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A PROBLEM OF SIMPLE GROUP PURSUIT WITH POSSIBLE DYNAMICAL
DISTURBANCE IN DYNAMICS AND PHASE CONSTRAINTS

In finite-dimensional Euclidian space, we treat the problem of pursuit of one evader by a group of pursuers,
which is described by a system of the form

Zi=ai(t)u; —v, u; €U;, veV,

where the functions «;(t) are equal to 1 for all ¢, except for a certain interval of a given length, on which
they are equal to zero (to each pursuer there corresponds its own interval). This fact can be interpreted in
such a way that each of the pursuers has a possible failure of the control device at any previously unknown
moment in time, and the length of the time interval needed to fix the failure is given, while in the process
of fixing the failure the pursuers have no possibility to carry out a capture. The target sets are convex
compact sets, and the evader does not leave the bounds of the convex polyhedral set. We obtain sufficient
conditions for solvability of the pursuit problem.
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Introduction

In modeling various controlled processes in real dynamical systems, situations are possible
in which the control system is acted upon by uncontrolled disturbances and the control system
itself may fail to operate. It is quite natural to consider the problems of control in such situations
within the framework of differential game theory.

Among the first studies devoted to the problems of control with possible disturbances in the
dynamics is the work of M. S. Nikolskii [1]. The situation of conflict interaction of two persons
on a finite time interval, which is described by a linear system of differential equations under the
condition that the control device of the pursuer may fail to operate at any previously unknown
moment in time, and the length of the time interval necessary to eliminate the breakdown is given,
was discussed in [2,3]. In those papers, sufficient conditions for steering the phase trajectory to
a given terminal set were obtained using the direct methods of L. S. Pontryagin.

The linear problem of impulse control on a finite time interval in the presence of an uncon-
trolled disturbance and a possible breakdown was considered in [4]. The goal of control in this
work was to ensure that the value of a given linear function belongs to a given interval at the
final time. Sufficient conditions for solvability of this problem were obtained.

In [5], a problem of control with a disturbance and a possible breakdown on a finite time
interval was considered. The terminal component of the payoff depended on the absolute value
of the linear function of phase coordinates at a finite time, the integral component of the payoff
was specified by the integral of the degree of control, and the control was constructed by the
principle of a guaranteed result. The construction of a wu-stable bridge in a linear differential
holding game with a breakdown on a finite time interval is presented in [6]. The problem of
controlling a parabolic system with breakdowns and possible disturbances in the dynamics was
dealt with in [7,8]. The authors of [9, 10] considered linear differential games of two persons
under the condition that a breakdown of the control devices of the pursuer occurs at some a priori
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unknown time instant. The method of resolving functions was used to obtain sufficient conditions
for solvability of the pursuit problem.

It should be noted that differential games with possible disturbances in the dynamics supple-
ment the class of hybrid differential games, in which the dynamics of one or both players changes
only once [11-13].

In this paper we address the problem of a simple pursuit of one evader by a group of pursuers
under the condition that breakdowns of the control devices of each of the pursuers are possible
at a priori unknown moments of time, and the time required for repair is specified. The goal sets
are convex compacts in phase space. Sufficient conditions for solvability of the pursuit problem
are obtained.

§ 1. Formulation of the problem

In the space R* (k > 2), we consider the differential game I'(n + 1) of n + 1 persons:
n pursuers Py, ..., P, and evader . The law of motion of evader F has the form

y=v, y0)=y" veV. (1.)
The law of motion of each of pursuers P; has the form

& = ag,(t)u;, x;(0) =20, w; €U, (1.2)

% 7

where the functions ag, have the form

0o, (1) = 0, te|h;,0;+ h,
T, t ¢ 6,6+ b

Herei € I ={1,...,n}, y, 2, u;,v,9° 20 € R¥, and U;, V are convex compacts of R*. Suppose
that the time instants 6; are the instants when the control devices of pursuers P; fail to operate or
that 6; are the instants when the maintenance of the control devices of pursuers P; begins. The
quantities h; > 0 are the repair time or the maintenance time. The terminal sets M; are convex
compacts of R¥, and 20 ¢ M; for all i € I.

It follows from the definition of the functions ag, that, in the process of eliminating the
breakdown or in the process of maintenance, pursuers F; have no opportunity to perform a
capture. It is assumed that the time instants 6,, ¢ € I, are unknown to pursuers P;, ¢ € I, and the
breakdown or the necessity of maintenance can begin at any instant. The quantities h;, ¢ € I, are
known to all participants.

