks. For

example, among other results, it is shown that the random walk {N,P = [p(a, b)]}, reversible or

not, is recurrent if in the associated infinite network {N, p(a, b)} there exists a function v(a) ≥ 0
outside a finite set such that (1 − p)v(a) ≥ 0 and lim

n→∞
v(a) = ∞, or if every function s(a) ≥ 0

on N such that (1 − p)s(a) ≥ 0 is constant, by making extensive use of Dirichlet solutions and

balayage.
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§ 1. Infinite network

In this section, an abridged version of potential theory on infinite graphs, relevant to the

study of random walks, is given. It is mainly taken from [3]. Let N be an infinite graph with

a countable infinite number of vertices and countable number of edges. If a and b are two

vertices joined by an edge, say that a and b are neighbours denoted by a ∼ b. The graph is

connected if for any two vertices a and b, there exists a path {a = a0, a1, . . . , an = b}, ai ∼ ai+1

for 0 ≤ i ≤ n−1; if a = b and n ≥ 3 in this path, say that there is a self-loop at the vertex a; say

that the graph is locally-finite if every vertex has only a finite number of neighbours. A collection

of real numbers t(a, b) ≥ 0 defines a set of transition indices {t(a, b)} on the graph, provide that

t(a, b) > 0 if and only if a ∼ b, t(a, b) and t(b, a) need not have the same value. An infinite

graph N that is connected, locally finite, without self-loops and provided with a set of transition

indices {t(a, b)} is here referred to as an infinite network {N, t(a, b)}.

Let A be a subset of N . A vertex a ∈ A is an interior vertex of A if all the neighbours b ∼ a

are also in A. Let
◦

A denote the collection of all the interior vertices of A, the set ∂A = A \
◦

A is

referred to as the boundary of A. If u(a) is a real-valued function on A, the Laplacian at a vertex

a ∈
◦

A is defined as ∆u(a) =
∑

b∼a

t(a, b) [u(b)− u(a)]. A real-valued function u(a) on A is said

to be upper ∆-function on A if ∆u(a) ≤ 0 at every vertex a ∈
◦

A and lower ∆-function on A if

∆u(a) ≥ 0 at every vertex a ∈
◦

A, and ∆-function on A if it is both upper ∆-function and lower

∆-function on A. A non-negative upper ∆-function p(a) on A is called a basis function if it has

the following property: for any lower ∆-function v(a) on A such that v(a) ≤ p(a), one should

have v(a) ≥ 0.

§ 2. Some properties of upper ∆-functions

1. If un(a) is a sequence of upper ∆-functions on A and if u(a) = lim
n→∞

un(a) exists and is

real-valued, then u(a) is upper ∆-function on A, also ∆u(a) = lim
n→∞

∆un(a).

2. If {vi(a)} is the family ψ of all upper ∆-functions on A majorized by on upper ∆-func-

tion u(a) on A, then the family ψ is upper-directed and h(a) = sup
ψ

vi(a) is a ∆-func-

tion u(a) on A. It is easy to remark that p(a) = u(a) − h(a) is a basis function on A.

Consequently, one can assert: if u(a) is an upper ∆-function on A majorizing a lower

∆-function then u(a) is the sum of a basis function p(a) on A and its greatest ∆-function

minorant h(a); this decomposition as the sum of a basis function and the greatest ∆-function

minorant is also unique. This is usually referred to as the Riesz decomposition.

3. Dirichlet solution: Many properties (like condenser principle, balayage, reduced func-

tions etc.) in the study of basis functions on an infinite network appear as solutions to

problems which are actually variations of a generalized Dirichlet problem. We shall refer

to the following result [3, Theorem 3.1.7] as a

Generalized Dirichlet solution: Let F be a subset in the network {N, t(a, b)} and A ⊂
◦

F .

