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Introduction

Nature is full of uncertainties. Both living and non-living things in this universe are somehow
connected with uncertainties. Prior to 1965, probability theory was the only mathematical tool
to deal with uncertainties. But it was Zadeh [1], who had the courage to introduce the concept
of fuzzy sets. Fuzzy set theory distinguishes grey zones from black and white reality of nature.
Fuzzy set is a mapping from a universe X to [0,1]. It is an extended form of classical set
theory. The primary kind of mathematical structures are algebraic structure, ordered structure and
topological structure. Theory of fuzzy topological space was introduced by Chang [2] in 1968.
Later in 1976, Lowen [3] redefined it in a new way.

A prevalent carrier of topological structure and ordered structure is fuzzy topology. Aug-
mented an algebraic structure with this, fuzzy groups in 1971 and fuzzy topological groups
in 1979 were formulated by Rosenfeld [4] and Foster [5] respectively. In 1997, Liu and Luo [6]
elucidated quasi-coincidence relation which ascertains quasi-coincident neighbourhood systems.
With this neighbourhood system, fuzzy topology is a generalization of topology but it has its
own notable peculiarity. Liang and Hai [7] redefined fuzzy topological group in terms of quasi
neighbourhoods, which yields topological group as a particular case of fuzzy topological group.

An imperative field of analysis and topology is uniform structures because it indulges an
apportion ambience to ligament metrics with topological structures. Hutton [8] expounded fuzzy
uniform spaces, quasi fuzzy uniformity and interpreted that every fuzzy topological space is quasi-
uniformizable. Lowen [9] dispensed the conception of fuzzy uniform space and Katsaras [10]
proved that every uniformity on a set resembles a fuzzy uniformity. Moreover, various approxi-
mations are mandatory to mathematically model any real life situation. One of the approximation
tools of general topology is nano topology [11]. A nano topological space is defined in terms of
lower and upper approximations with respect to a relation on a subset X of a universe .

In this work, we define fuzzy paratopological group, fuzzy semitopological group, fuzzy qua-
sitopological group and discuss their properties. We prove that each regular fuzzy paratopological
group is completely regular by using fuzzy uniformity structure. At the end, we model a decision
making during robot crash using the concept of nano topology and fuzzy topological group.
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§ 1. Preliminaries

Throughout this paper, the symbol a~! (respectively, A and A°) denotes inverse of a (respec-
tively, closure of A and interior of A). Let K be a set, | = [0, 1] be the unit interval and IX be the
set of all functions from K to I. A fuzzy set on K is an element of IX with membership function p
and a fuzzy topology [12] T on K is a subset of I¥ satisfying (i) 0, K € T, (i) ANB € %,
whenever A, B € ¥ and (iii) UA, € ¥, whenever A, € T. Fuzzy topological space is a set K
together with a fuzzy topology . Every member of ¥ is called T-open fuzzy set and complement
of each member of T is T-closed fuzzy set. A fuzzy set in K is a fuzzy point [12] if and only if
it takes the value O for all m € K except one, say, k£ € K. If its value at k£ is ¢, then it is denoted
by k;, where the point & is called its support. The fuzzy point k; is contained in S [12] if and only
if t < S(k). A fuzzy point k; (fuzzy set M respectively) is quasi-coincident with S [12] if and
only if t+S(k) > 1 (there exists k£ € K such that S(k) + M(k) > 1 respectively) and it is denoted
by k:qS (MqS respectively). A fuzzy set S is Q-open neighbourhood of k; [12] if and only if there
exists M € T such that k,gM and M C S. A function g: (K, %) — (M, &) is fuzzy continuous [2]
if and only if for every N € &, g7 }(N) € T. A fuzzy group [4] in K is a fuzzy set S satisfying
S(ab) > min{S(a),S(b)} for all a,b € K and a fuzzy group S is normal if S(ab) = S(ba) for
every a,b € K. Let K be a group with S, T two fuzzy sets and m;, a fuzzy point in K. We define
ST(k) = sup min(S(ky), T(ks)), m;T(k) = sup min(t, T(ks)), Smy(k) = sup min(S(ky),1)

1k2= mko=k 1m=
and T-!(k) = T(k™!). A fuzzy topological space K is regular [13] if every Q-open set E can
be expressed as union of Q-open sets F,’s such that F, C E for all a. K is completely regu-
lar [13], if for all £ € K and a Q-open neighbourhood E of £, there exists a continuous function
¢: K—[0,1] with ¢(k) = 1 and ¢(t) = 0 Vt ¢ E. A pair (K, T) denotes a group with a fuzzy
topology ¥. The collection of Q-open neighbourhoods in K is denoted by Q(K). The following
theorem is a preliminary result which is mandatory for sequel.

Theorem 1 (see [14]). Let (: (K, %) — (P, &) be a function. Then, the following are equivalent:
(1) ¢ is fuzzy continuous,
(ii) for every closed set E in P, (71(E) is closed in K,
(iii) for each member C of a subbase for &, (~1(C) is open,

(iv) for any fuzzy set F in K, ((F) C m

(V) for any fuzzy set D in P, (=1(D) C ¢~Y(D).

Definition 1. Let 1 be any non-empty finite set of objects called universe, R be an equivalence
relation on . Then, the pair (u, R) is said to be the approximation space. Let X C p.