In addition, it is assumed that, in the process of the game, evader £ does not move out of the
convex polyhedral set

QO={y|yeR", (pj.y) <p.jes={1,....r}}

with a nonempty interior, where py, . . ., p, are the unit vectors of R¥, i1, ..., j, are real numbers,
and (a, b) is the scalar product of the vectors a and b. We assume that 2 = R* with r = 0.

Let us introduce new variables z; = z; — y and pass from the systems (1.1) and (1.2) to the
new system

G=ag(u; —v, 2z(0)=2=a] =y, welU, veV, (1.3)

A measurable function v: [0, +00) — R* will be called admissible if v(¢) € V and y(t) € Q
for all ¢ > 0. By the prehistory v;(+) of the function v at time ¢ we will mean the restriction of
the function v to the interval [0, ¢].
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Let =; denote a one-parameter family of maps F;(¢, v:(-)) which are defined for each t > 0
on the set of measurable functions v(-) such that v(s) € V, y(s) € 2, 0 < s < ¢, and
which take values in U; and possess the property of superpositional measurability: the func-
tion w;(t) = Fi(t,v:(-)) is measurable at ¢ > 0 for any measurable function v(-), v(s) € V,
y(s) € Q, s >0.

Definition 1.1 (see [2]). The strategy U; of pursuer P, is the pair
U = (FL(t o (), F (8 vi(1),

where F} (t,v,(")) € By, F2(t,04(-)) € Z; for 6; > 0.

2

The solution to the Cauchy problem (1.3) with U; fixed, ; > 0 and with the measurable
function v(t) € V, t > 0 is understood as follows.
At 0 < t < 6; this solution is identical to the solution w} (¢) to the following Cauchy problem:

Wi (t) = Fi (o) —v(t),  wi(0) = .

2

At t > 0; it is identical to the solution w?(¢) to the following Cauchy problem:

Wi (t) = ao, () F" (tvn()) = v(t),  wi(6;) = wi(6y).

§ 2. Auxiliary facts
Definition 2.1. The Minkowski difference of sets A and B is the set

AZB={c| c+BC A}

Definition 2.2. Let A be a bounded subset of R*. The support function of set A is a function
c: R¥ — R of the form

C(Av 90) = sup(a, 90)'

a€A

Lemma 2.1. Let A and B be the convex compact sets of R¥, A~B + &, 0 € B. Then,
AZBcA

The validity of this statement follows from the equality

AZB=((A-b).

beB

Lemma 2.2. Let A and B be the convex compacts of R¥, A~ B #+ &. Then,
*
(A—B) + B C A.

Pro o f From formula (6) [14, p. 431], it follows that, for all ¢ € R*, the following inequality
holds:

(A= B, )< c(A, ) — (B, p). @.1)
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From Property 3 [15, p. 35] of the support function, it follows that, for all ¢ € R, the following
equation holds:

* *
c((A—B) + B, )= c(A—B, ¢)+c(B, ). (2.2)
From (2.1) and (2.2), we find that, for all ¢ € R*, the following inequality holds:
*
c((A—B) + B, )< c(A, ¢). (2.3)

Since A* B+ B is a convex compact set and inequality (2.3) holds, it follows from the corollary
from [15, p. 43] that

*
(A—B) + B C A.
This proves the lemma. H
§ 3. Capture without phase restrictions
In this section we assume that there are no phase restrictions, i.e., ) = R*.

3.1. Capture with loss compensation
Assumption 3.1. For all 7 € , the inclusion 0 € U;=V holds.

Assumption 3.2. For each i € I, there exists a ¢; > 0, for which the inclusion Vh; C (U;=V)t;
holds.

