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Introduction

Nature is full of uncertainties. Both living and non-living things in this universe are somehow

connected with uncertainties. Prior to 1965, probability theory was the only mathematical tool

to deal with uncertainties. But it was Zadeh [1], who had the courage to introduce the concept

of fuzzy sets. Fuzzy set theory distinguishes grey zones from black and white reality of nature.

Fuzzy set is a mapping from a universe X to [0, 1]. It is an extended form of classical set

theory. The primary kind of mathematical structures are algebraic structure, ordered structure and

topological structure. Theory of fuzzy topological space was introduced by Chang [2] in 1968.

Later in 1976, Lowen [3] redefined it in a new way.

A prevalent carrier of topological structure and ordered structure is fuzzy topology. Aug-

mented an algebraic structure with this, fuzzy groups in 1971 and fuzzy topological groups

in 1979 were formulated by Rosenfeld [4] and Foster [5] respectively. In 1997, Liu and Luo [6]

elucidated quasi-coincidence relation which ascertains quasi-coincident neighbourhood systems.

With this neighbourhood system, fuzzy topology is a generalization of topology but it has its

own notable peculiarity. Liang and Hai [7] redefined fuzzy topological group in terms of quasi

neighbourhoods, which yields topological group as a particular case of fuzzy topological group.

An imperative field of analysis and topology is uniform structures because it indulges an

apportion ambience to ligament metrics with topological structures. Hutton [8] expounded fuzzy

uniform spaces, quasi fuzzy uniformity and interpreted that every fuzzy topological space is quasi-

uniformizable. Lowen [9] dispensed the conception of fuzzy uniform space and Katsaras [10]

proved that every uniformity on a set resembles a fuzzy uniformity. Moreover, various approxi-

mations are mandatory to mathematically model any real life situation. One of the approximation

tools of general topology is nano topology [11]. A nano topological space is defined in terms of

lower and upper approximations with respect to a relation on a subset X of a universe µ.

In this work, we define fuzzy paratopological group, fuzzy semitopological group, fuzzy qua-

sitopological group and discuss their properties. We prove that each regular fuzzy paratopological

group is completely regular by using fuzzy uniformity structure. At the end, we model a decision

making during robot crash using the concept of nano topology and fuzzy topological group.
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§ 1. Preliminaries

Throughout this paper, the symbol a−1 (respectively, A and A◦) denotes inverse of a (respec-

tively, closure of A and interior of A). Let K be a set, I = [0, 1] be the unit interval and IK be the

set of all functions from K to I. A fuzzy set on K is an element of IK with membership function ρ
and a fuzzy topology [12] T on K is a subset of IK satisfying (i) ∅, K ∈ T, (ii) A ∩ B ∈ T,

whenever A,B ∈ T and (iii) ∪Aα ∈ T, whenever Aα ∈ T. Fuzzy topological space is a set K

together with a fuzzy topology T. Every member of T is called T-open fuzzy set and complement

of each member of T is T-closed fuzzy set. A fuzzy set in K is a fuzzy point [12] if and only if

it takes the value 0 for all m ∈ K except one, say, k ∈ K. If its value at k is t, then it is denoted

by kt, where the point k is called its support. The fuzzy point kt is contained in S [12] if and only

if t ≤ S(k). A fuzzy point kt (fuzzy set M respectively) is quasi-coincident with S [12] if and

only if t+S(k) > 1 (there exists k ∈ K such that S(k)+M(k) > 1 respectively) and it is denoted

by ktqS (MqS respectively). A fuzzy set S is Q-open neighbourhood of kt [12] if and only if there

exists M ∈ T such that ktqM and M ⊆ S. A function g : (K,T) 7→ (M,S) is fuzzy continuous [2]

if and only if for every N ∈ S, g−1(N) ∈ T. A fuzzy group [4] in K is a fuzzy set S satisfying

S(ab) ≥ min{S(a), S(b)} for all a, b ∈ K and a fuzzy group S is normal if S(ab) = S(ba) for

every a, b ∈ K. Let K be a group with S,T two fuzzy sets and mt, a fuzzy point in K. We define

ST(k) = sup
k1k2=k

min(S(k1),T(k2)), mtT(k) = sup
mk2=k

min(t,T(k2)), Smt(k) = sup
k1m=k

min(S(k1), t)

and T−1(k) = T(k−1). A fuzzy topological space K is regular [13] if every Q-open set E can

be expressed as union of Q-open sets Fα’s such that Fα ⊆ E for all α. K is completely regu-

lar [13], if for all k ∈ K and a Q-open neighbourhood E of k, there exists a continuous function

φ : K 7→ [0, 1] with φ(k) = 1 and φ(t) = 0 ∀ t /∈ E. A pair (K,T) denotes a group with a fuzzy

topology T. The collection of Q-open neighbourhoods in K is denoted by Q(K). The following

theorem is a preliminary result which is mandatory for sequel.

Theorem 1 (see [14]). Let ζ : (K,T) 7→ (P,S) be a function. Then, the following are equivalent:

(i) ζ is fuzzy continuous,

(ii) for every closed set E in P, ζ−1(E) is closed in K,

(iii) for each member C of a subbase for S, ζ−1(C) is open,

(iv) for any fuzzy set F in K, ζ(F) ⊆ ζ(F),

(v) for any fuzzy set D in P, ζ−1(D) ⊆ ζ−1(D).

Definition 1. Let µ be any non-empty finite set of objects called universe, R be an equivalence

relation on µ. Then, the pair (µ,R) is said to be the approximation space. Let X ⊆ µ.

(i) The lower approximation of X [15] with respect to R is the set of all objects, whose

equivalence class lies in X and it is denoted by LR(X) =
⋃

a∈µ

{R(a) | R(a) ⊆ X}, where

R(a) denotes the equivalence class determined by a,

(ii) The upper approximation of X [15] with respect to R is the set of all objects, whose

equivalence class intersects X with respect to R and it is denoted by

UR(X) =
⋃

a∈µ

{R(a) | R(a) ∩X 6= ∅},

(iii) The boundary region of X [15] with respect to R is the set difference of upper approxima-

tion with lower approximation and it is denoted by BR(X) = UR(X)− LR(X),
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(iv) The nano topology of X [11] is given by τR(X) = {∅,LR(X),UR(X),BR(X), µ} with

basis, βR(X) = {LR(X),BR(X), µ}.

Definition 2 (see [16]). Let µ be a universe, A be a non-empty finite set of attributes. Va is the

attribute value set of an attribute a ∈ A and fa : µ 7→ Va is called attribute function. For any

subset B of A, there is a binary relation on µ corresponding to B given by

R(B) = {(x, y) ∈ µ× µ | fa(x) = fa(y) or fa(x) = ∗ or fa(y) = ∗ for any a ∈ B}.