(1) The lower approximation of X [15] with respect to R is the set of all objects, whose
equivalence class lies in X and it is denoted by Lr(X) = |J {R(a) | R(a) C X}, where

acp
R(a) denotes the equivalence class determined by a,

(i1) The upper approximation of X [15] with respect to R is the set of all objects, whose
equivalence class intersects X with respect to R and it is denoted by

Ur(X) = [ J{R(a) | R(a) N X # 0},

acp

(ii) The boundary region of X [15] with respect to R is the set difference of upper approxima-
tion with lower approximation and it is denoted by Br(X) = Ur(X) — Lgr(X),
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(iv) The nano topology of X [11] is given by Tr(X) = {0, Lr(X), Ur(X),Br(X), u} with
basis, fr(X) = {Lr(X),Br(X), u}.
Definition 2 (see [16]). Let 1 be a universe, A be a non-empty finite set of attributes. V,, is the

attribute value set of an attribute a« € A and f,: u — V, is called attribute function. For any
subset B of A, there is a binary relation on p corresponding to B given by

R(B) = {(z,y) € p X p | fa(x) = fa(y) or fu(z) = * or f(y) = * for any a € B}.

Then, R(B) is a tolerance relation on p (reflexive and symmetric). Sp(z) is the maximal set of
objects which are possibly indiscernible with = by the tolerance relation on ;1 denoted by

Sp(r) ={y € | (v,y) € R(B)},

where x € pu.

§ 2. Fuzzy paratopological group and related structures

In this section, we define generalized structures of fuzzy topological group and discuss their
properties with illustrative examples.

Definition 3. The pair (K,¥) is a fuzzy paratopological group (fuzzy semitopological group
respectively) if (1) Vm,n € K and D € Q(K) of fuzzy point (mn);, 3Q-open neighbour-
hoods E, F € Q(K) of my, and n;. such that EF C D (myF C D, En; C D respectively).

A fuzzy topological group (fuzzy quasitopological group respectively) is a fuzzy paratopolog-
ical group (fuzzy semitopological group respectively) with the proviso (2) V¢ € K and P € Q(K)
of fuzzy point ¢, ', IS € Q(K) of ¢ such that S~ C P.

Example 1. Consider the symmetric group S3. Define fuzzy sets on S5 by

A ={(¢,0),((123),0), ((132),0), ((12),0), ((13),0), ((23), 0)},
B = {(e, 1), ((123),1), ((132),1), ((12), 1), ((13), 1), ((23), D},
C={(e,1),((123),1), ((132),1), ((12),0), ((13),0), ((23), 0)},
D = {(e,0),((123), 1), ((132), 1), ((12), 0), ((13), 0), ((23), 0)},

and we get fuzzy topologies T; = {A,B}, T = {A,B,C}, T3 = {A,B,C,D}. Now, the
tuples (S3,%1), (S3,%s) are all fuzzy topological groups since the possible choice of Q-open
neighbourhoods are B, C and the neighbourhood itself satisfies conditions (1), (2) in Definition 3.
(S3,%3) is not a fuzzy semitopological group (fuzzy quasitopological group respectively), if we
consider D as Q-open neighbourhood of ((123), 1), ((132), 1), it is not possible to find a Q-open
neighbourhood satisfying condition (1) in Definition 3.

Proposition 1. Let (K, ) be a fuzzy topological space. Then, condition (1) of Definition 3 holds
if and only if the map p: (K, %) x (K, %) — (K, X) defined by (m,n) — mn is fuzzy continuous.

P r oo f Suppose condition (1) holds, then VD € Q(K) of (mn), IE,F € Q(K) of my and ny
such that EF C D. For a fuzzy point (m,n); € (K, %) x (K, %),
pEF (m,n) +k = min(pg(m), pr(n)) + k = min(pg(m) + &, pr(n) + k) > 1,

we have (m,n)gq(E, F) in (K, %) x (K, T). Hence, (E,F) is a Q-open neighbourhood of (m, n)y.
But, p(E, F) = EF C D and so, p is fuzzy continuous at the fuzzy point (m, n);. Since (m,n)y is
arbitrary, thus p is fuzzy continuous.
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Conversely, suppose p is fuzzy continuous. Then, p is fuzzy continuous at any fuzzy point
(m,n). So, VD € Q(K) of (mn), 3 a Q-open neighbourhood G, ,,), such that p[G,, ), ] < D.
Then, there must be E, F € Q(K) such that (E,F) C G, ), and (m, n)rq(E, F). Moreover, m;qE
and nyqF. Thus, 3E,F € Q(K) of my, and ny;, such that EF = p(E,F) C p(G(, ) € D. Hence,
condition (1) holds. O

Proposition 2. In a fuzzy topological space (K, %), condition (2) of Definition 3 holds if and only
if the map i: (K, %) — (K, T) by m — m~Y is fuzzy continuous.

Proof Suppose condition (2) holds, then VP € Q(K) of ¢!, 3S € Q(K) of t; such that
S~! C P. For a fuzzy point ¢, € (K, %), ps)(tx) + k > 1. So, we have t,¢S in (K, T). Hence,
S € Q(K) of t; and i(S) = S~ C P. Thus, i is fuzzy continuous at t;. Since t; is arbitrary, thus
¢ 1s fuzzy continuous. Conversely, suppose ¢ is fuzzy continuous. Then, ¢ is continuous at any
fuzzy point t;. So, VP € Q(K) of t,* 3S € Q(K) of ;, such that i(S) C P. Hence, condition (2)
holds. U

Proposition 3. Let (K, ¥) be a fuzzy topological space. Then, conditions (1) and (2) of Defi-
nition 3 hold if and only if VD € Q(K) of (mn™'), IE,F € Q(K) of my and ny, such that
EF~' CD.

