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§ 1. Introduction

In the current paper, let R denote an associative ring with identity element, not necessarily

commutative. Typically, for such a ring R, the sets U(R), Nil(R), and Id(R) represent the set

of invertible elements (i. e., the unit group of R), the set of nilpotent elements, and the set of

idempotent elements in R, respectively. Additionally, J(R) denotes the Jacobson radical of R,

and Z(R) denotes the center of R. The ring of n×n matrices over R and the ring of n×n upper

triangular matrices over R are denoted by Mn(R) and Tn(R), respectively. Traditionally, a ring

is termed abelian if each idempotent element is central, meaning that Id(R) ⊆ Z(R).

Before we start our investigation of the characteristic properties of a newly defined by us

below class of rings, we need the following background material.

Definition 1.1 (see [31, 32]). Let R be a ring. An element r ∈ R is said to be clean if there is

an idempotent e ∈ R and a unit u ∈ R such that r = e + u. Such an element r is further called

strongly clean if the existing idempotent and unit can be chosen such that ue = eu. A ring is

called clean (respectively, strongly clean) if each of its elements is clean (respectively, strongly

clean).

Definition 1.2 (see [8]). An element r in a ring R is said to be weakly clean if there is an

idempotent e ∈ R such that r + e ∈ U(R) or r − e ∈ U(R), and a weakly clean ring is defined

as the ring in which every element is weakly clean. A ring R is said to be strongly weakly clean

provided that, for any a ∈ R, a or −a is strongly clean.

Definition 1.3 (see [20]). Let R be a ring. An element r ∈ R is said to be nil-clean if there is an

idempotent e ∈ R and a nilpotent b ∈ R such that r = e+ b. Such an element r is further called

strongly nil-clean if the existing idempotent and nilpotent can be chosen such that be = eb.
A ring is called nil-clean (respectively, strongly nil-clean) if each of its elements is nil-clean

(respectively, strongly nil-clean).

Definition 1.4 (see [4,19]). A ring R is said to be weakly nil-clean provided that, for any a ∈ R,

there exists an idempotent e ∈ R such that a − e or a + e is nilpotent. A ring R is said to be

strongly weakly nil-clean provided that, for any a ∈ R, a or −a is strongly nil-clean.

Definition 1.5 (see [5,18]). A ring is called UU if all of its units are unipotent, that is, U(R) ⊆
⊆ 1 + Nil(R) (and so, 1 + Nil(R) = U(R)).
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Definition 1.6 (see [13]). A ring R is called weakly UU and abbreviated as WUU if U(R) =
= Nil(R)±1. This is equivalent to the condition that every unit can be presented as either n+1
or n− 1, where n ∈ Nil(R).

Definition 1.7 (see [17]). A ring R is called UWNC if every of its units is weakly nil-clean.

Definition 1.8 (see [15]). A ring R a generalized nil-clean, briefly abbreviated by GNC, provided

R\U(R) ⊆ Id(R) + Nil(R).

Definition 1.9 (see [16]). A ring R is called generalized strongly nil-clean, briefly abbreviated

by GSNC, if every non-invertible element in R is strongly nil-clean.

Our aim, which motivates writing of this paper, is to examine what will happen in the

dual case when non-units in rings are weakly nil-clean elements, thus somewhat also expanding

weakly nil-clean rings in an other way. So, we now arrive at our key instrument introduced as

follows.

Definition 1.10. We call a ring R generalized weakly nil-clean, briefly abbreviated by GWNC,

provided

R\U(R) ⊆ Nil(R)± Id(R).

Now, we have the following diagram which violates the relationships between the defined

above classes of rings:

weakly-nil-clean GWNC weakly clean

nil-clean GNC clean

strongly nil-clean GSNC strongly clean

Our principal work is organized as follows. In the next second section, we give some

examples and suitable descriptions of certain crucial properties of GWNC rings that are mainly

stated and proved in Theorems 2.1 and 2.2 and the other statements associated with them. The

subsequent third section is devoted to the classification when a group ring is GWNC as well

as, reversely, what happens with the former objects of a group and a ring when the group ring

is GWNC (see Lemma 3.2 and Theorem 3.1, respectively, and the other assertions related to

them). We close our work in the final fourth section with two challenging questions, namely

Problems 4.1 and 4.2.

§ 2. Examples and basic properties of GWNC rings

We begin with the following constructions on the definitions alluded to above.

Example 2.1.

1. Any strongly nil-clean ring is GSNC, but the converse is not true in general. For instance,

M2(Z2) is GSNC, but is not strongly nil-clean.
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2. Any GSNC ring is strongly clean, but the converse is not true in general. For instance,

Z2[[x]] is strongly clean, but is not GSNC.

3. Any nil-clean ring is GNC, but the converse is not true in general. For instance, Z3 is

GNC, but is not nil-clean.

4. Any GNC ring is clean, but the converse is not true in general. For instance, Z6 is clean,

but is not GNC.

5. Any weakly nil-clean ring is GWNC, but the converse is not true in general. For instance,

Z5 is GWNC, but is not weakly nil-clean.

6. Any GWNC ring is weakly clean, but the converse is not true in general. For instance,

M2(Z6) is weakly clean, but is not GWNC.

7. Any strongly nil-clean ring is nil-clean, but the converse is not true in general. For

instance, M2(Z2) is nil-clean, but is not strongly nil-clean.

8. Any nil-clean ring is weakly nil-clean, but the converse is not true in general. For instance,

Z3 is weakly nil-clean, but is not nil-clean.

9. Any GSNC ring is GNC, but the converse is not true in general. For instance, M2(Z2)⊕
M2(Z2) is GNC, but is not GSNC.

10. Any GNC ring is GWNC, but the converse is not true in general. For instance, M2(Z3) is

GWNC, but is not GNC.

11. Any strongly clean ring is clean, but the converse is not true in general. For instance,

M2(Z(2)) is clean, but is not strongly clean.

12. Any clean ring is weakly clean, but the converse is not true in general. For instance,

Z(5)[i] is weakly clean, but is not clean.

We continue our work with a series of technicalities.

Lemma 2.1. Let R be a ring and let a ∈ R be a weakly nil-clean element. Then, −a is weakly

clean.

P r o o f. Assume a = q ± e is a weakly nil-clean representation. If a = q + e, then we have

−a = (1 − e) − (q + 1), where 1 − e is an idempotent and q + 1 is a unit in R. If a = q − e,
then we have −a = −(1 − e) + (1− q), where again 1− e is an idempotent and 1− q is a unit

in R. Thus, −a has a weakly clean decomposition and hence it is a weakly clean element. �

Corollary 2.1. Let R be a GWNC ring. Then, R is weakly clean.

Lemma 2.2. Let R be a GWNC ring. Then, J(R) is nil.

P r o o f. Choose j ∈ J(R). Since j /∈ U(R), we have e = e2 ∈ R and q ∈ Nil(R) such that

j = q ± e. Therefore,

1− e = (q + 1)− j ∈ U(R) + J(R) ⊆ U(R)

or

1− e = (1− q) + j ∈ U(R) + J(R) ⊆ U(R),

so e = 0. Hence, j = q ∈ Nil(R), as required. �
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Example 2.2. For any ring R, both the polynomial ring R[x] and the formal power series ring

R[[x]] are not GWNC rings.

P r o o f. Considering R[[x]] as a GWNC ring, we know that

J
(

R[[x]]
)

=
{

a + xf(x) : a ∈ J(R) and f(x) ∈ R[[x]]
}

.

So, it is evident that x ∈ J
(

R[[x]]
)

. Consequently, J
(

R[[x]]
)

is not nil, which contradicts the

consideration, thereby establishing the desired claim.

Furthermore, if R[x] is GWNC, then it is weakly clean in virtue of Corollary 2.1. But this is

an obvious contradiction, and hence R[x] cannot be GWNC, as claimed. �

A ring R is said to be reduced if R has no non-zero nilpotent elements, that is, Nil(R) = {0}.