Then, R(B) is a tolerance relation on µ (reflexive and symmetric). SB(x) is the maximal set of

objects which are possibly indiscernible with x by the tolerance relation on µ denoted by

SB(x) = {y ∈ µ | (x, y) ∈ R(B)},

where x ∈ µ.

§ 2. Fuzzy paratopological group and related structures

In this section, we define generalized structures of fuzzy topological group and discuss their

properties with illustrative examples.

Definition 3. The pair (K,T) is a fuzzy paratopological group (fuzzy semitopological group

respectively) if (1) ∀m,n ∈ K and D ∈ Q(K) of fuzzy point (mn)k, ∃Q-open neighbour-

hoods E, F ∈ Q(K) of mk and nk such that EF ⊆ D (mkF ⊆ D,Enk ⊆ D respectively).

A fuzzy topological group (fuzzy quasitopological group respectively) is a fuzzy paratopolog-

ical group (fuzzy semitopological group respectively) with the proviso (2) ∀ t ∈ K and P ∈ Q(K)
of fuzzy point t−1

k , ∃ S ∈ Q(K) of tk such that S−1 ⊆ P.

Example 1. Consider the symmetric group S3. Define fuzzy sets on S3 by

A = {(e, 0), ((123), 0), ((132), 0), ((12), 0), ((13), 0), ((23), 0)},

B = {(e, 1), ((123), 1), ((132), 1), ((12), 1), ((13), 1), ((23), 1)},

C = {(e, 1), ((123), 1), ((132), 1), ((12), 0), ((13), 0), ((23), 0)},

D = {(e, 0), ((123), 1), ((132), 1), ((12), 0), ((13), 0), ((23), 0)},

and we get fuzzy topologies T1 = {A,B}, T2 = {A,B,C}, T3 = {A,B,C,D}. Now, the

tuples (S3,T1), (S3,T2) are all fuzzy topological groups since the possible choice of Q-open

neighbourhoods are B,C and the neighbourhood itself satisfies conditions (1), (2) in Definition 3.

(S3,T3) is not a fuzzy semitopological group (fuzzy quasitopological group respectively), if we

consider D as Q-open neighbourhood of ((123), 1), ((132), 1), it is not possible to find a Q-open

neighbourhood satisfying condition (1) in Definition 3.

Proposition 1. Let (K,T) be a fuzzy topological space. Then, condition (1) of Definition 3 holds

if and only if the map p : (K,T)× (K,T) 7→ (K,T) defined by (m,n) 7→ mn is fuzzy continuous.

P r o o f. Suppose condition (1) holds, then ∀D ∈ Q(K) of (mn)k ∃E, F ∈ Q(K) of mk and nk

such that EF ⊆ D. For a fuzzy point (m,n)k ∈ (K,T)× (K,T),

ρ(E,F)(m,n) + k = min(ρE(m), ρF(n)) + k = min(ρE(m) + k, ρF(n) + k) > 1,

we have (m,n)kq(E, F) in (K,T)× (K,T). Hence, (E, F) is a Q-open neighbourhood of (m,n)k.
But, p(E, F) = EF ⊆ D and so, p is fuzzy continuous at the fuzzy point (m,n)k. Since (m,n)k is

arbitrary, thus p is fuzzy continuous.
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Conversely, suppose p is fuzzy continuous. Then, p is fuzzy continuous at any fuzzy point

(m,n)k. So, ∀D ∈ Q(K) of (mn)k ∃ a Q-open neighbourhood G(m,n)k such that p[G(m,n)k ] ⊆ D.

Then, there must be E, F ∈ Q(K) such that (E, F) ⊆ G(m,n)k and (m,n)kq(E, F). Moreover, mkqE
and nkqF. Thus, ∃E, F ∈ Q(K) of mk and nk such that EF = p(E, F) ⊆ p(G(mn)k) ⊆ D. Hence,

condition (1) holds. �

Proposition 2. In a fuzzy topological space (K,T), condition (2) of Definition 3 holds if and only

if the map i : (K,T) 7→ (K,T) by m 7→ m−1 is fuzzy continuous.

P r o o f. Suppose condition (2) holds, then ∀P ∈ Q(K) of t−1
k , ∃ S ∈ Q(K) of tk such that

S−1 ⊆ P. For a fuzzy point tk ∈ (K,T), ρ(S)(tk) + k > 1. So, we have tkqS in (K,T). Hence,

S ∈ Q(K) of tk and i(S) = S−1 ⊆ P. Thus, i is fuzzy continuous at tk. Since tk is arbitrary, thus

i is fuzzy continuous. Conversely, suppose i is fuzzy continuous. Then, i is continuous at any

fuzzy point tk. So, ∀P ∈ Q(K) of t−1
k ∃ S ∈ Q(K) of tk such that i(S) ⊆ P. Hence, condition (2)

holds. �

Proposition 3. Let (K,T) be a fuzzy topological space. Then, conditions (1) and (2) of Defi-

nition 3 hold if and only if ∀D ∈ Q(K) of (mn−1)k, ∃E, F ∈ Q(K) of mk and nk such that

EF
−1 ⊆ D.

P r o o f. Suppose conditions (1) and (2) hold, then by condition (1) we have, ∀m,n ∈ K,

D ∈ Q(K) of (mn−1)k, ∃E, F ∈ Q(K) of mk and n−1
k such that EF ⊆ D. By condition (2),

∃C ∈ Q(K) of nk such that C−1 ⊆ F, whence EC
−1 ⊆ EF ⊆ D.

Conversely, suppose ∀O ∈ Q(K) of (mn−1)k ∃M,N ∈ Q(K) of mk and nk such that

MN
−1 ⊆ O. Since M is quasi-open neighbourhood of mk, we have mkqM and so, ρM(m)+k > 1.

Thus, ρM(m) > 1 − k = k′. Now, assume k = ρM(m),A = N ∩ k
∗
, where k

∗
is the con-

stant fuzzy set with membership ρ(a) = k for every a ∈ K. Then, A ∈ Q(K) with nkqA and

MA−1 ⊆ MN−1 ⊆ O. Since ρm
k A−1

(t) = sup
t1t2=t

min(ρm
k
(t1), ρA−1(t2)) = min(k, ρA−1(t)) =

= ρA−1(t), it follows that mkA
−1 ⊆ MA−1 ⊆ O. Therefore, condition (2) of Definition 3 holds.