Suppose f(a) is a real-valued function defined on F/A such that v ≤ f ≤ u on F/A where

u is an upper ∆-function on F and v is a lower ∆-function on F . Then there exists a

function h(a) on F such that v ≤ h ≤ u on F ; h(a) = f(a) on F/A; and ∆u(a) = 0

at every vertex in
◦

A. Moreover, h can be so chosen that if h1 is another such function on F
having these three properties, then h1 ≤ h. However if the set A contains only a finite

number of vertices, then the solution h(a) is uniquely determined.
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4. Reduced functions and balayage: Suppose s(a) ≥ 0 is an upper ∆-function on a subset A
and E ⊂ A. Let ψ be the family of all the non-negative upper ∆-functions u(a) on A
which majorize s(a) on E. Then

(

RE
s (x)

)

A
= inf

u∈ψ
u(a) is referred to as (the reduced

function in the case of potential theory on topological spaces) the balayage of s(a) on E in

the subset A. We leave out A when it is the whole set N .

Note that v(a) =
(

RE
s (a)

)

A
is a non-negative upper ∆-function on A such that v(a) ≤ s(a)

on A; v(a) = s(a) on E; and ∆v(a) = 0 if a ∈ A/E. If there exists a basis function p(a)
on A such that s(a) ≤ p(a) on A, then v(a) is a basis function on A.

5. Parabolic and hyperbolic networks: In the study of lower ∆-functions, upper ∆-functions

in the Euclidean case, there is a marked difference between R
2 and R

n, n ≥ 3, because

of the fact that any non-negative upper ∆-function in R
2 is constant (recall Liouville’s

Theorem) while non-constant positive upper ∆-functions exist in R
n, n ≥ 3 (recall the

Newtonian gravitational kernel in R
3). However, there are many similarities also in these

two cases since the potential theory is based on the logarithmic kernel log 1
|a−b|

in R
2 while

in R
3 it is based on the Newtonian Kernel 1

|a−b|
.

To consider these two different cases in the context of an infinite network {N, t}, let us say

that it is a parabolic network if any non-negative upper ∆-function on N is constant and it is a

hyperbolic network if there are non-constant positive upper ∆-functions (and hence positive basis

functions) on N . There are various distinguishing properties to differentiate between these two

types of networks. One such is given now by using the Dirichlet solution.

Let e be a fixed vertex in N . Let {An} be a sequence of finite sets such that e ∈
◦

A1,

An ⊂
◦

An+1 for n ≥ 1 and N = ∪nAn. Let hn(a) be the Dirichlet solution in An with boundary

values 1 at e and 0 on ∂An, then extended by 0 outside An. Then {hn} is an increasing sequence

of bounded functions on N , 0 ≤ hn(a) ≤ 1. Let h(a) = lim
n→∞

hn(a). The function h ≡ 1 if and

only if N is a parabolic network. Otherwise it is hyperbolic; notice that in this case h(a) = Re
1(a).

§ 3. Random walks

A random walk {N,P = [p(a, b)]} behaves in some case (when the matrix P is irreducible)

similar to an infinite network {X, p(a, b)} with the restriction
∑

b∼a

p(a, b)u(b). A real-valued func-

tion u(a) is said to be upper ∆-function if Pu(a) ≤ u(a) for all a. If u(a) is a function such

that u(a) > −∞ for all a ∈ N , Pu(a) ≤ u(a) is finite at one vertex c, then u(a) is real-valued

on N and consequently upper ∆-function. For u(c) ≥ Pu(c) implies that u(a) is real-valued for

all a ∼ c; this leads to the conclusion that u(a) is real-valued on N since N is connected.

We write −∆ = (I − P ). The infinite network {N, p(a, b)} associated with the random walk

{N,P} is referred to as a parabolic network if every positive upper ∆-function in {N, p(a, b)}
is constant; if there exists a non-∆-function positive upper ∆-function on {N, p(a, b)}, then it is

referred to as a hyperbolic network.