Lemma 2.3. Let R be a GWNC ring with 2 ∈ U(R) and, for every u ∈ U(R), we have u2 = 1.
Then, R is a commutative ring.

P r o o f. Firstly, we demonstrate that R is reduced. Assume R contains no non-trivial nilpotent

elements. Suppose q ∈ Nil(R). Then, (1± q) ∈ U(R), so

1− 2q + q2 = (1− q)2 = 1 = (1 + q)2 = 1 + 2q + q2.

Thus, 4q = 0. Since 2 ∈ U(R), we conclude q = 0. Hence, R is reduced and, consequently,

R is abelian.

Moreover, for any u, v ∈ U(R), we have u2 = v2 = (uv)2 = 1. Therefore, uv = (uv)−1 =
= v−1u−1 = vu, whence the units commute with each other.

In addition, let x, y ∈ R. We consider the following cases.

1. x, y ∈ U(R): since the units commute, it must be that xy = yx.

2. x, y /∈ U(R): since R is a GWNC ring, there exist e, f ∈ Id(R) such that x = ±e and

y = ±f . Thus, xy = yx, because R is abelian.

3. x ∈ U(R) and y /∈ U(R): in this case, there exists e ∈ Id(R) such that y = ±e. Moreover,

R being abelian implies xy = yx.

4. x /∈ U(R) and y ∈ U(R): similarly to case (3), we can easily see that xy = yx. �

As the competent referee observed, this lemma can significantly be extended to GWNC

rings with un = 1 and n ∈ U(R). For instance, taking n = 3 and 0 6= q ∈ Nil(R), we have

(1 + q)3 = 1 and, therefore, 3q + 3q2 + q3 = 0. Letting k > 1 be the nilpotence index of q, it

must be that

0 = 3qk−1 + 3qk + qk+1 = 3qk−1.

But, since 3 ∈ U(R), we arrive at qk−1 = 0, a contradiction.

In the general case, we may get a linear combination of positive powers of q as 0 = (n)q+. . . .
Multiplying by qk−2 both sides, we obtain an easy contradiction with q 6= 0. Now, every element

of R is either a unit or ±e with e2 = e. Consequently, x2n+1 = x for any x ∈ R and so R is

commutative in view of the classical Jacobson’s density theorem (see, e. g., [27] or [28]).

We now proceed by proving with a series of corollaries.

Corollary 2.2. Let R be a GWNC ring. Then, Nil(R) + J(R) = Nil(R).
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P r o o f. Let us assume that x ∈ Nil(R) and y ∈ J(R). Thus, there exists m ∈ N such

that xm = 0. Therefore, (x+ y)m = xm + j, where j ∈ J(R). Employing Lemma 2.2, we arrive

at (x+ y)m = j ∈ Nil(R), as required. �

Proposition 2.1. Let R be a ring and I be a nil-ideal of R. Then,

(1) R is GWNC if, and only if, R/I is GWNC;

(2) R is GWNC if, and only if, J(R) is nil and R/J(R) is GWNC.

P r o o f.

(1) We assume that R = R/I and ā /∈ U(R). Then, a /∈ U(R), so there exist e ∈ Id(R)
and q ∈ Nil(R) such that a = q ± e. Thus, ā = q̄ ± ē. Conversely, let us assume that R is a

GWNC ring. We, besides, assume that a /∈ U(R), so ā /∈ U(R), and hence ā = q̄ ± ē, where

ē ∈ Id(R) and q̄ ∈ Nil(R). Since I is a nil-ideal, we can assume that e ∈ Id(R) and q ∈ Nil(R).
Therefore, a − (q ± e) ∈ I ⊆ J(R), so that there exists j ∈ J(R) such that a = (q + j) ± e.
Hence, Corollary 2.2 applies to get that a has a weakly nil-clean representation, as needed.

(2) Utilizing Lemma 2.2 and part (1), the conclusion is fulfilled. �

Corollary 2.3. Every homomorphic image of a GWNC ring is again GWNC.

P r o o f. It is straightforward. �

Corollary 2.4. Let I be an ideal of a ring R. Then, the following are equivalent:

(1) R/I is GWNC;

(2) R/In is GWNC for all n ∈ N;

(3) R/In is GWNC for some n ∈ N.

P r o o f.

(1) =⇒ (2). For any n ∈ N, we know that
R/In

I/In
∼= R/I . Since I/In is a nil-ideal of R/In

and R/I is GWNC, Proposition 2.1 works to derive that R/In is a GWNC ring.

(2) =⇒ (3). This is quite trivial, so we leave the details.

(3) =⇒ (1). For any ideal I of R, we have
R/In

I/In
∼= R/I , and because we have seen above that

each homomorphic image of a GWNC ring is again GWNC, we conclude that R/I is GWNC.

�

Let Nil∗(R) denote the prime radical of a ring R, i. e., the intersection of all prime ideals

of R. We know that Nil∗(R) is a nil-ideal of R, and so the next assertion is immediately true.

Corollary 2.5. Let R be a ring. Then, the following are equivalent:

(1) R is GWNC;

(2)
R

Nil∗(R)
is GWNC.
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Let R be a ring and M a bi-module over R. The trivial extension of R and M is defined as

T(R,M) = {(r,m) : r ∈ R and m ∈M},

with addition defined componentwise and multiplication defined by

(r,m)(s, n) = (rs, rn+ms).

The trivial extension T(R,M) is isomorphic to the subring

{(

r m
0 r

)

: r ∈ R and m ∈M

}

of the formal 2 × 2 matrix ring

(

R M
0 R

)

, and also T(R,R) ∼= R[x]/ 〈x2〉. We, moreover, note

that the set of units of the trivial extension T(R,M) is

U
(

T(R,M)
)

= T
(

U(R),M
)

.

So, as two immediate consequences, we yield:

Corollary 2.6. Let R be a ring and M a bi-module over R. Then, the following hold:

(1) the trivial extension T(R,M) is a GWNC ring if, and only if, R is a GWNC ring;

(2) for n ≥ 2, the quotient-ring
R[x]

〈xn〉
is a GWNC ring if, and only if, R is a GWNC ring;

(3) for n ≥ 2, the quotient-ring
R[[x]]

〈xn〉
is a GWNC ring if, and only if, R is a GWNC ring.

P r o o f.

(1) Set A = T(R,M) and consider I := T(0,M). It is not too hard to verify that I is a nil-ideal

of A such that
A

I
∼= R. So, the result follows directly from Proposition 2.1.

(2) Put A =
R[x]

〈xn〉
. Considering I :=

〈x〉

〈xn〉
, we obtain that I is a nil-ideal of A such that

A

I
∼= R.

So, the result follows automatically from Proposition 2.1.

(3) Knowing that the isomorphism
R[x]

〈xn〉
∼=
R[[x]]

〈xn〉
is true, point (3) follows at once from (2). �

Corollary 2.7. Let R be a ring and M be a bi-module over R. Then, the following statements

are equivalent:

(1) R is a GWNC ring;

(2) T(R,M) is a GWNC ring;

(3) T(R,R) is a GWNC ring;

(4)
R[x]

〈x2〉
is a GWNC ring.
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Consider now R to be a ring and M to be a bi-module over R. Let

DT(R,M) := {(a,m, b, n) | a, b ∈ R,m, n ∈M}

with addition defined componentwise and multiplication defined by

(a1, m1, b1, n1)(a2, m2, b2, n2) = (a1a2, a1m2 +m1a2, a1b2 + b1a2, a1n2 +m1b2 + b1m2 + n1a2).

Then, DT(R,M) is a ring which is isomorphic to T(T(R,M),T(R,M)). We also have

DT(R,M) =























a m b n
0 a 0 b
0 0 a m
0 0 0 a









∣

∣

∣

∣

∣

∣

∣

∣

a, b ∈ R,m, n ∈M















.