Next, ∀D ∈ Q(K) of (mn)k = (m(n−1)−1)k, by assumption, ∃E, F ∈ Q(K) of mk and n−1
k

such that EF
−1 ⊆ D. Using condition (2), ∃C ∈ Q(K) of nk such that C−1 ⊆ F. Thus,

EC = E(C−1)−1 ⊆ EF
−1 ⊆ D. Hence, condition (1) holds. �

Proposition 4. Let (K,T) be a fuzzy semitopological group (fuzzy quasitopological group), then

the mappings l : m 7→ nm, r : m 7→ mn (i : m 7→ m−1) are homeomorphisms of (K,T) onto

itself, where m,n ∈ K.

P r o o f. Since (K,T) is a fuzzy semitopological group, thus ∀D ∈ Q(K) of (l(m))k = (nm)k
∃ F ∈ Q(K) of mk such that nkF ⊆ D. Assume Fk = F ∩ k∗. Then, mkqFk and nkFk ⊆ D. Since

ρl(F
k
)(t) = sup

s∈l−1(t)

ρF
k
(s) = ρF

k
(n−1t), it follows that

ρnkFk
(t) = sup

t1t2=t

min(ρF
k
(t2), k) ≥ min(ρF

k
(n−1t), k) = ρF

k
(n−1t).

Hence, l(Fk) ⊆ nkFk ⊆ D. So, l is continuous at mk. Since mk is arbitrary, thus l is continuous.

We can define l−1 : nm 7→ m as left translation of nm by n−1. Since each left translation

is continuous, we have l−1 is continuous. Thus, l is a fuzzy homeomorphism. Similarly, we

can prove that r is a fuzzy homeomorphism. By proposition 2, i is fuzzy continuous. Since

i−1(m) = i(m−1), thus i−1 is fuzzy continuous. Hence, i is a fuzzy homeomorphism. �

Corollary 1. Let (K,T) be a fuzzy quasitopological group. If D is open (closed respectively) in T,

then CD,DC,D−1 (k D, kD,D−1 respectively) are all open (closed respectively) sets in T, where

k ∈ K and C is a nonfuzzy subset of K.
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Lemma 1. Let (K,T) be a fuzzy paratopological group and E, F be fuzzy subsets of K. Then,

(i) tEt−1 = tEt−1, where t ∈ K,

(ii) if E× F ⊆ E× F, then E F ⊆ EF.

P r o o f.

(i) By Corollary 1, tEt−1 is a closed set. Since tEt−1 is the smallest closed set containing

tEt−1, so tEt−1 ⊆ tEt−1. Define φ : (K,T) 7→ (K,T) by φ(k) = tkt−1. By Proposition 4,

φ is a fuzzy homeomorphism. Again, by Theorem 1, φ(E) ⊆ φE. Thus, tEt−1 ⊆ tEt−1.

(ii) By Proposition 1, the map g : (K,T)× (K,T) 7→ (K,T) by g(m,n) = mn is fuzzy continu-

ous. Given that E×F ⊆ E× F, and so g(E×F) ⊆ g(E× F). Since g is fuzzy continuous, by

Theorem 1 we have, g(E× F) ⊆ g(E× F). Thus, E F ⊆ EF. This completes the proof. �

Theorem 2. Suppose (K,T) is a fuzzy paratopological group and M a fuzzy (normal respectively)

subgroup of K with M×M ⊆ M×M. Then, M is a fuzzy (normal respectively) subgroup.

P r o o f. Let M be a fuzzy subgroup and s ∈ K. Then,

M(t) = M(ss−1t) ≥ min(M(s),M(s−1t)).

Thus, M(t) ≥ sup
t=mn

min(M(m),M(n)). Hence, MM(t) ≤ M(t) ∀ t ∈ K, i. e., MM ⊆ M. Thus,

MM ⊆ M. By Lemma 1, MM ⊆ MM. Hence, MM ⊆ MM ⊆ M, i. e., M(mn) ≥ (MM)(mn) =
= sup

mn=ts

min(M(t),M(s)) ≥ min(M(m),M(n)). Since M is a fuzzy subgroup, thus M(a) =

= M(a−1) = M−1(a), for every a ∈ K. Hence, M = M−1. Now, M−1(a) =

(

⋂

M−1⊆Ei

Ei

)

(a) =

= lim inf
M−1⊆Ei

(a) = lim inf
M⊆E

−1

i

(a−1) = M(a−1) = (M)−1(a). Thus, M(a) = (M)−1(a) = M(a−1). Hence,

M is a fuzzy subgroup of K.

Now, let R be a fuzzy normal subgroup. Then, R(mn) = R(nm) ∀m,n ∈ K. Hence,

tRt−1(s) = min(tR(st), t−1(t−1)) = tR(st) = min(t(t),R(t−1st)) = R(t−1st) = R(stt−1) =
= R(s) ∀ s, t ∈ K. So, tRt−1 = R. Thus, tRt−1 = R ∀ t ∈ K. By Lemma 1, tRt−1 = tRt−1.

Hence, R = tRt−1 ∀ t ∈ K. Thus, R(ts) = tRt−1(ts) = min(t(t),Rt−1(t−1ts)) = Rt−1(s) =
= min(R(st), t−1(t−1)) = R(st) ∀ s, t ∈ K. Hence, R is a fuzzy normal subgroup in K. �

Theorem 3. Let (K,T) be a fuzzy paratopological group, S = {E} be a Q-open neighbourhood

base of ek and Sk = {Ek = E ∩ k∗ | E ∈ S, k = sup
E∈S

ρE(e)}, where k
∗

is the constant fuzzy set

with fuzzy value k. Then,

(i) {tkEt} is a Q-open neighbourhood base of tk,

(ii) if Ek, Fk ∈ Sk, then ∃Dk ∈ Sk such that Dk ⊆ Ek ∩ Fk,

(iii) if Ek ∈ Sk, then ∃ Fk ∈ Sk such that FkFk ⊆ Ek,

(iv) for any Ek ∈ Sk and t ∈ K, ∃ Fk ∈ Sk such that t−1

k
Fktk ⊆ Ek,

(v) for any Ek ∈ Sk, if tfqEk, then ∃ Ff ∈ Sf such that EkFf ⊆ Ek,

(vi) moreover, if (K,T) is fuzzy quasitopological group with Ek ∈ Sk, then ∃ Fk ∈ Sk such that

F
−1

k
⊆ Ek.
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P r o o f.