We introduce the following notation:

r=min{t >0 | Vh C (Ui=V)t}, A, 0) = sup{A = 0 | A(M; — 20) N (U; — v) # 2},

§ = min max A(z), v).
veV el
Lemma 3.1. Suppose that Assumption 3.1 holds, 6 > 0, and c;,1 € I, are positive numbers. Then,
there exists T > 0 such that, for any admissible function v(-) and any set of intervals [a;,b;],
b —a; < ¢, 1 € I, there is a number | € I, for which

/ Mzl v(s))ds = 1, where F(t) = [0,1] N [a;, bi].
Fu(T)

Proof Lett > c= )¢, v(:) be an arbitrary admissible function. Consider the set F(t) =

=1
n

= [0,¢] \ Ulai,b;]. Then, F(t) # & and

i=1

> / A2, v(s)) ds = max A (2}, v(s)) ds > dds = 0(t —c).
ier Y F)

Taking 7' > % + ¢, we obtain
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Hence, there exists an [ € I, for which

/ Az, v(s))ds > 1.
Fu(t)

This proves the lemma. l

Definition 3.1. A capture occurs in the game ['(n + 1) if there exist 7; > 0 and strategies U},
i € I, of pursuers P;, i € I, such that for any vector 6§ = (64,...,0,), 0; + h; + 7, < Tj and any
admissible function v(-) there is a number [ € I, for which z,/(Ty) € M,.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 are satisfied and § > 0. Then, a capture
occurs in the game I'(n + 1).

Proof LetTj be the time instant satisfying Lemma 3 with ¢; = h; + 7;. Prove that a capture
occurs at time 7. Let v(+) be an arbitrary admissible control of the evader. Consider the functions

t
hi(t) =1— / Xo(s, 2, v(s)) ds,
0
where

)\(ZZQ7U(S))7 s & [0;,0; + hi + 7],
0, S € [02702+hz+7_z]

Ao (s, 2, v(s)) = {

From the definition of the time instant 7j, it follows that there exist a number [ € [ and time
T, € [0, Ty], for which h;(T;) = 0. We will construct the control of pursuers P, i € I, as follows.
Define the multivalued maps

Ulv) = {ui e U; ‘ Uy — v E )\(z?,v) (MZ- — z?)}

7

By the theorem of a measurable choice [16], the multivalued maps U} (v), i € I, have measurable
selectors u; (v), ¢ € I, such that the function u}(v(t)) is measurable. For all ¢ € [0, Tp) \ [6;, 0; +
+ h; + 7], for which h;(t) > 0, we assume the control of pursuers P;, i € I, to be equal to

ui(t) = u; (v(1))-

Let T; be the first time instant for which h;(T;) = 0. For all t € [T}, To) \ [0;,0; + h; + 7], we
assume the control of pursuer P; to be equal to

Thus, it remains to define the control of pursuers P, i € I, on the interval [0; + h;, 0; + h; + 73].
At time 6; + h;, pursuer P; knows the control of evader E on the interval [0;, 6; + h;]. Therefore,

pursuer P; knows the vector
0i+h;
w; = / v(s)ds.
0

i

By virtue of Assumption 3.2, we have

Oi+hi+7; %
w; € / (Ui—V) ds.
(%

it+hi
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By the definition of the integral of the multivalued map, there exists a measurable selector
w?(s) € (U;=V) such that
Oi+h;
w; = / w)(s) ds.
0;

Let us define the control of pursuer P;, ¢ € I, on the interval [0; + h;, 0; + h; + 7;], assuming that

ui(t) = v(t) +wd(t).
If T; < 6,, then, from the system (1.3), it follows that

2(Ty) = 2 + /OTl (w(s) — v(s)) ds + /Gl (w(s) —v(s)) ds — /Gl+hl v(s)ds +

T 01

+ /:lJrhlJrTl (w(s) —v(s)) ds+ /TO (w(s) —v(s)) ds.

i1+h Oi+hi+7
From the definition of the controls of pursuers, we find that the following relations hold:

/0 l(ul(s) —v(s)) ds = /0 l(ull(v(s)) —v(s)) ds € /0 l Az v(s)) (M — 27) ds,
91 To
/ (w(s) —v(s))ds + / (w(s) —v(s)) ds =0,

T O1+hi+7

O1+hy O1+hi+7 Oi+hi+7
_/ v(s)ds + / (w/(s) —v(s)) ds = —w; + / w)(s)ds = 0.
o, 0

1+hi 01+h
Therefore,

2(Ty) € 2 +/0 l)\(zlo,v(s)) (M, — 2)) ds =

_ z?(l _ /OT AP, o(s)) ds)+/0Tl A0, v(s)) My ds = M.

Consequently, in this case a capture occurs in the game I'(n + 1).
If T} > 6, + h; + 7, then, from the system (1.3), it follows that

A=+ [ ()~ oe)as - [ s+ | (ls) - v(s))ds +
+ [ (u(s) — o)+ | (1a(s) — v(5))ds.