In particular, we obtain the following isomorphism of rings:
R[x, y]

〈x2, y2〉
→ DT(R,R) defined by

a + bx+ cy + dxy 7→









a b c d
0 a 0 c
0 0 a b
0 0 0 a









.

We, thereby, extract the following.

Corollary 2.8. Let R be a ring and M be a bi-module over R. Then, the following statements

are equivalent:

(1) R is a GWNC ring;

(2) DT(R,M) is a GWNC ring;

(3) DT(R,R) is a GWNC ring;

(4)
R[x, y]

〈x2, y2〉
is a GWNC ring.

Now, let α be an endomorphism of R, and suppose n is a positive integer. It was defined by

Nasr-Isfahani in [29] the skew triangular matrix ring like this:

Tn(R, α) =









































a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ai ∈ R



























with addition point-wise and multiplication, given by:















a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0





























b0 b1 b2 · · · bn−1

0 b0 b1 · · · bn−2

0 0 b0 · · · bn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · b0















=















c0 c1 c2 · · · cn−1

0 c0 c1 · · · cn−2

0 0 c0 · · · cn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · c0















,
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where

ci = a0α
0(bi) + a1α

1(bi−1) + . . .+ aiα
i(b0), 1 ≤ i ≤ n− 1.

We denote the elements of Tn(R, α) by (a0, a1, . . . , an−1). If α is the identity endomorphism,

then one verifies that Tn(R, α) is a subring of upper triangular matrix ring Tn(R).

We now come to the following.

Corollary 2.9. Let R be a ring. Then, the following are equivalent:

(1) R is a GWNC ring;

(2) Tn(R, α) is a GWNC ring.

P r o o f. Choose

I :=





























0 a12 . . . a1n
0 0 . . . a2n
...

...
. . .

...

0 0 . . . 0











∣

∣

∣

∣

∣

∣

∣

∣

∣

aij ∈ R (i ≤ j)



















.

Then, one easily inspects that In = {0} and that
Tn(R, α)

I
∼= R. Consequently, we apply

Proposition 2.1 to receive the desired result. �

Now, let α be again an endomorphism of R. We denote by R[x, α] the skew polynomial

ring whose elements are the polynomials over R, the addition is defined as usual, and the

multiplication is defined by the equality xr = α(r)x for any r ∈ R. So, there is a ring

isomorphism

ϕ :
R[x, α]

〈xn〉
→ Tn(R, α),

given by

ϕ(a0 + a1x+ . . .+ an−1x
n−1 + 〈xn〉) = (a0, a1, . . . , an−1)

with ai ∈ R, 0 ≤ i ≤ n − 1. Thus, one finds that Tn(R, α) ∼=
R[x, α]

〈xn〉
, where 〈xn〉 is the ideal

generated by xn.

We, thereby, detect the following claim.

Corollary 2.10. Let R be a ring with an endomorphism α such that α(1) = 1. Then, the

following are equivalent:

(1) R is a GWNC ring;

(2)
R[x, α]

〈xn〉
is a GWNC ring;

(3)
R[[x, α]]

〈xn〉
is a GWNC ring.

Assuming now that Ln(R) =





























0 · · · 0 a1
0 · · · 0 a2
...

. . .
...

...

0 · · · 0 an











∈ Tn(R) : ai ∈ R



















⊆ Tn(R) and Sn(R) =

= {(aij) ∈ Tn(R) : a11 = . . . = ann} ⊆ Tn(R), it is not so difficult to check that the mapping
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ϕ : Sn(R) → T(Sn−1(R),Ln−1(R)), defined as

ϕ





















a11 a12 · · · a1n
0 a11 · · · a2n
...

...
. . .

...

0 0 · · · a11





















=



























a11 a12 · · · a1,n−1 0 · · · 0 a1n
0 a11 · · · a2,n−1 0 · · · 0 a2n
...

...
. . .

...
...

. . .
...

...

0 0 · · · a11 0 · · · 0 an−1,n

0 0 · · · 0 a11 a12 · · · a1,n−1

0 0 · · · 0 0 a11 · · · a2,n−1
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · a11



























,

gives Sn(R) ∼= T(Sn−1(R),Ln−1(R)). Notice that this isomorphism is a helpful instrument to

study the ring Sn(R), because by examining the trivial extension and using induction on n, we

can extend the result to Sn(R).

Specifically, we are able to establish truthfulness of the following two statements.

Corollary 2.11. Let R be a ring. Then, the following items hold:

(1) for n ≥ 2, Sn(R) is a GWNC ring if, and only if, R is GWNC;

(2) for n,m ≥ 2, An,m(R) := R[x, y | xn = yx = ym = 0] is a GWNC ring if, and only if,

R is GWNC;

(3) for n,m ≥ 2, Bn,m(R) := R[x, y | xn = ym = 0] is a GWNC ring if, and only if,

R is GWNC.

P r o o f.

(1) We assume I := {(aij) ∈ Sn(R) : a11 = 0}, so evidently I is a nil-ideal of Sn(R), and

therefore, we derive Sn(R)/I ∼= R.

We set

I :=

{

a+
n−1
∑

i=1

bix
i +

m−1
∑

j=1

cjy
j ∈ An,m(R) : a = 0

}

,

so apparently I is a nil-ideal of An,m(R), and thus, we infer An,m(R)/I ∼= R.

(2) We put

I :=

{

n−1
∑

i=0

m−1
∑

j=0

aijx
iyj ∈ Bn,m(R) : a00 = 0

}

,

so elementarily I is a nil-ideal of Bn,m(R), and so, we deduce Bn,m(R)/I ∼= R.

This sustains our arguments. �

In the other vein, Wang introduced in [36] the matrix ring Sn,m(R) for a given ring R. Then,

the matrix ring Sn,m(R) can be represented as

































































a b1 · · · bn−1 c1n · · · c1n+m−1
...

. . .
. . .

...
...

. . .
...

0 · · · a b1 cn−1,n · · · cn−1,n+m−1

0 · · · 0 a d1 · · · dm−1
...

. . .
. . .

...
...

. . .
...

0 · · · 0 0 · · · a d1
0 · · · 0 0 · · · 0 a























∈ Tn+m−1(R) : a, bi, dj, ci,j ∈ R











































.
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Also, let Tn,m(R) be





































































































a b1 b2 · · · bn−1

0 a b1 · · · bn−2

0 0 a · · · bn−3
...

...
...

. . .
...

0 0 0 · · · a

0

0

a c1 c2 · · · cm−1

0 a c1 · · · cm−2

0 0 a · · · cm−3
...

...
...

. . .
...

0 0 0 · · · a



































∈ Tn+m(R) : a, bi, cj ∈ R



































































,

and let

Un(R) =





















































a b1 b2 b3 b4 · · · bn−1

0 a c1 c2 c3 · · · cn−2

0 0 a b1 b2 · · · bn−3

0 0 0 a c1 · · · cn−4
...

...
...

...
...

0 0 0 0 0 · · · a



















∈ Tn(R) : a, bi, cj ∈ R



































.

Thus, we come to the following assertion.

Corollary 2.12. Let R be a ring. Then, the following statements are equivalent:

(1) R is a GWNC ring;

(2) Sn,m(R) is a GWNC ring;

(3) Tn,m(R) is a GWNC ring;

(4) Un(R) is a GWNC ring.

Let us now recall that a ring R is called local, provided R/J(R) is a division ring, that is,

every element of R lies in either U(R) or J(R).

We are now establishing a series of preliminary claims before formulating the major assertion.

Proposition 2.2. Let R be a ring with only trivial idempotents. Then, R is GWNC if, and only

if, R is a local ring with J(R) nil.