(i) From ρt
k
E
k
(t) + k = min(k | Ek(e)) + k > 1, we have tkqtkEk. Since (K,T) is a fuzzy

paratopological group, ∀ Ek ∈ Q(K) of ek = (t−1

k
tk) ∃ C,D ∈ Q(K) of t−1

k and tk such

that CD ⊆ Ek. Suppose Ck = C ∩ k∗,Dk = D ∩ k∗, then Ck,Dk ∈ Q(K) of t−1
k and tk

respectively. Let ρC
k
(t−1) = r, then 1− k < r ≤ k. From t−1

r Dk ⊆ CkDk ⊆ CD ⊆ Ek, we

have tkt
−1
r Dk ⊆ tkEk and so erDk ⊆ tkEk. Let Dr = D∩ r∗, where r∗ is the constant fuzzy

set with fuzzy value r. Then, Dr = erDr ⊆ ekDk ⊆ tkEk. Thus, Dk ∈ Q(K) of tk. Then, we

have tkEk ∈ Q(K) of tk and {tkEk} is a family of Q(K) of tk. Since (te)k = tk, ∀E ∈ Q(K)

of tk ∃C ∈ Q(K) of tk and Dk ∈ Sk of ek such that CDk ⊆ E. Let Ck = C∩ k∗, ρC
k
(t) = k̂

and Dk̂ = D∩ k̂∗. It is obvious that Dk̂ ∈ Q(K) of ek and CkDk̂ ⊆ CkDk ⊆ CDk ⊆ E. From

ρt
k
D

k̂
(s) = min(k, ρD

k̂
(t−1s)) = ρD

k̂
(t−1s) = sup

s1s2=s

min(ρC
k
(s1), ρD

k̂
(s2))

≥ min(k̂, ρD
k̂
(t−1s)) = ρD

k̂
(t−1s),

it follows that tkDk̂ ⊆ CkDk̂ ⊆ E. Moreover, Dk̂ ∈ Q(K) of ek and there must be a

Gk ∈ Sk such that Gk ⊆ Dk̂ thus tkGk ⊆ tkDk̂ ⊆ E which shows that {tkEk} ∈ Q(K) base

of tk. Now, assume mcqtkEk. From ρt
k
E
k
(m) = min(k, ρE

k
(t−1m)) = ρE

k
(t−1m) > 1 − c,

we have that Ek ∈ Q(K) of (t−1m)c. Then, ∃Q-neighbourhood Ec ∈ Sc of ec such that

(t−1m)cEc ⊆ Ek, so that tkt
−1
c mcEc ⊆ tkEk. If k ≥ c, then mcEc ⊆ tkEk. If k < c, then

from tc(t
−1m)cEc ⊆ tcEk we obtain mcEc ⊆ tcEk = tkEk. Since mcEc ∈ Q(K) of mc, it

follows that tkEk ∈ Q(K) of mc. Hence, tkEk ∈ Q(K).

(ii) Let Ek, Fk ∈ Sk. Since Sk is a Q(K) base of ek, so ρE
k
∩F

k
(e) + k = min(ρE

k
(e), ρF

k
(e)) +

+ k > 1. Hence, Ek ∩ Fk ∈ Q(K) of ek and so, ∃ Dk ∈ Sk such that Dk ⊆ Ek ∩ Fk.

(iii) Let Ek ∈ Sk. Using the fact (ee)k = ek and by fuzzy continuity of multiplica-

tion, ∃Dk, Fk ∈ Q(K) of ek such that DkFk ⊆ Ek. Assume Ck = Dk ∩ Fk, then

CkCk ⊆ DkFk ⊆ Ek.

(iv) From (t−1t)k = ek, ∀ Ek ∈ Sk ∃ C,D ∈ Q(K) of t−1
k and tk respectively such that CD ⊆ Ek.

We may suppose that C = t−1
k
Fk, where Fk ∈ Sk. By (i), we have {Ektk | Ek ∈ Sk} is

a Q(K) base of tk. We may suppose that D = Gktk, where Gk ∈ Sk. Then, we have

ekqFkGk. Let min(ρF
k
(e), ρG

k
(e)) = k̂, Ck̂ = Gk ∩ k̂. Then, ek̂ ⊆ Fk and ek̂Ck̂ ⊆ FkGk.

But, ek̂Ck̂ = Ck̂ ∈ Q(K) of ek so that FkGk ∈ Q(K) of ek, therefore ∃ Ck ∈ Sk such that

Ck ⊆ FkGk. Consequently, t−1

k
Cktk ⊆ t−1

k
FkGktk = CD ⊆ Ek.

(v) Let Ek ∈ Sk. Since {tfEf} ∈ Q(K) base of tf , then we have tfqEk. So tfFf ⊆ Ek, where

Ff ∈ Sf .

(vi) The result holds due to fuzzy continuity of inversion. �

§ 3. Fuzzy uniformities

In this section, we characterize regular fuzzy paratopological groups by using fuzzy uniform

structures.

Definition 4. [9] A fuzzy uniformity on K is a non-empty subset M ⊆ IK×K which satisfies:

(i) m ∩ n ∈ M; where m,n ∈ M,

(ii) ∀ family (mǫ)ǫ∈[0,1) of elements of M, sup
ǫ∈[0,1)

(mǫ − ǫ) ∈ M,
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(iii) for each m ∈ M, ǫ > 0, ∃n ∈ M with n ◦ n ≤ m + ǫ (where m ◦ n is defined by

(m ◦ n)(a, b) = sup
c∈K

{m(a, c) ∩ n(c, b)}),

(iv) if m ∈ M, then m−1 ∈ M.

The pair (K,M) is called a fuzzy uniform space and members of M are called fuzzy entourages.

M is said to be fuzzy quasi uniformity if conditions (i)–(iii) of the above definition hold.

Given two fuzzy entourages M,N ∈ K×K. Let MN = {(a, c) ∈ K×K | ∃b ∈ K ∋ (a, b) ∈ M

and (b, c ∈ N) be the composition and M−1 = {(b, a) | (a, b) ∈ M} be the inverse fuzzy entourage

to M. For a point k ∈ K, the set B(k,M) = {n ∈ K | (k, n) ∈ M} is called the M-ball centered

at k and for a subset N ⊆ K, the set B(N,M) =
⋃

n∈N

B(n,M) is the M-neighbourhood of N.

A quasi uniformity M on K is normal if N ⊆ B
◦
(N,M) for any subset N ⊆ K and any fuzzy

entourage M ∈ M. A subfamily B ⊆ M is called a base of fuzzy quasi uniformity M if each

fuzzy entourage M ∈ M contains some fuzzy entourage N ∈ B.