From the definition of the controls of the pursuers, we find that the following relations hold:

0, T
[ )=o) as+ [ o)~ o) ds =

1 +hi+7

-/ " (0(5)) — o(s)) ds + / (u}(0(s)) — v(s)) ds €
e ( /0 YA () ds + /@ th A, o(s) ds) (M, — ) ds,

01+hy Or+hi+m O1+hi+7
—/ v(s)ds + / (u/(s) —v(s)) ds = —w; + / wp(s)ds = 0,
0, 0;+h; 0;+h;
To
/ (w(s) —v(s)) ds = 0.

T
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Therefore,
0 T
21(Ty) € 2) + </ A2, v(s)) ds +/ NERIO) ds) (M; — ) ds =

0 0;+h;+7

0; T
=2 <1 - / Az, v(s)) ds — / NERIO) ds) +

0 Oy+hi+7
6; T
+ (/ Az, v(s)) ds +/ NERIB) ds) M, = M,.
0 Or+hi+7i

Consequently, a capture occurs in the game I'(n + 1) in this case as well. This proves the
theorem. O

Remark 3.1. Let U; = V and h; = 0 for all 7 € I. Then, Assumptions 3.1 and 3.2 are satisfied
automatically. Therefore, if § > 0, then a capture occurs in the game ['(n + 1). Thus, the theorem
of B.N. Pshenichnyi [17] and its generalization [18, Theorem 1.1, p. 55] are consequences of
Theorem 3.1.

3.2. Capture with a new aim
Assumption 3.3. 0 € V and for all i € I the sets M;=(—h;V) # @.

Introduce the following notation: M} = M;=(—h;V),

M (z),0) =sup{A =0 | A(M} —2)) N (U; —v) # @}, dp = mgnrrl;gx)\l(z?,v).
Lemma 3.2. Suppose that Assumption 3.1 holds and oy > 0. Then, there exists a T > 0 such
that, for any admissible function v(-) and any 0; > 0, 0; + h; < T, there is a number | € I, for
which

WV

/Oelm(zlo,v(s))dﬁ/: (20, 0(s)) ds > 1.

1+h

The lemma is proved along the same lines as Lemma 3.1.

Definition 3.2. A capture occurs in the game I'(n + 1) if there exist a 7, > 0 and strategies U4,
i € I, of pursuers P;,i € I, such that for any vector § = (#,...0,) and any admissible
function v(-) there is a number [ € I, for which z/(7y) € M,.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.3 hold and 6, > 0. Then a capture occurs in
the game I'(n + 1).

Proof Let7 be the time instant, for which the statement of Lemma 3.2 holds, and let v(-) be
the admissible control of the evader. Consider the functions

t
hi(t) =1— / A (s, 2], v(s)) ds,
0
where

o . . .
)\?(S,Z?,’U) _ )\1(2:@'71))7 S ¢ [0“0@+h2]’
0’ s € [0i70i+hi].

From Lemma 3.2, it follows that there exist a number [ € [ and time 7; € [0,7], for
which y(T) = 0.
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Define the multivalued maps
Ulv) = {ul e U; ‘ U —v € )\1(2?,@) (Mi1 — z?)}.

By the theorem of a measurable choice [16], the multivalued maps U} (v), i € I, have measurable
selectors u} (v), i € I, such that the function u; (v(¢)) is measurable. For all t € [0, Ty] \ [6;,6; +
+ h; + 7], for which h;(t) > 0, we assume the control of pursuers P;,i € I, to be equal to

Ifﬂ < (9[, then

2(Th) :zloJr/O l(ul(s)—v(s)) ds:leJr/O lull(s)dsEzlo+/0 l)\l(zlo,v(s))(j\/[ll_z?) ds =