Proof Suppose conditions (1) and (2) hold, then by condition (1) we have, Vm,n € K,
D € Q(K) of (mn=1);, 3E,F € Q(K) of my, and n,' such that EF C D. By condition (2),
3C € Q(K) of ny, such that C-* C F, whence EC™' C EF C D.

Conversely, suppose VO € Q(K) of (mn~'), IM,N € Q(K) of my; and nj such that
MN~! C O. Since M is quasi-open neighbourhood of my,, we have m;gM and so, py(m)+k > 1.
Thus, pw(m) > 1 —k = k’. Now, assume k = py(m),A = NNk, where & is the con-
stant fuzzy set with membership p(a) = k for every a € K. Then, A € Q(K) with n,gA and
MA~! € MN™! C O. Since pp_, ,(t) = sup min(pm_(t1), pa-1(t2)) = min(k, pa-1(t)) =

t1ta=t
= pa-1(t), it follows that mzA~! C MA~' C O. Therefore, condition (2) of Definition 3 holds.
Next, VD € Q(K) of (mn); = (m(n~!)~1), by assumption, IE,F € Q(K) of my and n;
such that EF™' C D. Using condition (2), 3C € Q(K) of ny such that C' C F. Thus,
EC = E(C"!)~! C EF! C D. Hence, condition (1) holds. d

Proposition 4. Let (K, %) be a fuzzy semitopological group (fuzzy quasitopological group), then
the mappings : m + nm, r: m — mn (i: m — m~') are homeomorphisms of (K,T) onto
itself, where m,n € K.

Proof Since (K, ¥) is a fuzzy semitopological group, thus VD € Q(K) of ({(m))x = (nm)y
3F € Q(K) of my, such that nyF C D. Assume F; = F N k*. Then, mqF; and niF; C D. Since

P (t) = sup pe (s) = pr (n~'t), it follows that
sel=1(¢)

Prre(t) = sup min(pec(t2), k) > min(pec(n"1), k) = pr-(n”"1).
t1to=t
Hence, [(Fz) C ngFz C D. So, [ is continuous at my. Since my, is arbitrary, thus [ is continuous.
We can define [7': nm > m as left translation of nm by n~!. Since each left translation
is continuous, we have /~! is continuous. Thus, [ is a fuzzy homeomorphism. Similarly, we
can prove that r is a fuzzy homeomorphism. By proposition 2, ¢ is fuzzy continuous. Since

i~'(m) = i(m™1), thus :~! is fuzzy continuous. Hence, 7 is a fuzzy homeomorphism. O

Corollary 1. Let (K, T) be a fuzzy quasitopological group. If D is open (closed respectively) in X,
then CD,DC,D~! (k D, kD, D! respectively) are all open (closed respectively) sets in T, where
k € K and C is a nonfuzzy subset of K.
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Lemma 1. Let (K, %) be a fuzzy paratopological group and E, F be fuzzy subsets of K. Then,
(i) tEt—1 = tEt™!, where t € K,

(ii) if ExF CE x F, then EF C EF.
Proof
(i) By Corollary 1, tEt~! is a closed set. Since tEt~! is the smallest closed set containing

tEt™!, so tEt—1 C tEt~'. Define ¢: (K, T) — (K, T) by ¢(k) = tkt~'. By Proposition 4,
¢ is a fuzzy homeomorphism. Again, by Theorem 1, ¢(E) C ¢E. Thus, tEt~! C tEt-1,

(ii) By Proposition 1, the map g: (K, T) x (K, %) — (K, T) by g(m,n) = mn is fuzzy continu-
ous. Given that ExF C E x F, and so g(ExF) C g(E x F). Since g is fuzzy continuous, by
Theorem 1 we have, g(E x F) C ¢g(E x F). Thus, EF C EF. This completes the proof. [J

Theorem 2. Suppose | (K,E) is a fuzzy paratopological group and M a fuzzy (normal respectively)
subgroup of K with M x M C M x M. Then, M is a fuzzy (normal respectively) subgroup.

Proof LetM be a fuzzy subgroup and s € K. Then,

(ss7') > min(M(s), M(s't)).
Thus, M(t) > sup min(M(m),M(n)). Hence, MM(t) < M(t) Vt € K, i.e., MM C M. Thus,

t=mn
MM C M. By Lemma MMQ—M ence, MM C MM C M i.e., M(mn) > (MM)(mn) =
= M is a fuzzy subgroup, thus M(a) =

1, M. Henx
sup min(M(t), M(s )) > min(M(m), M(n)). Since

M(t) = M(ss

mn=ts
= M(a™') = M~!(a), for every a € K. Hence, M = M-I, Now, M~1(a) = < Ei> (a) =
M—1CE;

= liminf(a) = liminf(a™!) = M(a™') = (M)"'(a). Thus, M(a) = (M)~!(a) = M(a™!). Hence,