In any fuzzy paratopological group K, we can define two trivial fuzzy quasi uniformities:

1. Left fuzzy quasi uniformity L generated by the base

{(m,n) ∈ K× K | n ∈ mM and M ∈ Se},

2. Right fuzzy quasi uniformity R generated by the base

{(m,n) ∈ K× K | n ∈ Mm and M ∈ Se}.

Proposition 5. In a fuzzy paratopological group K, the fuzzy quasi uniformities L and R are

normal.

P r o o f. Let N ⊆ K and M ∈ Se. We claim that N ⊆ B
◦
(N,LM), where LM = {(m,n) ∈ K×K |

n ∈ mM}. By the fuzzy continuity of right translation in K, we have NM ⊆ NM = B(N,LM).
Since the left translation is fuzzy continuous, the set NM is open in K and is contained in interior

of B(N,LM). Thus, N ⊆ NM ⊆ B
◦
(N,LM) and hence, left fuzzy quasi uniformity is normal.

Similarly, we can prove that right fuzzy quasi uniformity is normal. �

Theorem 4. Each regular fuzzy paratopological group is completely regular.

P r o o f. Let LM = {(m,n) ∈ K×K | n ∈ mM} ∈ L and RM = {(m,n) ∈ K×K | n ∈ Mm} ∈
∈ R be the fuzzy entourages determined by M. Define a sequence of fuzzy entourage (LMn

) ∈ LN

such that LM0
⊂ LM and LMn

LMn
⊆ LMn−1

for each n ∈ N. Let us denote the set of binary

fractions in the interval (0, 1) by K =
{

a
2n

| a, n ∈ N, 0 < a < 2n
}

. Each element k ∈ K can

be expressed uniquely as k =
∑∞

n=1
kn
pn

, where kn ∈ {0, 1}. Since k > 0, we can define

mk = max{n ∈ N | kn 6= 0} and so, k =
∑mk

i=1
ki
2i

. For each fuzzy entourage LM ∈ L, we put

LM1 = LM and LM0 = ∆K, where ∆K is the diagonal of K. For every k ∈ K consider the fuzzy

entourage LMk = L
M

k1
1

. . .L
M

km
k

m
k

∈ B which determines the closed neighbourhood B(N,LMk)

of N. Let k, l ∈ K with l < k and (kn) , (Ln) be the binary sequences of k, l respectively. By the

fact, l < k, there exists m ∈ N such that 0 = Lm < km = 1 and Li = ki, for all i < m. It follows
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that ml 6= m ≤ mk. If ml < m, then by the normality of L, we have

B(N,LMl) = B(N,L
M

L1
1

. . .L
M

Lm
l

m
l

)

= B(N,L
M

k1
1

. . .L
M

km
l

kl

)

⊆ B(N,L
M

k1
1

. . .L
M

km−1

m−1

)

⊆ B
◦
(N,L

M
k1
1

. . .L
M

km−1

m−1

L
M

km
m
)

⊆ B
◦
(N,L

M
k1
1

. . .L
M

kmk
mk

)

= B
◦
(N,LMk).

If m < ml, then the inclusion LMn
LMn

⊆ LMn−1
for m < n ≤ ml, guarantees that

LMm+1
. . .LMm

l
LMm

l
+1

⊆ LMm
and then

B(N,LMl) = B(N,L
M

L1
1

. . .L
M

Lm
l

ml

)

⊆ B
◦
(N,L

M
L1
1

. . .L
M

Lml
ml

LMml+1
)

= B
◦
(N,L

M
L1
1

. . .L
M

Lm−1

m−1

LM0
m
L
M

Lm+1

m+1

. . .L
M

Lm
l

m
l

LMm
l
+1)

⊆ B
◦
(N,L

M
L1
1

. . .L
M

Lm−1

m−1

LMm
)

= B
◦
(N,L

M
k1
1

. . .L
M

km−1

m−1

L
M

km
m

)

⊆ B
◦
(N,L

M
k1
1

. . .L
M

km
k

m
k

)

= B
◦
(N,LMk).

So, B(N,LMl) ⊆ B
◦
(N,LMk). Now, define the function ψL : K 7→ [0, 1] by ψL(a) = inf({1} ∪

∪ {l ∈ K | a ∈ B(N,LMl)}) for a ∈ K. Now, N ⊂ ψ−1
L
(0) and ψ−1

L
([0, 1)) ⊂

⋃

l∈K

B(N,LMl) =

=
⋃

k∈K

B
◦
(N,LMk) ⊂ B

◦
(N,LM0

) ⊂ B
◦
(N,LM). Let α ∈ (0, 1), then by the equalities

ψ−1
L
([0, α)) =

⋃

l∈K : l<α

B◦(N,LMl) and ψ−1
L
((α, 1]) =

⋃

α<k∈K

K \ B(N,LMk), the sets ψ−1
L
([0, α))

and ψ−1
L
((α, 1]) are open and so, the map ψL is continuous. Similarly, by using right fuzzy

quasi uniformity R we obtain a continuous function ψR such that N ⊆ ψ−1
L
(0) ⊆ ψ−1

L
([0, 1)) ⊆

⊆ B
◦
(N,LM) = NM

◦
and N ⊆ ψ−1

R
(0) ⊆ ψ−1

R
([0, 1)) ⊆ B

◦
(N,RM) = MN

◦
. Now, define

ψ = ψL.ψR which is continuous with N ⊆ ψ−1(0) ⊆ ψ−1([0, 1)) ⊆ MN
◦
∩ NM

◦
. Hence, K is

completely regular. �

§ 4. Robot crash and decision making

In this section, we model a robotic crash using nano topology and fuzzy topological group.

Let K be the group of actions performed by a robot via its various parts r1, r2, . . . , rn and ρ(x) be

the membership function of getting struck due to performing the action x. Here, the membership

function relays on two factors; the action x and the robotic part ri performing it. The membership

value increases as the count of ri which causes robot stuck due to performing x increases. The

membership values play a vital role in the proposed model in which equivalence classes of

considering robots will be based on it. Now, let T be the fuzzy topology generated by the fuzzy

sets Ai, where each Ai assumes non-zero values only for actions carried out by ri and assumes

0 for actions of rj , i 6= j. Then, (K,T) is fuzzy paratopological group, fuzzy quasitopological
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group and fuzzy semitopological group. Thus, (K,T) holds for all the results discussed in the

above sections and we model robotic crash using this (K,T). Here, we model a situation where

a robot crashed while performing a task and the reason of this crash is yet not found. In this

situation, we are to find the particular part to check, if we know the possibility of robot crash due

to its each part. The algorithm of this model is given below.