Tl Tl
=2 <1 — / M (2, v(s)) ds)+/ M (2, v(s)) M) ds = M = Mli(—hlV).
0 0
Since 0 € V, by virtue of Lemma 2.1, M,~(—h;V') C M,. Therefore, z,(1;) € M,, which implies

that a capture occurs in the game I'(n + 1).
Let T; > 0, + h;. Then,

0, 01+hy T
2(h) = 2 + /0 (w(s) —v(s)) ds — /9 v(s)ds + /0 (w(s) —v(s)) ds =

1+h
0, 0,+hy T
:zlo+/ ull(s)ds—/ v(s)ds+/ u;(s)ds €
0 0, 0;+h;
0; 01+hy T
€ 2) + / M (2, 0(s)) (M) = 2)) ds — / v(s)ds + / M (2, 0(s)) (M) = 2)) ds =
0 0, 0;+h;
9[ Tl
=2 (1 — / M (2, v(s)) ds — / M (2, 0(s)) ds) +
0 Or+hy
0, T 01+hy 01+
+ </ M (2, v(s)) ds +/ M (2, v(s)) ds) M} — / v(s)ds € M} —/ v(s)ds.
0 01+h; 0, 0
Since — ;Z’Jrh’ v(s)ds € (—h V), applying Lemma 2.2, we obtain
*
2(Ty) € M} + (= V) = (My—(=h;V)) + (=V) C M,.
This implies that a capture occurs in the game ['(n + 1). This proves the theorem. 0

Remark 3.2. Let U; = V = {v | ||| < 1} and h; = 0 for all i € I. Then Assumptions 3.1
and 3.2 hold automatically. Therefore, if o > 0, then a capture occurs in the game I'(n + 1).
Thus, the theorem of B. N. Pshenichnyi [17] and its generalization [18, Theorem 1.1, p. 55] are
consequences of Theorem 3.1.

§ 4. Capture with phase restrictions
4.1. Capture with loss compensations and phase restrictions
Denote

01 = Ivrél‘r/l max{lrilealx )\(z?, v) , I?ea} (pj, v) }
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Lemma 4.1. Suppose that Assumption 3.1 holds and that r = 1, 6y > 0. Then there exists T > 0
such that for any admissible function v(-) and any set of intervals |a;, b;], b; — a; < ¢;, @ € I,
there is a number | € I, for which

/ Az, v(s))ds = 1, where Fi(t) = [0,] N [az, b;).
Fy(T)

Proof Lett > c = ) ¢, v(-) be an arbitrary admissible function, and let F(¢) = [0,¢] \
i=1

U las, bs]. Then (p1,y(t)) < pq for all ¢ > 0. Therefore, for all ¢ > 0 the following inequality
i=1

holds:

t
/ (p1,v(s)) ds < po = pa — (p1,4°). (4.1)
0
Define the sets

Ti(t) ={r } 7€ [0,t], (p1,v(r)) =41}, To(t) = {7 } 7€ [0,¢], (p,v(1)) <41},
t)\U[ai,bi]

From (4.1), it follows that, for all ¢ > 0, the following inequality holds:

/Tl(t) (p1,v(s)) ds+/ (p1,v(s)) ds < po.

T (t)

Since (py,v) > —1 for all v € V, it holds that

M0>51/ ds—/ ds, t:/ d5+/ ds.
T (t) T (t) Ty (t) Ts (t)

o1t —
/ ds > 1 /~L0.
T2(t) 51 + 1
Next, we have

Z/ Z/ ds> [ max (), v(s)) ds >

iel iel F(t)

>/ 51ds>/ 51ds>51/ ds—510>51(51t_“° —c).
0 F2(0) 0 o1+1

Taking T" > 0 so that the inequality

(51T—,u0
- = _ >
51( 51 1 C)/TL

This implies that

is satisfied, we find that

Z/ )\z ,u( ds}n.
(T)

Consequently, there exists an [ € I satisfying the condition of the lemma. This proves the
lemma. O
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Theorem 4.1. Suppose that Assumptions 3.1 and 3.2 hold and that r = 1 and 6y > 0. Then, a
capture occurs in the game I'(n + 1). (Capture is understood in the sense of Definition 3.1).

This theorem is proved along the same lines as Theorem 3.1 using Lemma 3.2.
Let co A denote the convex hull of set A,

_ 0 _
V= {v eV ’ nilealx)\(zl-,v) = 0}.

Theorem 4.2. Suppose that Assumptions 3.1 and 3.2 hold and that r > 1, §; > 0, ma}((pj, v) >0
Je

Sfor all v € co V). Then, a capture occurs in the game I'(n + 1).

Proof By Theorem 1.10.5 from [19, p. 33], there exist nonnegative v;, j € J, the sum of
which is equal to 1 and

T

inf Z%(pj,v) > 0.

vEco Vi =1

Take p = vip1 + .- + VePr> o = Y11 + - - - + Yt and consider the set

Q={y| (p,y) <n}.