Let us start with a time-homogeneous Markov chain that is a discrete-time stochastic pro-

cess {Nn}, n = 0, 1, 2, . . . , where Nn takes values in the state space N with a countable in-

finite states [17]. For any two states a, b the transition probability from a to b is denoted by

p(a, b) = Prob {N1 = b, N0 = a}. Thus, the set N with the transition numbers p(a, b) can be

considered as an infinite network in which a and b are neighbours if and only if p(a, b) > 0;
at this stage N may or may not be a connected graph. Denote by P the infinite matrix of the

transition probabilities {p(a, b)}. In {N, p(a, b)}, just as p(a, b) represents the probability that the

walker starting at the state b reaches the state a, pn(a, b) represents the probability that the walker
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starting at b reaches a in n steps. Actually pn(a, b) is the entry in the ath column and the bth row

of the matrix pn. Take p0 = I . Let us assume that given any two states a and b, there exist

integers m and n such that pm(a, b) > 0 and pn(b, a) > 0; in this case the matrix P is referred

to as irreducible. When P is irreducible, the infinite graph {N, p(a, b)} is actually connected

so that it is an infinite network in the earlier sense. When the matrix P is irreducible, we also

refer to {N,P} = {N,P = [p(a, b)]} as a random walk with the state space N and the transition

probability matrix P determined by the process {Nn}.

Definition 1. An irreducible Markov chain {Nn} on N is said be recurrent if for each state a,
the chain returns to a infinitely often. That is, Prob {Nn = a for infinitely many n} = 1.

Since the transition probabilities matrix is assumed to be irreducible, then starting from

a state b the walker can reach any other state a in finite steps. Consequently certain variations in

the above definition can be proposed:

(i) suppose e is a fixed state and a is any other state; then {Nn} is recurrent if and only if the

walker starting from a reaches e infinitely often;

(ii) if the irreducible chain visits a state infinitely often, then it also visits every other state in

N infinitely often.

Definition 2. An irreducible Markov chain {Nn} on N is called transient if it is not recurrent.

Thus, transient means that the chain visits any state only a finite number of times and then

wanders off to the state at infinity.

Thus, the division of random walks into two groups, recurrent and transient, depends on the

situation whether the Markov chain {Nn} returns to any starting state infinitely often or only

a finite number of times. This distinction is manifested in different forms in the classification

of random walks as shown below and we also interpret these results in the context of infinite

networks associated with the respective random walks.

The following passage up to the proof of Proposition 4 is mainly based on Lawler [17, Sec-

tion 2.2]. Fix a state e and assume that N0 = e. Consider the random variable R which gives

the total number of visits to e including the initial visit. Write R =
m
∑

n=0

χ {Nn = e} where

χ is the characteristic function. When the chain is recurrent, R is identically ∞. That is, if

Rm =
m
∑

n=0

χ {Nn = e}, then Rm → ∞ when m → ∞. Now the expectation is E(Rm) =

=
∞
∑

n=0

Prob {Nn = e} =
m
∑

n=0

pn(e, e). Hence in the case of recurrence
∞
∑

n=0

pn(e, e) = ∞.

Note that R <∞ with probability 1 if the chain is transient. In this case the expectation of R

is E(R) = E

[

∞
∑

n=0

χ {Nn = e}

]

=
∞
∑

n=0

Prob {Nn = e} =
∞
∑

n=0

pn(e, e).

Proposition 1. The Markov chain is transient if and only if
∞
∑

n=0

pn(e, e) <∞.

P r o o f. From the above narrative, if
∞
∑

n=0

pn(e, e) <∞ then the chain cannot be recurrent. Con-

versely, assume that the chain is transient. That is, the chain {Nn} returns to e only a finite

number of times. Let q be the probability of the first return of {Nn} to e. Note that q 6= 1
since the chain is transient: if q = 1 then with probability 1 the chain always returns to e and by

continuing we see that the probability is 1 for the chain to returns to e infinitely often; that is the

chain is recurrent.
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In the case of transience, R = 1 if and only if the chain never returns to e, hence the probability

is 1 − q; and R = m if and only if the chain returns (m − 1) times and does not return for the

mth time, hence the probability is qm−1(1− q). Consequently, E(R) =
∞
∑

m=1

m ·Prob {R = m} =

=
∞
∑

m=1

m [qm−1(1− q)] = 1
1−q

< ∞. Comparing this with the earlier expression for E(R) in the

case of transience, we conclude that the Markov chain is transient if and only if

∞
∑

n=0

pn(e, e) <∞. �

Remark 1. For any state c, the walker can reach e from c in a finite number of steps. Thus, the

nature of transience does not depend on the choice of the initially fixed state e. Consequently,

the Markov chain {Nn} is transient if and only if
∞
∑

n=0

pn(c, c) < ∞ for any state c. Instead of

the circuit probabilities like pn(c, c), we shall now take up the consideration of pn(a, b) which

is the probability that the walker starting at the state N reaches the state b in n steps. For this,

it is easier to consider {N,P = [p(a, b)]} either as a random walk or an infinite network as the

occasion demands.