Algorithm:

Step 1: Given a finite universe µ, a finite set A of attributes that is divided into two classes,

S of condition attributes and D of decision attributes, an equivalence relation R on µ
corresponding to S and a subset X of µ, represents the data as table, columns of which

are labeled by attributes and rows by elements of µ. The entries of the table are attribute

values. We denote the set of equivalence classes under the equivalence relation R as RS.

Step 2: Find the lower approximation LS(X), the upper approximationUS(X), and the boundary

region BS(X) of X with respect to RS.

Step 3: Generate the nano topology τS(X) on µ and its basis βS(X) corresponding to the conditional

attribute set S.

Step 4: Remove an attribute a from S and find the lower approximation, the upper approximation

and the boundary region of X with respect to the equivalence relation on S \ {a}.

Step 5: Generate the nano topology τS\{a}(X) on µ and its basis βS\{a}(X).

Step 6: Repeat steps 3 and 4 for all attributes in S.

Step 7: Now, the core is the collection of those attributes in S for which βS\{a}(X) 6= βS(X).

Thus, by using the above algorithm, we may remove some conditional attributes and obtain the

core attributes for further decision making related to robot crash. The pseudocode of the above

algorithm is given below.

Algorithm 1 Pseudocode of the algorithm

Require: A finite universe µ, a set of condition attributes S, a set of decision attributes D, an

equivalence relation R on µ corresponding to S, a subset X of S, the set of equivalence classes

under the equivalence relation R as RS

Calculate: Lower approximation LS(X), upper approximation US(X) and the boundary

region BS(X) of X with respect to RS

Generate: The nano topology of X given by τS(X) = {∅, LS(X), US(X), BS(X), µ}
with basis βS(X) = {LS(X), BS(X), µ}
for all a ∈ S do

generate the nano topology τS\{a}(X) with basis βS\{a}(X)
if βS(X) = βS\{a}(X) then

reject a
else

if βS(X) 6= βS\{a}(X) then

accept ‘a’ as an element of “core"

end if

end if

end for
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Example 2. Let µ = {R1, R2, . . . , R7} be the collection of robots and S be the set of condition

attributes that robot crashed due to its five parts viz. manipulator, endeffector, locomotive device,

controller and the sensors, together with decision attribute ‘s’ that the robot crashed or not.

Robots Manipulator Endeffector Locomotive device Controller Sensors s
R1 0.2 0.1 0.2 0.1 0.1 Yes

R2 0.1 0.1 0.2 0.2 0.2 No

R3 0.2 0.2 0.2 0.1 0.1 No

R4 0.1 0.3 0.2 0.2 0.1 Yes

R5 0.2 0.1 0.2 0.1 0.1 Yes

R6 0.2 0.4 0.1 0.3 0.1 Yes

R7 0.1 0.3 0.1 0.2 0.2 No

Case 1: Let X = {R1, R4, R5, R6} be the set of robots which crashed. Then, the set of

equivalence classes under the relation coincidence is given by RS = {{R1, R5}, {R2}, {R3},

{R4}, {R6}, {R7}}. Now, the upper approximation, the lower approximation, the boundary re-

gion and the basis of nano topology are US(X) = {R1, R4, R5, R6} = LS(X), BS(X) = ∅ and

βS(X) = {∅, {R1, R4, R5, R6}, µ} respectively.

Step 1:

Removing

attribute a
RS\{a} US\{a}(X) LS\{a}(X) BS\{a}(X) βS\{a}(X)

endeffector

{{R1, R3, R5},

{R2}, {R4},

{R6}, {R7}}
{R1, R3, R4, R5, R6} {R4, R6} {R1, R3, R5}

{{R4, R6},

{R1, R3, R5},

µ}
manipulator

{{R1, R5},

{R2}, {R3},

{R4}, {R6}, {R7}}
{R1, R4, R5, R6} {R1, R4, R5, R6} ∅

{{R1, R4, R5, R6},

∅, µ}
locomotive

device

controller

sensors

Therefore, βS(X) 6= βS\{endeffector}(X) and βS(X) = βS\{a}(X), where a is other than endef-

fector. Thus, the attributes manipulator, locomotive device, controller, and sensors are omitted.

Thus, the only optimal core attribute is endeffector. Hence, endeffector is the core attribute; which

causes the robots crashed.

Case 2: Let X = {R2, R3, R7} be the set of robots which did not crash. Then, the upper

approximation, the lower approximation, the boundary region and the basis of nano topology are

US(X) = {R2, R3, R7} = LS(X), BS(X) = ∅ and βS(X) = {µ, {R2, R3, R7}, ∅} respectively.

Step 1:

Removing

attribute a
RS\{a} US\{a}(X) LS\{a}(X) BS\{a}(X) βS\{a}(X)

endeffector

{{R1, R3, R5},

{R2}, {R4},

{R6}, {R7}}
{R1, R2, R3, R5, R7} {R2, R7} {R1, R3, R5}

{{R2, R7},

{R1, R3, R5},

µ}
manipulator

{{R1, R5},

{R2}, {R3},

{R4}, {R6}, {R7}}
{R2, R3, R7} {R2, R3, R7} ∅

{{R2, R3, R7}, ∅,

µ}
locomotive

device

controller

sensors
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Therefore, βS(X) 6= βS\{endeffector}(X) and βS(X) = βS\{a}(X), where a is other than endef-

fector. Thus, the attributes manipulator, locomotive device, controller, and sensors are omitted

and the only optimal core attribute is endeffector. Hence, endeffector is the core attribute which

keeps the robots being not crashed. In both cases, either a crash is happened or not we have to

monitor endeffectors optimally. Suppose, if the core attributes for both cases varies, say ai for

Case 1 and bi for Case 2, then we have to focus on attributes bi until a crash is happened and we

have to verify the attributes ai if the robots crashed.

§ 5. Robot crash with missing data

In the model of the above section, the core attribute is endeffector in both the cases. Is it

always same for any sort of data? What we have to do if some possibilities are missing? Let the

possibility data as given below.

Robots Manipulator Endeffector Locomotive device Controller Sensors s
R1 0.2 0.1 ∗ 0.1 ∗ Yes

R2 0.1 0.1 ∗ ∗ 0.2 No

R3 ∗ 0.2 0.2 0.1 ∗ No

R4 0.1 ∗ 0.2 ∗ 0.1 Yes

R5 ∗ 0.1 ∗ 0.1 ∗ Yes

R6 0.2 ∗ 0.1 ∗ 0.1 Yes

R7 ∗ ∗ 0.1 0.2 0.2 No

In this type of issue, equivalence classes are reduced into tolerance classes, and by finding the

upper approximation, the lower approximation and the boundary region as in the above model we

have two cases to deal with.