M~1CE; MCE; !
M is a fuzzy subgroup of K.
Now, let R be a fuzzy normal subgroup. Then, R(mn) = R(nm) Vm,n € K. Hence,
tRt~'(s) = min(tR(st),t'(t7")) = tR(st) = min(t(t), R(t""'st)) = R(t~ st) = R(stt™!) =
R(s) Vs,t € K. So, tRt™" = R. Thus, tRt-1 = RVt € K. By Lemma 1, tRt™! = ¢Rt-1.
Hence R = tRt™' V¢ € K. Thus, R(ts) = tRt™*(ts) = min(¢(t), Rt (17 ts)) = Rt7(s) =
= min(R(st),t7*(t7!)) = R(st) Vs,t € K. Hence, R is a fuzzy normal subgroup in K. O

Theorem 3. Let (K, T) be a fuzzy paratopological group, & = {E} be a Q-open neighbourhood
base of ¢, and G = {Ez = ENk* | E € &, k = sup pe(e)}, where k is the constant fuzzy set
EcS

with fuzzy value k. Then,
(i) {t;E:} is a Q-open neighbourhood base of ty,
(11) if Eg, F; € &g, then 3Dy € G5 such that Dy C Ez N Fg,
(1) if E; € Gy, then I F;; € &y, such that FiF; C E,
(iv) for any E; € G; and t € K, 3F; € & such that t;FEtE CE;
(v) for any By € &y, if tyqEy, then 3F; € &5 such that EzF; C Ep

(vi) moreover, if (K, T) is fuzzy quasitopological group with E; € Gy, then 3F;; € &y such that
F-' CEf
ko= kK
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Proof

(i) From p.g (t) +k = min(k | Ez(e)) + &k > 1, we have tzqtzEz. Since (K, T) is a fuzzy
paratopological group, V E; € Q(K) of e = (t-'t;) 3 C,D € Q(K) of #;;* and #; such
that CD C E;. Suppose Cz = CNk*, Dy = D N k*, then Ci, D € Q(K) of ¢, ' and ¢
respectively. Let pcg(tfl) =r,then 1 — k < 7 < k. From ¢, 'D; C C;D;; € CD C E, we
have tt~ 1DE C tzE; and so e, Dz C tzE;. Let D = D N r*, where r* is the constant fuzzy
set with fuzzy value r. Then, D7 = ¢,D7 C e;zDy C t;E;. Thus, D € Q(K) of ¢;. Then, we
have t:E; € Q(K) of ¢ and {t;E;} is a family of Q(K) of ¢;. Since (te), = t, VE € Q(K)

of t 3C € Q(K) of t), and Dy, € Sy; of ¢ such that CD;; C E. Let Ci = CNE*, pc(t) = k
and D; =DnN k*. 1t is obvious that D;. € Q(K) of e, and C;D;, € Dy € CDy, C E. From

pipo, (5) = min(k, pp, (t7'5)) = po, (t7's) = sup min(pc,(s1), P (52))

$152=Ss
> min(k, po, (7's)) = po, (t5),

it follows that ¢;,D; C C;D; C E. Moreover, D; € Q(K) of e and there must be a
Gy € 65 such that G C Dy, thus t;G;; C t;D; C E which shows that {t;E;} € Q(K) base
of tz. Now, assume m.qtzEz. From p,_g_(m) = min(k, pe_(t'm)) = pe_(t7'm) > 1 —¢,
we have that E; € Q(K) of (¢7'm).. Then, 3 Q-neighbourhood E. € &; of e, such that
(t7'm).Ez C Eg, so that t3t-'meEs C t7E. If k > ¢, then mE; C t;E;. If k < G, then
from t-(t"*m)<E: C t-:Ex we obtain m.E; C t:Ef = tzEz. Since m:E: € Q(K) of m,, it
follows that tzEz € Q(K) of m.. Hence, t;E; € Q(K).

(i) Let Ef, F; € 6. Since Sy, is a Q(K) base of e, 50 pe_rr(€) + k = min(pe_(€), pr(e)) +
+ k > 1. Hence, E;; N F; € Q(K) of e, and so, 3 D;; € &5, such that D; C E; N Fy.

(iii) Let E; € &;. Using the fact (ee), = e, and by fuzzy continuity of multiplica-
tion, HDE, FE € Q(K) of ¢, such that DEFE - EE Assume CE = DE N FE, then

(iv) From (t7't), = e, V Bz € 673 C,D € Q(K) of t;.* and t,, respectively such that CD C Eg.
We may suppose that C = t;FE, where Fz € &;. By (i), we have {Eztz | Ef € &3} is
a Q(K) base of t;. We may suppose that D = Ggt;, where G; € &;. Then, we have
erqFEGy. Let min(pr_(e), pe_(€)) = k, C, =Gy n k. Then, e; C Fy and ¢,C; C FiG.
But, ¢;C; = C; € Q(K) of e so that F;G;; € Q(K) of ey, therefore 3 C; € &5, such that
CE Q FEGE' Consequently, t%lcyfg Q tﬁ_lFEGEtE =CD Q EE'

(v) Let E; € &y. Since {t;Ef} € Q(K) base of tf, then we have t;qE;. So t7F7 C Eg, where

(vi) The result holds due to fuzzy continuity of inversion. U

§ 3. Fuzzy uniformities

In this section, we characterize regular fuzzy paratopological groups by using fuzzy uniform
structures.