P r o o f. Assuming R is a GWNC ring, Lemma 2.2 insures that J(R) is nil. Now, if a /∈ U(R),
then we have either a = q ± 1 or a = q ± 0, where q ∈ Nil(R). Since a is not a unit, it must be

that a = q ± 0, implying a = q ∈ Nil(R). So, according to [27, Proposition 19.3], R is a local

ring.

Conversely, suppose R is a local ring with nil Jacobson radical J(R). So, for each a /∈ U(R),
we have a ∈ J(R) ⊆ Nil(R), whence a is a weakly nil-clean element, as required. �

Proposition 2.3. Let R and S be rings. If R×S is GWNC, then R and S are weakly nil-clean.

P r o o f. Let a ∈ R be an arbitrary element, so (a, 0) ∈ R × S is not a unit. Then, we have

(a, 0) = (q, 0)± (e, 0), where (q, 0) is a nilpotent and (e, 0) is an idempotent in R× S, whence

a = q ± e, where q is a nilpotent and e is an idempotent in R. So, a is a weakly nil-clean

element. Thus, R is a weakly nil-clean ring. Similarly, S is a weakly nil-clean ring. �
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Proposition 2.4. Let Ri be a ring for all i ∈ I . If
∏n

i=1Ri is GWNC, then each Ri is GWNC.

P r o o f. It is immediate referring to Corollary 2.3. �

Proposition 2.5. The direct product
∏n

i=1Ri is GWNC for n ≥ 3 if, and only if, each Ri is

weakly nil-clean and at most one of them is not nil-clean.

P r o o f.

(⇒). Assume
∏n

i=1Ri is a GWNC ring. Therefore, by Proposition 2.3,
∏n−1

i=1 Ri and Rn are

weakly nil-clean rings. Thus, owing to [4, Proposition 3], with no loss of generality, we may

assume that, for each 1 ≤ i ≤ n− 2, Ri is a nil-clean ring. Again, since

n
∏

i=1

Ri = (R1 × . . .×Rn−2)× (Rn−1 × Rn),

Proposition 2.3 implies that Rn−1 ×Rn is weakly nil-clean. Therefore, [4, Proposition 3] allows

us to assume that Rn−1 is nil-clean and Rn is weakly nil-clean, as needed.

(⇐). It follows directly from [4, Proposition 3]. �

A more concrete exhibition relevant to the previous proposition is the following.

Example 2.3. The ring Z3 × Z3 is GWNC, but Z3 is not nil-clean. The ring Z6 is weakly

nil-clean, but Z6 × Z6 is not GWNC.

Two related consequences are the following.

Corollary 2.13. Let L =
∏

i∈I Ri be the direct product of rings Ri
∼= R and |I| ≥ 3. Then,

L is a GWNC ring if, and only if, L is a GNC ring if, and only if, L is nil-clean if, and only

if, R is nil-clean.

Corollary 2.14. For any n ≥ 3, the ring Rn is GWNC if, and only if, Rn is GNC if, and only

if, R is nil-clean.

We are now looking at the triangular matrix ring.

Proposition 2.6. Let R be a ring. Then, the following are equivalent:

(1) R is nil-clean;

(2) Tn(R) is weakly nil-clean for all n ∈ N;

(3) Tn(R) is weakly nil-clean for some n ≥ 3;

(4) Tn(R) is GWNC for some n ≥ 3.

P r o o f.

(1) ⇒ (2). This follows employing [20, Theorem 4.1].

(2) ⇒ (3) ⇒ (4). These two implications are trivial, so we remove the details.

(4) ⇒ (1). Setting I := {(aij) ∈ Tn(R) | aii = 0}, we obtain that it is a nil-ideal in Tn(R)

with
Tn(R)

I
∼= Rn. Therefore, Corollary 2.14 is applicable to get the pursued result. �

The next example illustrates that some of the restrictions in the preceding proposition cannot

be eliminated.
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Example 2.4. The ring T2(Z3) is GWNC, but Z3 is not nil-clean. The ring Z6 is weakly

nil-clean, but T2(Z6) is not GWNC.

The next technicality is worthy of documentation.

Lemma 2.4. Let R be a ring and 2 ∈ J(R). Then, the following two points are equivalent:

(1) R is a GWNC ring;

(2) R is a GNC ring.

P r o o f.

(2) =⇒ (1). It is straightforward.

(1) =⇒ (2). Note that
R

J(R)
is of characteristic 2, because 2 ∈ J(R), and so a = −a for

each a ∈
R

J(R)
. That is why,

R

J(R)
is a GNC ring, and so we can invoke [15, Proposition 2.11]

as J(R) is nil in virtue of Proposition 2.1. �

A ring R is said to be exchange if, for any a ∈ R, there exists an idempotent e ∈ aR such

that 1 − e ∈ (1 − a)R (see, e. g., [31] and [30]). Notice that every clean ring is exchange,

whereas the converse is true in the abelian case (see [31, Proposition 1.8]). Moreover, a ring R
is said to be weakly exchange if, for any a ∈ R, there exists an idempotent e ∈ aR such that

1−e ∈ (1−a)R or 1−e ∈ (1+a)R (see, e. g., [10]). Note that any weakly clean ring is weakly

exchange, while the converse is valid for abelian rings (see [10, Theorem 2.1]).

Two more helpful technical claims are the following.

Lemma 2.5. Let R be a ring. Then, the following are equivalent:

(1) R is a strongly weakly nil-clean ring;

(2) R is both WUU and GWNC.

P r o o f.

(1) =⇒ (2). We know that each strongly weakly nil-clean ring is weakly nil-clean, and hence

is GWNC. Also, every strongly weakly nil-clean ring is WUU appealing to [17, Proposition 2.1].

(2) =⇒ (1). We know that each GWNC ring is weakly clean, whence is weakly exchange, so

the conclusion follows from [6, Theorem 3.6]. �

Lemma 2.6. A ring R is strongly nil-clean if, and only if,

(1) R is GWNC, and

(2) R is an UU ring.

P r o o f. It is immediate from the combination of [6, Corollary 3.4] and Lemma 2.2. �

A ring R is said to be strongly π-regular provided that, for any a ∈ R, there exists a natural

number n such that an ∈ an+1R. A ring R is called semi-potent if every one-sided ideal not

contained in J(R) contains a non-zero idempotent.

We now have the following coincidences.

Corollary 2.15. Let R be an UU ring. Then, the following are equivalent:

(1) R is a strongly clean ring;
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(2) R is a strongly nil-clean ring;

(3) R is a GSNC ring;

(4) R is a strongly π-regular ring;

(5) R is a GNC ring;

(6) R is a GWNC ring;

(7) R is a semi-potent ring;

(8) R is a weakly clean ring;

(9) R is a weakly exchange ring.

P r o o f.

(1), (2), (3), and (4) are equivalent by [16, Corollary 2.20].

(2) and (5) are equivalent via [15, Corollary 2.28].

(2) and (6) are equivalent by Lemma 2.6.

(2) and (7) are equivalent via [21, Theorem 2.25].

(6) =⇒ (8). It is elementary thanks to Corollary 2.1.

(8) =⇒ (6). Let R is a weakly clean ring and let a ∈ R, so we have a+1 = u± e, where u is a

unit in R and e is an idempotent in R. Thus, a = (u−1)± e, where u−1 is a nilpotent element

in R. So, R is a weakly nil-clean ring and hence is a GWNC ring.

(9) and (2) are equivalent under validity of [18, Theorem 2.4] and [6, Corollary 3.4]. �

Lemma 2.7. Let R be a local ring. Then, the following are equivalent:

(1) R is a GWNC ring;

(2) R is a GNC ring.

P r o o f. It is routine that every division ring is GNC, so the result is concluded exploiting

Lemma 2.2. �

Lemma 2.8 (see [4, Lemma 24]). Let D be a division ring. If |D| ≥ 4 and a ∈ D\{0, 1,−1},

then

(

a 0
0 0

)

∈ Mn(D) is not weakly nil-clean.