Then €2 C Qg and
5 = 132‘1/1 max{malx)\(z?,v), (p, v)} > 0.

ic
Hence, a capture occurs in the game I'(n + 1) with phase restrictions §2y. Hence, a capture occurs
in the initial game as well. This proves the theorem. U

4.2. Capture with a new aim and phase restrictions

We introduce the following notation:

09 = mgnmax{lrileaulxkl (z?,v),%}ezijc(pj,v)}, Vo = {v eV ‘ I?éalx)\l(z?,v) = 0}.

Lemma 4.2. Suppose that Assumption 3.1 holds and that r = 1 and 65 > 0. Then, there exists
a T > 0 such that, for any admissible function v(-) and any 0; > 0,0; + h; < T, there is a
number | € I, for which

0 T
/ I A\ (z?,v(s)) ds +/ A (Zlo, U(S)) ds > 1.
0 0;+h;

The lemma is proved along the same lines as Lemma 4.1.

Theorem 4.3. Suppose that Assumptions 3.1 and 3.3 hold and that r = 1 and 65 > 0. Then a
capture occurs in the game I'(n + 1). (Capture is understood in the sense of Definition 3.2).

This theorem is proved along the same lines as Theorem 3.2 using Lemma 4.2.
Theorem 4.4. Suppose that Assumptions 3.1 and 3.3 hold and that r > 1, 65 > 0, ma}((pj, v) >0
Je
Sfor all v € coVs. Then, a capture occurs in the game I'(n + 1).

This theorem is proved along the same lines as Theorem 4.2.
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H. H. Ilempos, E. C. ®omuna

3agaya mpocTOro rpynmnoBoro mpecjaeI0BaHus ¢ BO3MOKHBIM HapylleHHeM B THHAMUKe U (Pa30BLIMU
OrpaHUYeHUSAMHA

Kniouesvie cnosa: mupdepeHnuanpHas urpa, mpecieaoBareib, yoerarommii, ouMKa, Gpa3oBbsle orpaHnye-
HUSI, TTOJIOMKA.

YIK 517.977
DOI: 10.35634/vm250105

B xoHEYHOMEpPHOM €BKJIMIOBOM MPOCTPAHCTBE pacCcMaTpUBaeTCs 3ajada MpeciieloBaHus IPpymIoil npecie-
JIOBaTeJIe OHOTO yOeraroIero, OmuchIBaeMasi CHCTEMOH BHa

Zi=ai(t)u; —v, w €U, vevV,

rae GyHkuud a;(t) paBHbI | TIpH Beex ¢, 3a UCKIIFOYCHHEM HEKOTOPOTO OTpe3Ka 3a[JaHHOM JUTHHBI, Ha KO-
TOPOM OHHU PaBHBI HYJIO (A1 KOKIOTrO MpeclefoBaTeNs CBOM OTPEe30K). DTOT (akT MOXKHO TPaKTOBAThH
TakK, 4TO Y KaXIOTo W3 IpeciefoBareseil BOSMOKEH OTKa3 B padoTe yNpaBIAIONIETO YCTPOCTBa B 000
3apaHee HEW3BECTHBII MOMEHT BPEMEHH, a JJIHMHA IMPOMEKYTKa BPEMEHH, HEOOXOIUMOro Ha yCTpaHEHHUE
MIOJIOMKH, 3a/laHa, MIPH 3TOM B MPOIIECCE YCTPAHEHUS TOJOMKH IIPECIIeOBaTeNIn He NMEIOT BO3MOXXHOCTH
OCYILIECTBIATE MOUMKY. LleneBble MHOXKECTBa — BBITYKJIbIE KOMIAKTHI, yOETaloid He TOKUIAET HpeIelibl
BBIITYKJIOTO MHOTOTPaHHOTO MHO)KeCTBa. [10yd4eHb! TocTaTouHbIe yCIOBHS Pa3pelInMOCTH 3aJa4dH Mpeciie-
JIOBaHUS.

®unancupoBanue. Pabora BrImonHEeHa Npy mojaepkke MUHHCTEpPCTBA HAayKH M BBICHIETO OOpa30BaHMUS
P® B pamxkax rocynapcTBeHHOro 3aganus, npoekt FEWS-2024-0009.
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