Definition 4. [9] A fuzzy uniformity on K is a non-empty subset 9t C I¥*K which satisfies:
(1) mNn € M; where m,n € IM,

(ii) V family (mc)ccpo,1) of elements of M, sup (m. —¢€) € M,
e€[0,1)
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(iii) for each m € M, e > 0, Idn € M with non < m + € (where m o n is defined by
(mon)(a,b) =sup{m(a,c) Nn(c,b)}),

ceK
(iv) if m € 9, then m~* € M.

The pair (K, 90) is called a fuzzy uniform space and members of 91 are called fuzzy entourages.
N is said to be fuzzy quasi uniformity if conditions (i)—(ii1) of the above definition hold.

Given two fuzzy entourages M, N € K x K. Let MN = {(a,c) e KxK | I € K> (a,b) € M
and (b, ¢ € N) be the composition and M~! = {(b,a) | (a,b) € M} be the inverse fuzzy entourage
to M. For a point k& € K, the set B(k,M) = {n € K| (k,n) € M} is called the M-ball centered
at k and for a subset N C K, the set B(N,M) = [J B(n,M) is the M-neighbourhood of N.

neN
A quasi uniformity 9t on K is normal if N € B°(N, M) for any subset N C K and any fuzzy
entourage M € . A subfamily B C 9 is called a base of fuzzy quasi uniformity 91 if each
fuzzy entourage M € 9 contains some fuzzy entourage N € ‘5.
In any fuzzy paratopological group K, we can define two trivial fuzzy quasi uniformities:

1. Left fuzzy quasi uniformity £ generated by the base

{(m,n) e KxK|nemMand M € &.},

2. Right fuzzy quasi uniformity R generated by the base

{(m,n) e KxK|neMmand M € &.}.

Proposition 5. In a fuzzy paratopological group K, the fuzzy quasi uniformities £ and R are
normal.

Proof LetNC Kand M e &,. We claim that N C B (N, £y), where £y = {(m,n) € KxK |
n € mM}. By the fuzzy continuity of right translation in K, we have NM C NM = B(N, £y).
Since the left translation is fuzzy continuous, the set NM is open in K and is contained in interior
of B(N, £y). Thus, N € NM C B°(N, £y) and hence, left fuzzy quasi uniformity is normal.
Similarly, we can prove that right fuzzy quasi uniformity is normal. 0J

Theorem 4. Each regular fuzzy paratopological group is completely regular.

Proof Let £y ={(mn) € KxK|nemM}e and Ry = {(m,n) € KxK|n &€ Mm} e
€ ‘R be the fuzzy entourages determined by M. Define a sequence of fuzzy entourage (£y, ) € £V
such that £y, C £u and £y, v, C Lv, , for each n € N. Let us denote the set of binary
fractions in the interval (0,1) by K = {&% | a,n € N,0 < a < 2"}. Each element k € K can
be expressed uniquely as & = >.°° %nwhere k, € {0,1}. Since k& > 0, we can define

n=1 17’
my = max{n € N | k, # 0} and so, k = > /"% % For each fuzzy entourage £y € £, we put
Lvr = £y and £yo = Ak, where A is the diagonal of K. For every k£ € K consider the fuzzy

entourage Lvr = Ly ... £ wm, € B which determines the closed neighbourhood B(N, L)

of N. Let k,l € Kwith [ < k and (k) , (L,) be the binary sequences of k, [ respectively. By the
fact, [ < k, there exists m € N such that 0 = L,,, < k,, = 1 and L; = k;, for all 2 < m. It follows



266 On fuzzy paratopological group

that m; # m < my. If m; < m, then by the normality of £, we have
B(N, £1) = B(N, Syrr - L)

ml

(N, Sypin - &,

kl

I
ve]]

IN
vl

(N, Lypr - £y

m 1

N
UUI

(N, SMkl e £ km,1 SMifnm)

N

mk

§°(N,2Mk1 L )
B

B (N, £ur).

If m < my, then the inclusion £y, Lv, C Lu, , for m < n < my, guarantees that

£Mm .SMmLEM C £, and then

m+1 °° my+1

E(N,,SMZ)

B(N, £M{.11 . 'SM:;TI)

¢]

mk
o

C B (N, Syrr - L L LMy 1)
_B°(N, Sy Ly S, €yt ...SM;TZSMWH)
C B°(N, Lyt ...SMEZZ;ISMm)
=B(N, Syin - Ly Lpgin)
C B°(N, Lyt - Ly, )
B (

N, Cue).

So, B(N, L) C B (N, £yt ). Now, define the function t¢: K — [0, 1] by Ye(a) = inf({1}U
U{l € K|ae€B(N,&w)}) fora € K. Now, N C ¢;'(0) and ¥5'([0,1)) € U B(N, &) =

leK
= kUK§°(N,2Mk) c B°(N,&v,) C B°(N,€u). Let a € (0,1), then by the equalities
€
V' ([0,a)) = U Be(N,Lw) and ¥g'((a,1]) = U K\ B(N, £ur), the sets 15 '([0, )
1eK: I<a a<keK

and ¥ '((«,1]) are open and so, the map ¢ is continuous. Similarly, by using right fuzzy
quasi uniformity SR we obtain a continuous function 9% such that N C ¢;'(0) C 5 '([0,1)) C
C B'(N,£w) = NM and N C 45;'(0) C 95'([0,1)) € B (N,9%w) = MN". Now, define