Writing pn(a, b) as pnb (a), remark that

P [pnb (a)] =
∑

c

p(a, c)pnb (c) =
∑

c

p(a, c)pn(c, b) = pn+1(a, b) = pn+1
b (a),

since pnb (a) denotes the probability that the walker starting from the state a reaches the state b in

n steps, then the expression Gb(a) =
∞
∑

n=0

pnb (a) represents the expected number of visits to the

state b starting from the state a.

Proposition 2. If the random walk {N,P = [p(a, b)]} is transient, then the infinite network

{N, p(a, b)} associated with it is hyperbolic.

P r o o f. We shall actually show that Gb(a) is the Green basis function on the network

{N, p(a, b)} with ∆-function support at {b}.

Choose a vertex b in the network N . If Gb(a) =
∞
∑

n=0

pnb (a), then P [Gb(a)] =
∞
∑

n=1

pnb (a) ≤

≤ Gb(a) so that Gb(a) is a positive upper ∆-function in the network {N, p(a, b)}.

The function Gb(a) is actually a basis function. For that note that when Gb(a) is real-valued,

we can write Gb(a) − P [Gb(a)] = δb(a) which is the column vector with entry 1 when b = a
and 0 in other entries. Consequently, −∆ [Gb(a)] = δb(a).

If h ≥ 0 is a ∆-function such that h(a) ≤ Gb(a), then we have h(a) = Pmh(a) ≤

≤ Pm [Gb(a)] =
∞
∑

n=m

pnb (a) which tends to 0 when m → ∞; this shows that h ≡ 0. Hence

Gb(a) is a basis function which in this case is the Green basis function having {b} as its ∆-func-

tion support. �

Remark 2. The above theorem can be reformulated: A random walk {N,P = [p(a, b)]} is re-

current if the associated infinite network {N, p(a, b)} is parabolic. Conversely, if the Markov

chain is reversible, then the parabolicity of the network implies that the random walk is re-

current. (“Reversible” means that there exists a real-valued function φ(a) > 0 such that

φ(a)p(a, b) = ϕ(b)p(b, a) for any two states a, b.) This converse can be deduced [2, Theo-

rem 3.3] from McGuinness [1, p. 90]. See the very important papers of Nash–Williams [6] and

Lyons [7] in this context.
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§ 4. Infinite trees

A connected graph is called a tree if there is no cycle in it, that is there is no closed path

{a1, a2, . . . , an, a1} with n ≥ 3. Thus, in an infinite tree T , if a, b are any two vertices then there

exists a unique path connecting a to b. Suppose a random walk {T, P = [p(a, b)]} is defined in

the infinite tree T .

Fix a vertex e in T . Then for any a in T , if {e, a1, a2, . . . , an = a} is the unique path

connecting e to a, write φ(a) = p(e,a1)p(a1,a2)...p(an−1,a)
p(a,an−1)p(an−1,an−2)...p(a1,e)

. Note that if b ∼ a, then φ(a)p(a, b) =

= φ(b)p(b, a). Hence {T, P} is reversible, which leads to the conclusion: The random walk

{T, P = [p(a, b)]} on the infinite tree T is recurrent if and only if the associated network

{T, p(a, b)} is parabolic.

Proposition 3. Let {N,P = [p(a, b)]} be a random walk. Suppose there exists a function v
defined outside a finite set A in N such that (I −P )v(a) ≥ 0 at every a ∈ N/A and lim

a→∞
v(a) =

= ∞. Then the random walk is recurrent.

P r o o f. With the existence of such a function v(a), the network {N, p(a, b)} has to be parabolic.