Lemma 2.9. Let n ≥ 2 and let D be a division ring. Then, the matrix ring Mn(D) is a GWNC

ring if, and only if, either D ∼= Z2, or D ∼= Z3 and n = 2.

P r o o f. If D ∼= Z2, then Mn(D) is nil-clean and hence is GWNC. If, however, D ∼= Z3

and n = 2, then M2(Z3) is a GWNC ring.

Oppositely, if Mn(D) is a GWNC ring and |D| ≥ 4, then Lemma 2.8 gives that, for

every a ∈ D\{0, 1,−1}, the element

(

a 0
0 0

)

∈ Mn(D) is a non-unit in Mn(D) which is not

weakly nil-clean, leading to a contradiction. Therefore, it must be that |D| = 2 or |D| = 3. If,

foremost, |D| = 2, then D ∼= Z2. If, next, |D| = 3, then D ∼= Z3. Besides, we have n = 2,

as for otherwise, let A11 :=

(

1 0
0 −1

)

∈ M2(Z3), so we have A :=

(

A11 0
0 0

)

∈ Mn(Z3) is

not weakly nil-clean for all n ≥ 3 arguing as in the proof of [4, Theorem 25]. Likewise, one

inspects that A is not a unit, a contradiction. �
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As two consequences, we extract:

Corollary 2.16. Let n ≥ 3 and let D be a division ring. Then, the matrix ring Mn(D) is

a GWNC ring if, and only if, D ∼= Z2.

Corollary 2.17. Let R be a ring with no non-trivial idempotents and n ≥ 2. Then, the following

conditions are equivalent:

(1) Mn(R) is a GWNC ring;

(2) either R/J(R) ∼= Z2 for n ≥ 2 and Mn

(

J(R)
)

is nil, or R/J(R) ∼= Z3 for n = 2
and Mn

(

J(R)
)

is nil.

P r o o f. Assume Mn(R) is a GWNC ring. We show that R is local. Let a ∈ R. Consider

A := ae11 /∈ GLn(R). Thus, there exist E ∈ Id
(

Mn(R)
)

and Q ∈ Nil
(

Mn(R)
)

such that

A = E +Q or A = −E +Q. Assuming first that A = E +Q, then −A = (In −E)− (Q+ In).
Let U := In +Q ∈ GLn(R). Therefore,

−U−1A = U−1(In − E)UU−1 − In.

Let F = U−1(In −E)U . Hence, −(In − F )U−1A = −(In − F ). So,

In − F =











e 0 · · · 0
∗ 0 · · · 0
...
...

. . .
...

∗ 0 · · · 0











,

where e ∈ {0, 1} since R is a ring with no non-trivial idempotents. If, firstly, e = 0, then

In − F = 0 implying F = In. Since F = U−1(In − E)U , we get E = 0, hence A = Q ∈
∈ Nil

(

Mn(R)
)

, so a ∈ Nil(R) forcing 1− a ∈ U(R).

Assume next that e = 1, then F =











0 0 · · · 0
∗ 1 · · · 0
...
...

. . .
...

∗ 0 · · · 1











. Choosing U−1 = (vij), and bearing in

mind −U−1A = FU−1 − In, we have v11a = 1. Moreover, since R is a ring with no non-trivial

idempotents, and av11 ∈ Id(R), either av11 = 0 or av11 = 1. If av11 = 0, from v11a = 1, we

deduce a = 0, a contradiction. Therefore, av11 = 1.
Now, suppose A = −E + Q. Then, A = (I − E) + (Q − I). Assuming U = Q − I , and

similarly to the above arguments, we can demonstrate that either a ∈ U(R) or 1 − a ∈ U(R)
yielding that R is a local ring.

Since Mn(R) is a GWNC ring, it follows that Mn

(

R/J(R)
)

is also GWNC. Taking into

account Lemma 2.9, for n ≥ 3 we get R/J(R) ∼= Z2, and for n = 2 we get either R/J(R) ∼= Z2

or R/J(R) ∼= Z3. Additionally, with the help of Proposition 2.1, J
(

Mn(R)
)

= Mn

(

J(R)
)

is

nil, as required. �

Recall that a ring R is Boolean if every its element is an idempotent, that is, R = Id(R).

We now have all the ingredients necessary to establish the following two main results.

Theorem 2.1. Let R be a commutative ring. Then, Mn(R) is GWNC if, and only if, Mn(R) is

nil-clean for all n ≥ 3.
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P r o o f.

(=⇒) Let M be a maximal ideal of R and n ≥ 3. Hence, Mn(R/M) is GWNC. Since

R/M is a field, it follows from Corollary 2.16 that R/M ∼= Z2. Thus, R/J(R) is isomorphic

to the subdirect product of Z2’s; whence, R/J(R) is Boolean. Employing [3, Corollary 6],

Mn

(

R/J(R)
)

is nil-clean. Apparently, J
(

Mn(R)
)

is nil. Accordingly, Mn(R) is nil-clean in

view of [20, Corollary 3.17].

(⇐=) This is obvious, so we omit the details. �

Recall that a ring R is said to be semi-local if R/J(R) is a left artinian ring or, equivalently,

if R/J(R) is a semi-simple ring.

Our next pivotal result is the following.

Theorem 2.2. Let R be a ring. Then, the following conditions are equivalent for a semi-local

ring:

(1) R is a GWNC ring;

(2) either R is a local ring with a nil Jacobson radical, or R/J(R) ∼= M2(Z3) with a nil

Jacobson radical, or R/J(R) ∼= Z3 × Z3 with a nil Jacobson radical, or R is a weakly

nil-clean ring.

P r o o f.

(2) =⇒ (1). The proof is straightforward by combining Lemma 2.9 and Proposition 2.1. Also,

we know that Z3 × Z3 is a GWNC ring.

(1) =⇒ (2 ). Since R is semi-local, R/J(R) is semi-simple, so we have

R/J(R) ∼=

m
∏

i=1

Mni
(Di),

where each Di is a division ring. Moreover, the application of Proposition 2.1 leads to J(R)
is nil, and R/J(R) is a GWNC ring. If m = 1, then Lemma 2.9 applies to get that either

R/J(R) = D1 or R/J(R) ∼= Mn1
(Z2) or R/J(R) ∼= M2(Z3).

However, we know that Mn1
(Z2) is nil-clean and hence is weakly nil-clean, so R/J(R) is

weakly nil-clean. As J(R) is nil, R is weakly nil-clean. If m = 2, so

R/J(R) ∼= Mn1
(D1)×Mn2

(D2).

As R/J(R) is GWNC, both Mn1
(D1) and Mn2

(D2) are weakly nil-clean using Proposition 2.3.

Thus, D1
∼= Z2, or D1

∼= Z3 and n1 = 1; D2
∼= Z2, or D2

∼= Z3 and n2 = 1. Consequently, we

have

R/J(R) ∼= Mn1
(Z2)×Mn2

(Z2),

or

R/J(R) ∼= Mn1
(Z2)× Z3,

or

R/J(R) ∼= Z3 × Z3.

Knowing that Mn1
(Z2) × Mn2

(Z2) is nil-clean, so R/J(R) is nil-clean, and hence is weakly

nil-clean. As J(R) is nil, R is weakly nil-clean (see [4]).

But, we also know enabling from [4] that Mn1
(Z2) × Z3 is weakly nil-clean and hence

R/J(R) is too weakly nil-clean. As J(R) is nil, as above, R is weakly nil-clean. If m > 2,
then Proposition 2.5 employs to derive that each Mni

(Di) is weakly nil-clean and at most one
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of them is not nil-clean. Finally, referring to [4, Theorem 25] and [23, Theorem 3], for any

1 ≤ i ≤ m, we deduce Di
∼= Z2 and there exists an index, say j, with Dj

∼= Z2, or Dj
∼= Z3

and n = 1. Therefore, [4, Corollary 26] applies to conclude that R is a weakly nil-clean ring, as

expected. �

Two more consequences sound like these.