¢ = t¢.1hw which is continuous with N C 1»~(0) C ¢~1([0,1)) € MN° " NM’. Hence, K is
completely regular. U

§4. Robot crash and decision making

In this section, we model a robotic crash using nano topology and fuzzy topological group.
Let K be the group of actions performed by a robot via its various parts 71,79, ..., 7, and p(x) be
the membership function of getting struck due to performing the action x. Here, the membership
function relays on two factors; the action x and the robotic part r; performing it. The membership
value increases as the count of r; which causes robot stuck due to performing x increases. The
membership values play a vital role in the proposed model in which equivalence classes of
considering robots will be based on it. Now, let ¥ be the fuzzy topology generated by the fuzzy
sets A;, where each A; assumes non-zero values only for actions carried out by r; and assumes
0 for actions of 7,7 # j. Then, (K,%) is fuzzy paratopological group, fuzzy quasitopological
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group and fuzzy semitopological group. Thus, (K, %) holds for all the results discussed in the
above sections and we model robotic crash using this (K, T). Here, we model a situation where
a robot crashed while performing a task and the reason of this crash is yet not found. In this
situation, we are to find the particular part to check, if we know the possibility of robot crash due
to its each part. The algorithm of this model is given below.

Algorithm:

Step 1: Given a finite universe u, a finite set A of attributes that is divided into two classes,
S of condition attributes and D of decision attributes, an equivalence relation R on p
corresponding to S and a subset X of p, represents the data as table, columns of which
are labeled by attributes and rows by elements of p. The entries of the table are attribute
values. We denote the set of equivalence classes under the equivalence relation R as Rs.

Step 2: Find the lower approximation Ls(.X ), the upper approximationUs(X ), and the boundary
region Bs(X) of X with respect to Rs.

Step 3: Generate the nano topology 75(X) on p and its basis 3s(.X) corresponding to the conditional
attribute set S.

Step 4: Remove an attribute ¢ from S and find the lower approximation, the upper approximation
and the boundary region of X with respect to the equivalence relation on S \ {a}.

Step S: Generate the nano topology 7s\ (4} (X) on 1 and its basis s\ (a3 (X).
Step 6: Repeat steps 3 and 4 for all attributes in S.
Step 7: Now, the core is the collection of those attributes in S for which s\ (4} (X) # Bs(X).

Thus, by using the above algorithm, we may remove some conditional attributes and obtain the
core attributes for further decision making related to robot crash. The pseudocode of the above
algorithm is given below.

Algorithm 1 Pseudocode of the algorithm

Require: A finite universe j, a set of condition attributes .S, a set of decision attributes D, an
equivalence relation R on p corresponding to .S, a subset X of S, the set of equivalence classes
under the equivalence relation R as Rg

Calculate: Lower approximation Lg(X ), upper approximation Us(X) and the boundary
region Bg(X) of X with respect to Rg
Generate: The nano topology of X given by 75(X) = {0, Ls(X),Us(X), Bs(X), uu}
with basis s(X) = {Ls(X), Bs(X), u}
for all « € S do
generate the nano topology 7s\ () (X)) with basis G\ (4} (X)
if 55(X) = Os\(a} (X) then
reject a
else
if ﬁg(X) 7§ 65\{a} (X) then
accept ‘a’ as an element of “core"
end if
end if
end for
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Example 2. Let © = {R1, R, ..., R;} be the collection of robots and S be the set of condition
attributes that robot crashed due to its five parts viz. manipulator, endeffector, locomotive device,
controller and the sensors, together with decision attribute ‘s’ that the robot crashed or not.

Robots | Manipulator | Endeffector | Locomotive device | Controller | Sensors | s
R, 0.2 0.1 0.2 0.1 0.1 Yes
R, 0.1 0.1 0.2 0.2 0.2 No
Rs 0.2 0.2 0.2 0.1 0.1 No
Ry 0.1 0.3 0.2 0.2 0.1 Yes
R; 0.2 0.1 0.2 0.1 0.1 Yes
R 0.2 0.4 0.1 0.3 0.1 Yes
R; 0.1 0.3 0.1 0.2 0.2 No

Case 1: Let X = {Ry, R4, Rs, Rg} be the set of robots which crashed. Then, the set of
equivalence classes under the relation coincidence is given by Rs = {{R1, Rs}, {R2}, {Rs},
{R4},{Rs},{R:}}. Now, the upper approximation, the lower approximation, the boundary re-
gion and the basis of nano topology are Us(X) = {R;, Ry, Rs, R} = Ls(X), Bs(X) = 0 and
Bs(X) = {0,{ Ry, R4, Rs, Rs}, 1} respectively.

Step 1:

Removing

attribute a Rs\(a) Us) (o} (X) Ls\ {0} (X) Bs\(a}(X) Bs\{a} (X)
k). (. {{R4, Re},

endetiectr oo, UL}, {R1, Ry, Ry, Rs, R} {R4, Re} {R1, Rs, Rs} {R1, Rs3, R5},

manipulator (R )

I 1 1, L5, R,R,R’R.,

device | b AR}, {B1, Ry, Bs, R} | {Ry, Ra, Rs, Rs} 0 (s, by o}

controller {R.},{Rs},{R7}}

sensors

Therefore, Bs(X) # Bs\ fendettector} (X ) and Bs(X) = Bs\(a} (X), Where a is other than endef-
fector. Thus, the attributes manipulator, locomotive device, controller, and sensors are omitted.
Thus, the only optimal core attribute is endeffector. Hence, endeffector is the core attribute; which
causes the robots crashed.