Otherwise, for each vertex b ∈ N there exists the Green basis function Gb(a) which is bounded

and (I − P )Gb(a) = δb(a). Choose a large finite set E, E0 ⊃ A. Let h be the Dirichlet solution

on E with boundary values v on ∂E. Let v1 be the function on N such that v1 = h on E and

v1 = v on (N/E). Define for a ∈ N , v2(a) = v1(a) +
∑

b∈∂E

∆V1(b)Gb(a).

Then for a ∈ ∂
◦

E, (I − P )v2(a) = 0; for a ∈ (N/E), (I − P )v1(a) ≥ 0; for a ∈ ∂E,

(I−P )v2(a) = (I−P )v1(a)+ (−)(I−P )v1(a) = 0. Thus, (I−P )v2(a) ≥ 0 on N . Now Gb(a)
is bounded on N , so that lim

a→∞
v2(a) = ∞. But this is not possible by the Minimum Principle

for v2. Consequently, the assumption that {N, p(a, b)} is not parabolic is invalid. So the random

walk {N,P} is recurrent.

Let us consider now a random walk {T, P = [p(a, b)]} on an infinite tree T . Fixing a vertex

e ∈ T , let us measure distance from e. Remark that T is reversible and that for any a ∈ T , |a| = n,

there is one neighbour ã, |ã| = n− 1; other neighbours bi are at a distance |bi| = n+ 1. �

Proposition 4. Let {T, P = [p(a, b)]} be a random walk on an infinite tree. Measure distances

in T from a fixed vertex e. If p(a, ã) ≥ 1
2

for all a, then {T, P} is recurrent. If p(a, ã) < 1
2
, then

{T, P} is transient.

P r o o f. Consider the function f(n) =
(

α
1−α

)n
, 0 < α < 1, at any a, |a| = n ≥ 1, we have

(I − P )f(n) = − [1− 2p(a, ã)] 2α−1
1−α

[

α
1−α

]n
.

1. Suppose p(a, ã) > 1
2

for all a. Then take 1 > α > 1
2
. In this case α

1−α
> 1. Hence

(I −P )f(n) > 0 outside e, and f(n) → ∞ at the point at infinity. Hence by Proposition 3,

{T, P} is recurrent.

2. Suppose p(a, ã) < 1
2

for all a. Then take 0 < α < 1
2
. Hence (I − P )f(n) > 0. At

e (I − P )f(e) = −
[

α
1−α

− 1
]

> 0. Hence f(n) is a positive upper ∆-function tending

to 0 at infinity, hence a basis function, so that {T, P} is transient. (Remark 2 following

Proposition 2.)

3. The case p(a, ã) = 1
2
: for the function s(a) = n when |a| = n ≥ 1, (I − P )s(a) > 0;

moreover, s(a) → ∞. Hence {T, P} is recurrent.
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Let {N, p(a, b)} be the infinite network associated with the random walk {N,P = [p(a, b)]}.

Let us recall the notion of reduced functions in the network [3]. If s(a) is a non-negative upper

∆-function defined on a set E and A is a subset in the interior E0 of E, then
[

RA
s (a)

]

E
= inf

u∈ℑ
u(a)

where ℑ is the family of non-negative upper ∆-functions u(a) on E such that u(a) ≥ s(a)
on A. �

Example 1. Let T be a homogeneous tree of degree 2 and the transition probability p(a, ã) =
= q+1

2
. Consider a function s(a) = 2−1+|a|. Note that for any vertex a in T , |a| = n ≥ 1. Here

|a| represents the distance between the root vertex.

P r o o f.

∆s(a) =
q + 1

2
[2−1+(n−1) − 2−1+n] +

q − 1

2
[2−1+(n+1) − 2−1+n]

=
q + 1

2
[2−1+n−1 − 2−1+n] +

q − 1

2
[2−1+n+1 − 2−1+n]

=
q + 1

2
[2n−2 − 2−1+n] +

q − 1

2
[2n − 2−1+n] ≤ 0.

If p(a, ã) ≥ 1
2

for all a, then {T, P} is recurrent. If p(a, ã) < 1
2
, then {T, P} is transient. �

Lemma 1. Let E be a finite set e ∈
◦

E. Then [Re
1(a)]E is the Dirichlet solution in E with boundary

values 1 at e and 0 at each vertex in ∂E.