Corollary 2.18. Let R be a ring. Then, the following conditions are equivalent for a semi-simple

ring:

(1) R is a GWNC ring;

(2) either R is a division ring, or R ∼= M2(Z3), or R ∼= Z3 × Z3, or R is a weakly nil-clean

ring.

Corollary 2.19. Let R be a ring. Then, the following conditions are equivalent for an artinian

(in particular, a finite) ring:

(1) R is a GWNC ring.

(2) either R is a local ring with a nil Jacobson radical, or R/J(R) ∼= M2(Z3) with a nil

Jacobson radical, or R/J(R) ∼= Z3 × Z3 with a nil Jacobson radical, or R is a weakly

nil-clean ring.

It is long known that a ring R is called 2-primal if its lower nil-radical Nil∗(R) consists

precisely of all the nilpotent elements of R. For instance, it is well known that both reduced

rings and commutative rings are 2-primal.

We are now planning to establish the following.

Proposition 2.7. Let R be a 2-primal ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R/J(R) is Boolean and J(R) is nil.

P r o o f.

(⇐=) Invoking [25, Theorem 6.1], we conclude that Mn(R) is nil-clean, whence is weakly

nil-clean, so that it is GWNC.

(=⇒) Since Mn(R) is GWNC, one follows that Mn(R)/J
(

Mn(R)
)

∼= Mn

(

R/J(R)
)

is GWNC

appealing to Corollary 2.3, and J
(

Mn(R)
)

= Mn

(

J(R)
)

is nil appealing to Proposition 2.1. It

now follows that J(R) is nil. But since R is 2-primal, it also follows that Nil∗(R) = J(R) =
= Nil(R) and hence R/J(R) is a reduced ring. Therefore, R/J(R) is a sub-direct product of

a family of domains {Si}i∈I . As being an image of Mn

(

R/J(R)
)

, the matrix ring Mn(Si) is

also GWNC. Therefore, Corollary 2.17 allows us to obtain that, for each i ∈ I , Si/J(Si) ∼= Z2.

On the other hand, for each i ∈ I , Si is a domain and, as well, Mn(Si) is a GWNC ring,

Lemma 2.2 insures that J(Si) = {0}. Thus, for each i ∈ I , Si
∼= Z2. Hence, we see that R/J(R)

is a subring of the Boolean ring
∏

i∈I

Si. So, finally R/J(R) is a Boolean ring, as promised. �

We, thereby, yield:

Corollary 2.20. Let R be a 2-primal ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R is a strongly nil-clean ring.

As is well-known, a ring R is called NI if Nil(R) is an ideal of R.

The next series of statements somewhat describes the structure of GWNC matrix rings under

various limitations.
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Proposition 2.8. Let R be an NI ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R/J(R) is Boolean and J
(

Mn(R)
)

is nil.

P r o o f.

(⇐=) Assume that R/J(R) is Boolean and J
(

Mn(R)
)

is nil. Thus, an appeal to [3, Corollary 6]

assures that Mn

(

R/J(R)
)

∼= Mn(R)/J
(

Mn(R)
)

is a nil-clean ring, so it is a GWNC ring. On

the other side, since J
(

Mn(R)
)

is nil, Lemma 2.2 ensures that Mn(R) is a GWNC ring.

(=⇒) Assume that Mn(R) is a GWNC ring. So, owing to Lemma 2.2, we have that J
(

Mn(R)
)

is nil, which forces at once that J(R) is nil. Furthermore, since R is an NI ring, we

have Nil(R) = J(R). Therefore, the ring R/J(R) is obviously reduced and thus 2-primal.

Hence, Mn

(

R/J(R)
)

is a GWNC ring as being a homomorphic image of Mn(R) and, as

R/J(R) is 2-primal, Proposition 2.7 guarantees that R/J(R) is Boolean, as needed. �

Proposition 2.9. Let R be an abelian ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R/J(R) is Boolean and J
(

Mn(R)
)

is nil.

P r o o f. If R/J(R) is Boolean and J
(

Mn(R)
)

is a nil-ideal, then [25, Corollary 6.5] implies

that Mn(R) is a nil-clean ring and thus is GWNC.

Reciprocally, assume that Mn(R) is a GWNC ring. Then, according to Lemma 2.2,

J
(

Mn(R)
)

= Mn

(

J(R)
)

is a nil-ideal. To illustrate that R/J(R) is Boolean, we first establish

that R is a weakly clean ring. Since Mn(R) is a GWNC ring, in accordance with Corollary 2.1,

Mn(R) is a weakly clean ring and thus is weakly exchange. Therefore, [14, Proposition 2.1] is

applicable to infer that R is a weakly exchange ring. However, since R is an abelian ring, in

virtue of [10, Theorem 2.1], we conclude that R is a weakly clean ring, as wanted.

Furthermore, since R is an abelian weakly clean ring, it follows from [24, Proposition 14]

that, for each left primitive ideal I , we have R/I ∼= Mm(D), where 1 ≤ m ≤ 2 and D is a

division ring. We prove that D ∼= Z2. In fact, since Mn(R) is a GWNC ring, Corollary 2.3 is a

guarantor that Mn(R/I) is a GWNC ring too. Since n ≥ 3, Corollary 2.16 helps us to conclude

that D ∼= Z2. But, [27, Theorem 12.5] or [28] gives that R/J(R) is a subdirect product of

primitive rings, so that R/J(R) is a subdirect product of the Mn(Z2), where 1 ≤ m ≤ 2. In the

other vein, since R is abelian and J(R) is nil, [12, Corollary 2.5] means that R/J(R) is abelian,

so R/J(R) is a subdirect product of Z2, thus R/J(R) is Boolean, as desired. �

A ring R is called NR, provided Nil(R) is a subring of R. Certainly, each NI ring is NR,

that implication is generally irreversible. Thus, we substantiate the following expansion of

Proposition 2.8.

Proposition 2.10. Let R be an NR ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R/J(R) is Boolean and J
(

Mn(R)
)

is nil.

P r o o f.

(⇐=) The proof is similar to the proof of Proposition 2.8.

(=⇒) It suffices to show that R/J(R) is Boolean. To that aim, assume R is an NR ring. Since

Mn(R) is a GWNC ring, we have that J(R) is nil. Thus, by [9, Proposition 2.16], it follows

that R/J(R) is abelian. Therefore, via Proposition 2.9, we have that R/J(R) is Boolean, as

wanted. �

Three more consequences are as follows:

Corollary 2.21. Let R be a local ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R/J(R) ∼= Z2 and J
(

Mn(R)
)

is nil.
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P r o o f.

(⇐=) It is clear.

(=⇒) It is enough to demonstrate only that R/J(R) ∼= Z2. Indeed, since Mn(R) is a GWNC

ring, we discover that Mn

(

R/J(R)
)

∼= Mn(R)/J
(

Mn(R)
)

is a GWNC ring as well. And since

R is local, R/J(R) is a division ring. Therefore, Corollary 2.16 insures that R/J(R) ∼= Z2, as

asked for. �

Corollary 2.22. Let R be a reduced ring and n ≥ 3. Then, Mn(R) is GWNC if, and only if,

R is Boolean.

P r o o f.

(⇐=) It follows directly from [3, Corollary 6].

(=⇒) As R is reduced, R is 2-primal. However, we receive J(R) = Nil(R) = {0}. Then, the

result follows at once from Proposition 2.7, as promised. �

The next comments are worthy of documentation.