Case 2: Let X = {R,y, Rs, R7} be the set of robots which did not crash. Then, the upper
approximation, the lower approximation, the boundary region and the basis of nano topology are
Us(X) = {Ry, Ry, Re} = Ls(X), Bs(X) = 0 and Bs(X) = {j1, { Rz, Rs, Rr}, 0} respectively.

Step 1:

Removing

attribute a Rs\) Us\( (X) Ls\(a}(X) | Bs\ay(X) Bs\(ay (X)
{{R1, Rs, R5}, T T,
endeffector {Ra}, {Ra}, {Ri,Rs,R3, Rs, R7} | {R2,R:} | {Ri,Rs,Rs} | {Ri, Rs Rs},
{Rﬁ}a {R7}} ,U,}

manipulator (R, R

1 I 1, 5}> R 7 . | . ®’

Oig\r]li(;gve {RQ}’ {R3}’ {R2: R, R7} {R2-, Rs, R?} 0 {{ ? /tg} 7},

controller {Ra} {Re}, {Rr}}

Sensors
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Therefore, Bs(X) # Bs\ fendettector} (X ) and Bs(X) = Bs\fa} (X), Where a is other than endef-
fector. Thus, the attributes manipulator, locomotive device, controller, and sensors are omitted
and the only optimal core attribute is endeffector. Hence, endeffector is the core attribute which
keeps the robots being not crashed. In both cases, either a crash is happened or not we have to
monitor endeffectors optimally. Suppose, if the core attributes for both cases varies, say a; for
Case 1 and b; for Case 2, then we have to focus on attributes b; until a crash is happened and we
have to verify the attributes a; if the robots crashed.

§ 5. Robot crash with missing data

In the model of the above section, the core attribute is endeffector in both the cases. Is it
always same for any sort of data? What we have to do if some possibilities are missing? Let the
possibility data as given below.

Robots | Manipulator | Endeffector | Locomotive device | Controller | Sensors | s
Ry 0.2 0.1 * 0.1 * Yes
R 0.1 0.1 * * 0.2 No
Rs * 0.2 0.2 0.1 * No
Ry 0.1 * 0.2 * 0.1 Yes
Rs * 0.1 * 0.1 * Yes
Rg 0.2 0.1 * 0.1 Yes
R * 0.1 0.2 0.2 No

In this type of issue, equivalence classes are reduced into tolerance classes, and by finding the
upper approximation, the lower approximation and the boundary region as in the above model we
have two cases to deal with.

Case 1: Let X = {Ry, Ry, R5, R} be the set of robots which crashed. Then, the set of tolerance
classes with respect to the tolerance relation coincidence are given by

Rs = {{R1, Rs5, Re}, {Ro, R5},{Ra, R7},{Rs, Ry}, { R4, R5}}.

Now, the upper approximation, the lower approximation, the boundary region, and the basis
of nano topology are

Us(X) = {R1, Ra, R3, R4, R5, Rs, R7},
LS(X) - {R17R47R57R6}7

BS(X) = {R27R37R7}7
BS(X) - {{R17R47 R57R6}7 {R27 Rg,R7},,U}

respectively.
Step 1:
Removing
attribute @ Rs\(a) Us\(a}(X) Ls\ (a3 (X) Bs\(a} (X) Bs\a(X)
{{{Rl,RLRs}}»{Rmsz}}, “
manipulator Ry, Rs, Rg ,{327 Rz}, Ry, Ry, Rs, RG},
Ry, Ry, Rs, R Ry, R,
{R1, Ry, R5}} {Ry1, Ry, R3, Ry, Rs, Re} {B1, R, Ry, Be} {ffa, B} {Ra2, R3}, u}
. Ry, R5, Rs},{R3, R},
1 t {{ 1 5, 46 J 5 3, 16
A {Ry. Ry}, {Ry, R5}
{Rs, Bs}, {R2, Rr}}
{{R1, Bs, B¢}, {R1, R3, Rs} ({Ro, By, Rs)
endeffector | {Rs, R4, R5}, {R2, R3, Rs} {Ry, R5, R¢} {Ry, R3, Ry} (o B, Ry} 11}
{RQ,R7}} 1, A5, 116 fs
{ B, Bs, Re}, {1y, B, Rr}
Ry, Ry, Rs, R,
controller {R,, R{g,R7}, %zg Ry} (Ru. Ro. Ry, Ro, o, R, ) {Ry, Ry, Rs, R} | {Rs, Ry, Ry} {{{R; R:R;} ﬂe}}
R4,R5 1y s 413, > 45, s 1V 19, 113, , U
{{R1, Rs, R¢}, {Ra, Ry, R5} .
sensors {Ry, R7},{R¢, R7} {Ry,Rs,Rs} | {Ra, Ry, Ry, Ry} {{R:1, Rs, R}
{Rg. R4}} {RZ’ R3, Ry, R7}~ /1}
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Since f(s\(q}(X) = Bs(X) for a € {manipulator, locomotive device}, thus the attributes
manipulator and locomotive device are omitted.