Case 1: Let X = {R1, R4, R5, R6} be the set of robots which crashed. Then, the set of tolerance

classes with respect to the tolerance relation coincidence are given by

RS = {{R1, R5, R6}, {R2, R5}, {R2, R7}, {R3, R4}, {R4, R5}}.

Now, the upper approximation, the lower approximation, the boundary region, and the basis

of nano topology are

US(X) = {R1, R2, R3, R4, R5, R6, R7}, BS(X) = {R2, R3, R7},

LS(X) = {R1, R4, R5, R6}, βS(X) = {{R1, R4, R5, R6}, {R2, R3, R7}, µ}

respectively.

Step 1:

Removing

attribute a
RS\{a} US\{a}(X) LS\{a}(X) BS\{a}(X) βS\{a}(X)

manipulator

{{R1, R2, R5}, {R3, R4},

{R1, R5, R6}, {R2, R7},

{R1, R4, R5}} {R1, R2, R3, R4, R5, R6}
{R1, R4, R5, R6} {R2, R3}

{{R1, R4, R5, R6},

{R2, R3}, µ}

locomotive

device

{{R1, R5, R6}, {R3, R6},

{R3, R4}, {R4, R5}
{R2, R5}, {R2, R7}}

endeffector

{{R1, R5, R6}, {R1, R3, R5}
{R3, R4, R5}, {R2, R3, R5}

{R2, R7}}
{R1, R5, R6} {R2, R3, R4}

{{R2, R3, R4}
{R1, R5, R6}, µ}

controller

{{R1, R5, R6}, {R1, R5, R7}
{R2, R5, R7}, {R3, R4}

{R4, R5}}
{R1, R2, R3, R4, R5, R6, R7}

{R1, R4, R5, R6} {R2, R3, R7}
{{R1, R4, R5, R6}
{R2, R3, R7}, µ}

sensors

{{R1, R5, R6}, {R2, R4, R5}
{R2, R7}, {R6, R7}

{R3, R4}}
{R1, R5, R6} {R2, R3, R4, R7}

{{R1, R5, R6}
{R2, R3, R4, R7}, µ}
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Since βS\{a}(X) = βS(X) for a ∈ {manipulator, locomotive device}, thus the attributes

manipulator and locomotive device are omitted.

Step 2: Let M = {endeffector, controller, sensors}, then

βM(X) = {{R1, R4, R5, R6}, {R2, R3}, µ}.

Removing

attribute a
RM\{a} UM\{a}(X) LM\{a}(X) BM\{a}(X) βM\{x}(X)

endeffector
{{R1, R3, R4, R5, R6}

{R1, R2, R3, R5}, {R2, R7}}
{R1, R2, R3, R4, R5, R6} ∅

{R1, R2, R3, R4, R5, R6}
{∅, {R1, R2, R3, R4, R5, R6},

µ}

sensors

{{R1, R2, R4, R5, R6}
{R2, R4, R6, R7}
{R3, R4, R6}}

{R1, R2, R3, R4, R5, R6, R7}
{R1, R2, R3, R4, R5, R6, R7}

{∅, {R1, R2, R3, R4, R5, R6, R7},
µ}

controller
{{R1, R4, R5, R6}, {R3, R7},

{R1, R2, R5, R7}, {R3, R4, R6}}
{R1, R4, R5, R6} {R2, R3, R7}

{{R1, R4, R5, R6},

{R2, R3, R7}, µ}

Since, βM(X) 6= βM\{a}(X), ∀ a ∈ M , where M = {endeffector, controller, sensors}. Thus,

endeffectors, controllers, sensors are core attributes.

Case 2: Let X = {R2, R3, R7} be the set of robots which did not crash. Then, the upper

approximation, the lower approximation, the boundary region, and the basis of nano topology are

US(X) = {R2, R3, R4, R5, R7}, BS(X) = {R2, R3, R4, R5, R7},

LS(X) = ∅, βS(X) = {∅, {R2, R3, R4, R5, R7}, µ}

respectively.

Step 1:

Removing

attribute a
RS\{a} US\{a}(X) LS\{a}(X) BS\{a}(X) βS\{a}(X)

manipulator

{{R1, R2, R5}, {R3, R4},

{R1, R5, R6}, {R2, R7},

{R1, R4, R5}}
{R1, R2, R3, R4, R5, R7}

{R2, R7}
{R1, R3, R4, R5}

{{R1, R3, R4, R5},

{R2, R7}, µ}

endeffector

{{R1, R5, R6}, {R1, R3, R5}
{R3, R4, R5}, {R2, R3, R5}

{R2, R7}}

locomotive

device

{{R1, R5, R6}, {R3, R6},

{R3, R4}, {R4, R5}
{R2, R5}, {R2, R7}}

{R2, R3, R4, R5, R6, R7}
{R3, R4, R5, R6}

{{R3, R4, R5, R6},

{R2, R7}, µ}

sensors

{{R1, R5, R6}, {R2, R4, R5}
{R2, R7}, {R6, R7}

{R3, R4}}
{R4, R5, R6, R7}

{{R4, R5, R6, R7}
{R2, R7}, µ}

controller

{{R1, R5, R6}, {R1, R5, R7}
{R2, R5, R7}, {R3, R4}

{R4, R5}}
{R1, R2, R3, R4, R5, R7} ∅ {R1, R2, R3, R4, R5, R7}

{∅, {R1, R2, R3, R4, R5, R7},

µ}

Thus, βS(X) 6= βS\{a}(X), ∀ a ∈ S and hence, all conditional attributes are the core attributes.

Hence, we obtain core attributes for further decision making. Thus, it can be seen that ideas of

fuzzy paratopological groups, fuzzy quasitopological groups and fuzzy semitopological groups

along with nano topology can be used as one of the tools in decision making and modelling

regarding robot crash.

Conclusion

We generalized the concept of fuzzy topological group to fuzzy semitopological group, fuzzy

paratopological group and fuzzy quasitopological group in terms of Q-open neighbourhoods and

characterize their properties. We discussed some results related to them and proved that each

regular fuzzy paratopological group is completely regular. As an application of our notions and

results, we provided a situation of robot crash and related decision making. We hope that our

article may find its due importance in future.
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УДК 515.1

DOI: 10.35634/vm230205

В этой статье мы вводим нечеткую паратопологическую группу, нечеткую полутопологическую

группу и нечеткую квазитопологическую группу, приводим примеры и свойства. Эти новые по-

нятия относятся к нечеткой топологической группе. С помощью нечетких однородностей доказано,

что каждая нечеткая регулярная паратопологическая группа полностью регулярна. Помимо этого, мы

доказываем некоторые результаты, связанные с нечеткой полутопологической группой и нечеткой

квазитопологической группой. Кроме того, используя приведенные нами понятия и нанотопологию,

мы представляем приложение в области принятия решений во время аварии робота.