Remark 2.1. As the referee noticed, if the factor-ring R/J(R) is boolean, then Mn

(

R/J(R)
)

is nil-clean as [3, Corollary 6] unambiguously showed. If, moreover, J
(

Mn(R)
)

is also nil,

then Mn(R) is nil-clean thankfully to [3, Lemma 4]. So, in view of Theorem 2.1, each of the

corresponding subsequent results has a consequence which directly states that Mn(R) is GWNC

if, and only if, Mn(R) is nil-clean, as expected.

An element r of a ring R is called regular if there exists an element x ∈ R such that r = rxr.
Moreover, if every element in a ring is regular, then we call it a regular ring. A ring in which,

for every r ∈ R, there is x ∈ R such that r2x = r is called strongly regular.

Corollary 2.23. Let R be a strongly regular ring and n ≥ 3. Then, Mn(R) is GWNC if, and

only if, R is Boolean.

P r o o f.

(⇐=) It is direct from [3, Corollary 6].

(=⇒) It is well known that every strongly regular ring is a subdirect product of division rings

(see, e. g., [27, 28]). Then, Mn(R) is a subdirect product of matrix rings over division rings

(cf. [27,28]). By virtue of Corollary 2.3, we deduce that each such matrix ring is GWNC, hence

Corollary 2.16 allows us to infer that every division ring is isomorphic to Z2. Thus, R must be

Boolean, as asserted. �

The next technicality is useful.

Lemma 2.10. Let R be a ring such that R = S +K, where S is a subring of R and K is a

nil-ideal of R. Then, S is GWNC if, and only if, R is GWNC.

P r o o f. We know that, S ∩K ⊆ K is a nil-ideal of S. Also, we can write that

R/K = (S +K)/K ∼= S/(S ∩K).

Therefore, Proposition 2.1 is applicable inferring the desired result. �

Let A, B be two rings, and M , N be (A,B)-bi-module and (B,A)-bi-module, respectively.

Also, we consider the bilinear maps φ : M ⊗B N → A and ψ : N ⊗A M → B that apply to the

following properties.

IdM ⊗Bψ = φ⊗A IdM , IdN ⊗Aφ = ψ ⊗B IdN .
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For m ∈ M and n ∈ N , define mn := φ(m ⊗ n) and nm := ψ(n ⊗ m). Now, the 4-tuple

R =

(

A M
N B

)

becomes to an associative ring with obvious matrix operations that is called a

Morita context ring. Denote two-side ideals Imφ and Imψ to MN and NM , respectively, that

are called the trace ideals of the Morita context (compare also with [2]).

We are now intending to prove the following.

Proposition 2.11. Let R =

(

A M
N B

)

be a Morita context ring such that MN and NM are

nilpotent ideals of A and B, respectively. If R is a GWNC ring, then A and B are weakly

nil-clean rings. The converse holds provided one of the A or B is nil-clean and the other is

weakly nil-clean.

P r o o f. Apparently, since MN ⊆ J(A) and NM ⊆ J(B), by using [35, Lemma 3.1(1)],

we have J(R) =

(

J(A) M
N J(B)

)

and R/J(R) ∼= A/J(A) × B/J(B). Since R is a GWNC

ring, a consultation with Corollary 2.3 assures that that R/J(R) is also GWNC. Therefore, the

exploitation of Proposition 2.4 gives that A/J(A) and B/J(B) are weakly nil-clean. Moreover,

since J(R) is nil, we infer that both J(A) and J(B) are nil too. Hence, from [4, Lemma 1], we

conclude that A and B are weakly nil-clean.

As for the converse, let us assume that A or B is nil-clean and the other is weakly nil-clean.

We have R = S + K, where S =

(

A 0
0 B

)

is a subring of R and K =

(

MN M
N NM

)

is a

nil-ideal of R since

K2l =

(

(MN)l (MN)lM
(NM)lN (NM)l

)

for every l ∈ N. Furthermore, as S ∼= A × B, Proposition 2.5 enables us that S is a GWNC

ring. Therefore, knowing Lemma 2.10, we deduce that R is a GNC ring as well. �

Now, let R, S be two rings, and let M be an (R, S)-bi-module such that the operation

(rm)s = r(ms) is valid for all r ∈ R, m ∈ M and s ∈ S. Given such a bi-module M , we can

put

T(R, S,M) =

(

R M
0 S

)

=

{(

r m
0 s

)∣

∣

∣

∣

r ∈ R,m ∈M, s ∈ S

}

,

where this set forms a ring with the usual matrix operations. The so-stated formal matrix

T(R, S,M) is called a formal triangular matrix ring. In Proposition 2.11, if we set N = {0},

then we will obtain the following claim.

Corollary 2.24. Let R, S be rings and let M be an (R, S)-bi-module. If the formal triangular

matrix ring T(R, S,M) is GWNC, then R, S are weakly nil-clean. The converse holds if one

of the rings R or S is nil-clean and the other is weakly nil-clean.

Given a ring R and a central elements s of R, the 4-tuple

(

R R
R R

)

becomes a ring with

addition component-wise and with multiplication defined by
(

a1 x1
y1 b1

)(

a2 x2
y2 b2

)

=

(

a1a2 + sx1y2 a1x2 + x1b2
y1a2 + b1y2 sy1x2 + b1b2

)

.

This ring is denoted by Ks(R). A Morita context

(

A M
N B

)

with A = B = M = N = R

is called a generalized matrix ring over R. As the referee kindly noted, the term generalized
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matrix ring is also used for formal matrix rings of arbitrary order (e.g., see [33]). For example,

Mn(R; s) is a generalized matrix ring over R too.

Furthermore, it was observed by Krylov in [26] that a ring S is a generalized matrix ring

over R if, and only if, S = Ks(R) for some s ∈ Z(R). Here MN = NM = sR, so

MN ⊆ J(A) ⇐⇒ s ∈ J(R), NM ⊆ J(B) ⇐⇒ s ∈ J(R), and MN , NM are nilpotent

⇐⇒ s is a nilpotent.

We, thereby, obtain the following.

Corollary 2.25. Let R be a ring and s ∈ Z(R) ∩Nil(R). If Ks(R) is a GWNC ring, then R is

a weakly nil-clean ring. The converse holds, provided R is a nil-clean ring.

Furthermore, imitating Tang and Zhou (cf. [34]), for n ≥ 2 and for s ∈ Z(R), the n×n formal

matrix ring over R defined by s, and denoted by Mn(R; s), is the set of all n×n matrices over R
with usual addition of matrices and with multiplication defined below:

for (aij) and (bij) in Mn(R; s), set (aij)(bij) = (cij), where (cij) =
∑

sδikjaikbkj.

Here, δijk = 1 + δik − δij − δjk, where δjk, δij , δik are the Kroncker delta symbols.

We, thus, come to the following.

Corollary 2.26. Let R be a ring and s ∈ Z(R) ∩ Nil(R). If Mn(R; s) is a GWNC ring, then

R is a weakly nil-clean ring. The converse holds, provided R is a nil-clean ring.

P r o o f. If n = 1, then Mn(R; s) = R. So, in this case, there is nothing to prove. Let n = 2.
By the definition of Mn(R; s), we have M2(R; s) ∼= Ks2(R). Apparently, s2 ∈ Nil(R) ∩ Z(R),
so the claim holds for n = 2 with the help of Corollary 2.25.

To proceed by induction, assume now that n > 2 and that the assertion holds for Mn−1(R; s).

Set A := Mn−1(R; s). Then, Mn(R; s) =

(

A M
N R

)

is a Morita context, where

M =







M1n
...

Mn−1,n






and N = (Mn1 . . .Mn,n−1)

with Min =Mni = R for all i = 1, . . . , n− 1, and

ψ : N ⊗M → N, n⊗m 7→ snm

φ : M ⊗N →M, m⊗ n 7→ smn.