P r o o f. Let ϕ(a) be the unique Dirichlet solution on E with boundary values 1 at e and 0
on ∂E. Then ϕ(a) ≥ [Re

1]E on E. Since Re
1(a) is a non-negative upper ∆-function on E with

values 1 at e and 0 on ∂E, by the construction of the Dirichlet solution we have ϕ(a) ≥ [Re
1(a)]E .

This proves ϕ(a) = [Re
1(a)]E on E. �

Lemma 2. Let e ∈
◦

E where E is a finite set. Then the probability that the walker starting at a

state a ∈
◦

E goes outside
◦

E before ever coming back to e is 1− [Re
1(a)]E .

P r o o f. Let ϕ(a) be the probability that the walker starting at a reaches e before visiting any

state in ∂E. Then ϕ(e) = 1, ϕ(c) = 0 for c ∈ ∂E; moreover, for any a ∈
◦

E, we have ϕ(a) =
=

∑

b∼a

p(a, b)ϕ(b). This means (I − P )ϕ(a) = 0. That is, ϕ(a) is harmonic on E with boundary

values ϕ(e) = 1, ϕ(c) = 0 on ∂E. Hence by the above lemma 1, ϕ(a) = [Re
1(a)]E . This shows

that the walker starting at a ∈
◦

E goes outside
◦

E before ever coming to e with the probability

1− ϕ(a) = 1− [Re
1(a)]E. �

Theorem 1. In the random walk {N,P = [p(a, b)]}, the probability that the walker starting at

the state a goes off to infinity A without visiting e is 1−ϕ(a) = 1− [Re
1(a)] which is defined with

reference to the associated network {N, p(a, b)}.

P r o o f. Let {En} be an increasing sequence of finite sets such that N = ∪En. For any

a in N , if a ∈ Em then [Re
1(a)]n (which represents the reduced function with respect to the

finite set En) is defined for n ≥ m and is an increasing sequence of upper ∆-functions. Since

[Re
1(a)]n ≤ Re

1(a), then v(a) = sup
n

[Re
1(a)]n is an upper ∆-function on N and v(a) ≤ Re

1(a). On

the other hand, since v(a) is an upper ∆-function on N and v(e) = 1, we have v(a) ≥ Re
1 also.

Thus, Re
1(a) = v(a) = lim

n→∞
[Re

1(a)]n.

Now the probability that the walker starting at the state x and going off to infinity A without

visiting e is the limiting value of 1− [Re
1(a)]n when n→ ∞ which is 1−Re

1(a). �
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Corollary 1. In the random walk {N,P = [p(a, b)]}, the probability that the walker starting at e,
after leaving e never returns to e is (I − P )Re

1.

P r o o f. The probability (from the above Theorem 1) is

∑

b∼e

p(e, b) [1− Re
1(b)] =

∑

b∼e

p(e, b) [Re
1(e)−Re

1(b)] = −∆ [Re
1(e)] = (I − P )Re

1(e). �

Some remarks on the reduced function Re
1(a) in the infinite network {N, p(a, b)}.

1. The network N is parabolic if and only if Re
1 ≡ 1 on N .

2. The network N is hyperbolic if and only if Re
1(a) is a basis function on N .

3. As in [3, Section 3.2], for each ei ∼ e, denote by [e, ei] the subset [e, ei] = {a : there exists a

path joining a to e that passes through ei}; ei and e are assumed to be in [e, ei]. Note that

if ei, ej ate two neighbours of e, then either [e, ei] and [e, ej ] are two subsets having e as the

only common vertex or [e, ei] = [e, ej ]. The subset [e, ei] is called an S-domain if 0 is the

only bounded function h(a) on [e, ei] such that h(e) = 0 and −∆h(c) = (I − P )h(c) = 0
for any c 6= e. A subset [e, ej ] is called a P -domain if it is not an S-domain. If a set [e, ei]
contains only a finite number of vertices, then it is necessarily an S-domain. The network

{N, p(a, b)} is parabolic if and only if all the subsets [e, ei] are S-domains. It is hyperbolic

if and only if at least one [e, ei] is a P -domain; in this case there may be other subsets that

are S-domains.