СПИСОК ЛИТЕРАТУРЫ

1. Zadeh L. A. Fuzzy sets // Information and Control. 1965. Vol. 8. Issue 3. P. 338–353.

https://doi.org/10.1016/S0019-9958(65)90241-X

2. Chang C. L. Fuzzy topological spaces // Journal of Mathematical Analysis and Applications. 1968.

Vol. 24. Issue 1. P. 182–190. https://doi.org/10.1016/0022-247X(68)90057-7

3. Lowen R. Fuzzy topological spaces and fuzzy compactness // Journal of Mathematical Analysis and

Applications. 1976. Vol. 56. Issue 3. P. 621–633. https://doi.org/10.1016/0022-247X(76)90029-9

4. Rosenfeld A. Fuzzy groups // Journal of Mathematical Analysis and Applications. 1971. Vol. 35.

Issue 3. P. 512–517. https://doi.org/10.1016/0022-247X(71)90199-5

5. Foster D. H. Fuzzy topological groups // Journal of Mathematical Analysis and Applications. 1979.

Vol. 67. Issue 2. P. 549–564. https://doi.org/10.1016/0022-247X(79)90043-X

6. Liu Ying-Ming, Luo Mao-Kang. Fuzzy topology. Singapore: World Scientific Publishing, 1997.

https://doi.org/10.1142/3281

7. Liang Ma Ji, Hai Yu Chun. Fuzzy topological groups // Fuzzy Sets and Systems. 1984. Vol. 12. Issue 3.

P. 289–299. https://doi.org/10.1016/0165-0114(84)90075-7

8. Hutton B. Uniformities on fuzzy topological spaces // Journal of Mathematical Analysis and Applica-

tions. 1977. Vol. 58. Issue 3. P. 559–571. https://doi.org/10.1016/0022-247X(77)90192-5

9. Lowen R. Fuzzy uniform spaces // Journal of Mathematical Analysis and Applications. 1981. Vol. 82.

Issue 2. P. 370–385. https://doi.org/10.1016/0022-247X(81)90202-X

10. Katsaras A. K. On fuzzy uniform spaces // Journal of Mathematical Analysis and Applications. 1984.

Vol. 101. Issue 1. P. 97–113. https://doi.org/10.1016/0022-247X(84)90060-X

11. Lellis Thivagar M., Richard C. On nano continuity // Journal of Mathematical Theory and Modeling.

2013. Vol. 3. No. 7. P. 32–37. https://iiste.org/Journals/index.php/MTM/article/view/6376/6534

12. Pu Pao-Ming, Liu Ying-Ming. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore–

Smith convergence // Journal of Mathematical Analysis and Applications. 1980. Vol. 76. Issue 2.

P. 571–599. https://doi.org/10.1016/0022-247X(80)90048-7

13. Sinha S. P. Separation axioms in fuzzy topological spaces // Fuzzy Sets and Systems. 1992. Vol. 45.

Issue 2. P. 261–270. https://doi.org/10.1016/0165-0114(92)90127-P

14. Pu Pao-Ming, Liu Ying-Ming. Fuzzy topology. II. Product and quotient spaces // Journal of Mathe-

matical Analysis and Applications. 1980. Vol. 77. Issue 1. P. 20–37.

https://doi.org/10.1016/0022-247X(80)90258-9

15. Kryszkiewiec M. Rules in incomplete information systems // Information Sciences. 1999. Vol. 113.

Issues 3–4. P. 271–292. https://doi.org/10.1016/S0020-0255(98)10065-8

https://doi.org/10.35634/vm230205
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/0022-247X(68)90057-7
https://doi.org/10.1016/0022-247X(76)90029-9
https://doi.org/10.1016/0022-247X(71)90199-5
https://doi.org/10.1016/0022-247X(79)90043-X
https://doi.org/10.1142/3281
https://doi.org/10.1016/0165-0114(84)90075-7
https://doi.org/10.1016/0022-247X(77)90192-5
https://doi.org/10.1016/0022-247X(81)90202-X
https://doi.org/10.1016/0022-247X(84)90060-X
https://iiste.org/Journals/index.php/MTM/article/view/6376/6534
https://doi.org/10.1016/0022-247X(80)90048-7
https://doi.org/10.1016/0165-0114(92)90127-P
https://doi.org/10.1016/0022-247X(80)90258-9
https://doi.org/10.1016/S0020-0255(98)10065-8


274 О нечеткой паратопологической группе

16. Pawlak Z. Rough sets // International Journal of Computer and Information Sciences. 1982. Vol. 11.

Issue 5. P. 341–356. https://doi.org/10.1007/BF01001956

Поступила в редакцию 27.02.2022

Принята к публикации 12.05.2023

Маниш Кумар А., центр исследований и аспирантуры по математике, Колледж Айя Надар Джанаки

Аммаль, 626124, Индия, Тамилнад, Сивакаси.

ORCID: https://orcid.org/0000-0001-7648-0440

E-mail: muneeshkumarar@gmail.com

Гнаначандра П., центр исследований и аспирантуры по математике, Колледж Айя Надар Джанаки

Аммаль, 626124, Индия, Тамилнад, Сивакаси.

ORCID: https://orcid.org/0000-0001-6089-6441

E-mail: pgchandra07@gmail.com

Ачарджи Сантану, кафедра математики, университет Гувахати, 781014, Индия, Ассам, Гувахати.

ORCID: https://orcid.org/0000-0003-4932-3305

E-mail: sacharjee326@gmail.com

Цитирование: А. Маниш Кумар, П. Гнаначандра, С. Ачарджи. О нечеткой паратопологической

группе и принятии решений при аварии робота // Вестник Удмуртского университета. Математика.

Механика. Компьютерные науки. 2023. Т. 33. Вып. 2. С. 259–274.

https://doi.org/10.1007/BF01001956
https://orcid.org/0000-0001-7648-0440
mailto:muneeshkumarar@gmail.com
https://orcid.org/0000-0001-6089-6441
mailto:pgchandra07@gmail.com
https://orcid.org/0000-0003-4932-3305
mailto:sacharjee326@gmail.com

	Preliminaries
	Fuzzy paratopological group and related structures
	Fuzzy uniformities
	Robot crash and decision making
	Robot crash with missing data