Besides, for x =







x1n
...

xn−1,n






∈M and y = (yn1 . . . yn,n−1) ∈ N , we write

xy =











s2x1nyn1 sx1nyn2 . . . sx1nyn,n−1

sx2nyn1 s2x2nyn2 . . . sx2nyn,n−1
...

...
. . .

...

sxn−1,nyn1 sxn−1,nyn2 . . . s2xn−1,nyn,n−1











∈ sA

and

yx = s2yn1x1n + s2yn2x2n + · · ·+ s2yn,n−1xn−1,n ∈ s2R.
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Since s is nilpotent, we see that MN and NM are nilpotent too. Thus, we obtain that

Mn(R; s)

J
(

Mn(R; s)
)

∼=
A

J(A)
×

R

J(R)
.

Finally, the induction hypothesis and Proposition 2.11 yield the claim after all. �

A Morita context

(

A M
N B

)

is called trivial, if the context products are trivial, i. e., MN = 0

and NM = 0. We now have
(

A M
N B

)

∼= T(A×B,M ⊕N),

where

(

A M
N B

)

is the trivial Morita context by consulting with [22].

An other consequence is the following.

Corollary 2.27. If the trivial Morita context

(

A M
N B

)

is a GWNC ring, then A, B are weakly

nil-clean rings. The converse holds if one of the rings A or B is nil-clean and the other is

weakly nil-clean.

P r o o f. It is apparent to see that the isomorphisms

(

A M
N B

)

∼= T(A× B,M ⊕N) ∼=

(

A× B M ⊕N
0 A×B

)

are fulfilled. Then, the rest of the proof follows by combining Corollary 2.6 and Proposition 2.3.

�

§ 3. GWNC group rings

We are concerned here with the examination of groups rings in which all non-units are

weakly nil-clean. To this target, following the traditional terminology, we say that a group G is

a p-group if the order of every element of G is a power of the prime number p. Moreover, a

group G is said to be locally finite if every its finitely generated subgroup is finite.

Suppose now that G is an arbitrary group and R is an arbitrary ring. As usual, RG stands

for the group ring of G over R. The homomorphism ε : RG → R, defined by ε

(

∑

g∈G

agg

)

=

=
∑

g∈G

ag, is called the augmentation map of RG and its kernel, denoted by ∆(RG), is called

the augmentation ideal of RG.

Before receiving our major assertion of this section, we start our considerations with the next

few preliminaries.

Lemma 3.1. If RG is a GWNC ring, then R is GWNC too.

P r o o f. We know that RG/∆(RG) ∼= R. Therefore, in virtue of Corollary 1.3, it follows that

R must be a GWNC ring, as stated. �

Lemma 3.2. Let R be a GWNC ring with p ∈ Nil(R) and let G be a locally finite p-group,

where p is a prime. Then, the group ring RG is GWNC.
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P r o o f. In accordance with [11, Proposition 16], we know that ∆(RG) is a nil-ideal. Thus,

since ∆(RG) is nil and RG/∆(RG) ∼= R, Proposition 1.1(1) allows us to infer that RG is a

GWNC ring. �

According to Lemma 3.1, if RG is a GWNC ring, then R is also a GWNC ring. In what

follows, we will focus on the topic of what properties the group G will have when RG is a

GWNC ring. Before formulating the chief results, we need a series of preliminary technical

claims.

Explicitly, we obtain the following two assertions.

Lemma 3.3. Suppose R is a GWNC ring. Then, either 2 ∈ U(R) or 2 ∈ Nil(R) or 6 ∈ Nil(R).

P r o o f. Assume for a moment that 2 /∈ U(R). Then, there exists e ∈ Id(R) and q ∈ Nil(R)
such that 2 = q ± e. Note that eq = qe, because 2 is a central element. If 2 = e + q, then

1− e = q−1 ∈ Id(R)∩U(R). Thus, e = 0, which implies 2 = q ∈ Nil(R). Now, if 2 = −e+ q,
we have 4 = e + p for some p ∈ Nil(R). Hence, 6 = 4 + 2 = p + q ∈ Nil(R) by noting that

pq = qp. �

Lemma 3.4. Suppose R is a ring such that 2 /∈ U(R). Then, the following conditions are

equivalent:

(1) R is a GWNC ring;

(2) either R is a GNC ring or R is weakly nil-clean.

P r o o f.

(2) =⇒ (1) It is obvious, so we drop off the details.

(1) =⇒ (2) Mimicking Lemma 3.3, we have that either 2 ∈ Nil(R) or 6 ∈ Nil(R). If 2 ∈ Nil(R),
it is clear that R is a GNC ring. If 6 ∈ Nil(R) and, for n ∈ N, we have 6n = 0, then

R ∼= R1 ⊕ R2, where R1 = R/2nR and R2 = R/3nR. However, Proposition 2.3 tells us that

R1 and R2 are weakly nil-clean rings. Moreover, since 2 ∈ Nil(R1), R1 is a nil-clean ring.

Thus, [4, Proposition 3] implies that R is a weakly nil-clean ring, as required. �

Let us now remember that a ring R is said to be an IU ring if, for any a ∈ R, either a or −a
is the sum of an involution and a unipotent. We now need to record the following.

Lemma 3.5 (see [7, Lemma 4.2]). Let R be a ring. Then, the following are equivalent:

(1) R is an IU ring;

(2) R is weakly nil-clean and 2 ∈ U(R).

We now can attack the truthfulness of the following key statement.

Theorem 3.1. Let R be a ring such that 2 /∈ U(R), and G be a non-trivial abelian group such

that RG is a GWNC ring. Then, G is a 2-group, where 2 belongs to Nil(R).

P r o o f. Suppose RG is a GWNC ring. From Lemma 3.4, we have that either RG is a

GNC ring or RG is a weakly nil-clean ring. If, foremost, RG is a GNC ring, one concludes

from [15, Theorem 3.8] that G is a p-group, where p ∈ Nil(R). If p is odd, this obviously

contradicts the initial requirement 2 /∈ U(R), so it must be that p = 2.
If RG is a weakly nil-clean ring, then [1, Theorem 1.14] riches us that either R is a nil-clean

ring and G is a 2-group, or R is an IU ring and G is a 3-group. If R is a nil-clean ring and G is a

2-group, there is nothing left to prove, because from [20, Proposition 3.14], we have 2 ∈ Nil(R).
However, if R is an IU ring and G is a 3-group, from Lemma 3.5, we have 2 ∈ U(R), which is

a contradiction. �
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§ 4. Open Questions

We finish our work with the following two questions which allude us.

Problem 4.1. Examine those rings whose non-invertible elements are strongly weakly nil-clean

in the sense of [7].

A ring R is called uniquely weakly nil-clean, provided that R is a weakly nil-clean ring in

which every nil-clean element is uniquely nil-clean.

Problem 4.2. Examine those rings whose non-invertible elements are uniquely weakly nil-clean.
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П. Данчев, О. Хасанзаде, А. Джаван, А. Муссави

Кольца, необратимые элементы которых являются слабо нуль-чистыми
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УДК 512.71

DOI: 10.35634/vm250103

Данная работа находится в русле наших последних исследований колец, обладающих свойствами

(сильной, слабой) нуль-чистоты. Мы углубленно изучаем как структурные, так и характеристиче-

ские свойства таких колец, для которых элементы, не являющиеся необратимыми, являются слабо

нуль-чистыми. Также рассматриваются и описываются групповые кольца такого рода. Это в неко-

торой степени дополняет наши недавние результаты в этом направлении, опубликованные в Punjab

University Journal of Mathematics (2024), когда обратимые элементы являются слабо нуль-чистыми.

Финансирование. Работа первого автора, П. В. Данчева, частично поддержана Junta de Andalucı́a,

грант FQM 264. Все остальные три автора поддерживаются фондом Bonyad Meli Nokhbegan и полу-

чают средства из этого фонда.
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