4. If the random walk {N,P = [p(a, b)]} is transient, it has been seen that Ge(a) =

=
∞
∑

n=0

pn(a, e) represents the expected number of visits to the state e starting from the

state a. The function Ge(a) can also be interpreted as the Green function in the hyper-

bolic network {N, p(a, b)} with ∆-function support at e. Now (see [3, Corollary 3.3.7]),

Ge(a) ≤ Ge(e) for all a ∈ N ; in fact, Ge(a) = Ge(e)R
e
1(a).

5. It can also be mentioned that in the case of a transient random walk, if A is a finite set

in N , then RA
1 denotes the probability that the walker starting at the state a to reaches a

state in A before wandering off to infinity.

Funding. We thank the referee for very useful comments. The first author acknowledges the sup-

port given by the Vellore Institute of Technology through the Teaching cum Research Associate

fellowship (VIT/HR/2019/5944 dated 18th September 2019).

REFERENCES

1. McGuinness S. Recurrent networks and a theorem of Nash–Williams, Journal of Theoretical Proba-

bility, 1991, vol. 4, issue 1, pp. 87–100. https://doi.org/10.1007/BF01046995

2. Anandam V. Some potential-theoretic techniques in non-reversible Markov chains, Rendiconti del

Circolo Matematico di Palermo, 2013, vol. 62, issue 2, pp. 273–284.

https://doi.org/10.1007/s12215-013-0124-8

3. Anandam V. Harmonic functions and potentials on finite or infinite networks, Berlin: Springer, 2011.

https://doi.org/10.1007/978-3-642-21399-1

4. Abodayeh K., Anandam V. Potential-theoretic study of functions on an infinite network, Hokkaido

Mathematical Journal, 2008, vol. 37, issue 1, pp. 59–73. https://doi.org/10.14492/hokmj/1253539587

https://doi.org/10.1007/BF01046995
https://doi.org/10.1007/s12215-013-0124-8
https://doi.org/10.1007/978-3-642-21399-1
https://doi.org/10.14492/hokmj/1253539587


V. R. Manivannan, M. Venkataraman 127

5. Anandam V., Abodayeh K. Non-locally-finite parahyperbolic networks, Memoirs of The Graduate

School of Science and Engineering, Shimane University. Series B: Mathematics, 2014, vol. 47,

pp. 19–35. https://ir.lib.shimane-u.ac.jp/en/28650

6. Nash–Williams C. St. J. A. Random walk and electric currents in networks, Mathematical Proceedings

of the Cambridge Philosophical Society, 1959, vol. 55, issue 2, pp. 181–194.

https://doi.org/10.1017/S0305004100033879

7. Lyons T. A simple criterion for transience of a reversible Markov chain, The Annals of Probability,

1983, vol. 11, issue 2, pp. 393–402. https://doi.org/10.1214/aop/1176993604

8. Woess W. Random walks on infinite graphs and groups — a survey on selected topics, Bulletin of the

London Mathematical Society, 1994, vol. 26, issue 1, pp. 1–60. https://doi.org/10.1112/blms/26.1.1

9. Cohen J. M., Colonna F., Singman D. The distribution of radial eigenvalues of the Euclidean Laplacian

on homogeneous isotropic trees, Complex Analysis and its Synergies, 2021, vol. 7, issue 2, article

number: 21. https://doi.org/10.1007/s40627-021-00071-2

10. Colonna F., Tjani M. Essential norms of weighted composition operators from reproducing kernel

Hilbert spaces into weighted-type spaces, Houston Journal of Mathematics, 2016, vol. 42, no. 3,

pp. 877–903. https://zbmath.org/?q=an:1360.47004

11. Cohen J. M., Colonna F., Singman D. A global Riesz decomposition theorem on trees without positive

potentials, Journal of the London Mathematical Society, 2007, vol. 75, issue 1, pp. 1–17.

https://doi.org/10.1112/jlms/jdl001

12. Anandam V., Damlakhi M. Perturbed Laplace operators on finite networks, Revue Roumaine de
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