Step 2: Let M = {endeffector, controller, sensors}, then

BM(X) = {{Rlv R47 R5> R6}7 {RQa R3}7 :u}'

Removing

attribute a Rana) Uniygap(X) Lana) (X) Bangay(X) Ban (a3 (X)

{{R1, B3, Ry, Rs, R} {0,{Ri, Ry, Rs, R4, Rs, R¢},

endeffector (Ry. Ry, Ry, B} { o, B }} {R1, Ry, R3, Ry, R5, R} 0 {Ri1, R, R3, Ry, R5, R¢} )
{{R1, Ra, Ra, s, R} , s
sensors {Ry, Ry, Rs, R7} {Ry, Ry, Rs, Ry, R, Rg, R7} {0 {121, B, Ry, R, Rs, B, Fir},

{R1, Ry, R3, R4, R5, R¢, R7} I
(R, Ry, Ro}}

{{Ry, R4, R5, Rs}, {R3, R7},
{R1, Ry, Rs, Rr}, { Rs, Ry, R} }

{{R1, Ry, R5, R},
{Rs, R3, R7}, i}

controller

{R1, Ry, R5, Rs} {R,, R3, R7}

Since, By (X) # Bangay(X), V a € M, where M = {endeffector, controller, sensors}. Thus,
endeffectors, controllers, sensors are core attributes.

Case 2: Let X = {Rs, R3, R7} be the set of robots which did not crash. Then, the upper
approximation, the lower approximation, the boundary region, and the basis of nano topology are

Us(X) = { Ry, R3, Ry, Rs, Rr}, Bs(X) = {Ry, R3, Ry, Rs, R},
LS(X) :®7 BS(X) = {®7 {R27R37R47R57R7}7:u}
respectively.
Step 1:
ifﬁﬁinf Rs\ (o} Usy (o) (X) Ls\ (o} (X) Bs\(a} (X) Bs\fa} (X)

{{R1, Ry, Rs}, {Rs, Ru},
manipulator {R1, Rs, Rs}, {R2, R},
{ R, Ry, R5}}

{{R1, Rs5, Rs}, {R1, R3, Rs}
endeffector | {Rs, R4, R5}, {Rs, R3, R}
{Ry, Rr}}
{{R1, Rs, Re}, { R3, Re },
{Ry, R}, { Ry, R}
{1, Rs}, {Rs, Rr}}
{{R:. B, Ro} {Ra, Ru, Rs)
Sensors {Ra, R:},{Rs, Rr} {R4, Rs, Rs, R7}

{R1. Ry, Ry, Ra, Rs, Ry} (R, Ry, Ry, Rs} {R1, Ry, Ry, Rs},
{R2R7} {R23R7}, N}

locomotive
device

{{Rs, Ry, Rs, Re},
{R27 R?}Jl}

{{R4, R5, R, R7}

{Ry. Ry, Ry, Ry, Re, Ry} (B, R, R, R}

Ry, Ry},
{R3, R4}} {Rs, R7}, 1}
{1, Bs, Re}, { K1, B, Ry}
controller {Ry, Rs, R7},{Rs, R} | {Ri1, Rs, Rs, Ry, Rs, R7} 0 (Ry, Ry, Ry, Ry, Rs, R+} {0,{R1,R2,%.,R4,R5,R7},
{Ra, Bs}} '

Thus, Bs(X) # Bs\{a}(X), Ya € S and hence, all conditional attributes are the core attributes.
Hence, we obtain core attributes for further decision making. Thus, it can be seen that ideas of
fuzzy paratopological groups, fuzzy quasitopological groups and fuzzy semitopological groups
along with nano topology can be used as one of the tools in decision making and modelling
regarding robot crash.

Conclusion

We generalized the concept of fuzzy topological group to fuzzy semitopological group, fuzzy
paratopological group and fuzzy quasitopological group in terms of Q-open neighbourhoods and
characterize their properties. We discussed some results related to them and proved that each
regular fuzzy paratopological group is completely regular. As an application of our notions and
results, we provided a situation of robot crash and related decision making. We hope that our
article may find its due importance in future.
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BECTHUK YIMYPTCKOI'O YHUBEPCUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKHN

MATEMATUKA 2023. T. 33. Bem. 2. C. 259-274.

A. Manuw Kymap, Il. I'nanauanopa, C. Auaposrcu
O HeyeTKOIl MapaTONEJIOrH4YecKoil rpynmne U NPUHSITUM PelleHUil MPU aBapuu podoTa

Kniouesvie cnosa: HeueTkass KBa3UTOIOJIOTMUECKas TPyIINa, HEUEeTKask MapaTonolornyeckas rpynmna, HeueT-
Kasi KBa3UPaBHOMEPHOCTh, pOOOTOTEXHUKA, IPUHATHE PEIICHHUH.

VJIK 515.1
DOIL: 10.35634/ym230205

B sT10i1 crarbe Mbl BBOJMM HEUETKYIO MapaTONOJIOTHYECKYI0 TPYIITY, HEYETKYIO MOJYTOIMOJIOIHYECKYIO
TPyNIy U HEYETKYI0 KBA3UTOMOJOTMUYECKYIO TPYIIy, MPUBOAUM IPUMEPHl U CBOICTBA. DTH HOBBIE IO-
HSITUSL OTHOCSITCA K HEYETKOM TomoJjiornueckoil rpymnme. C MmoMoIblo HEYeTKUX OJTHOPOJAHOCTEN JI0Ka3aHo,
YTO Ka)KJ1asl HEUEeTKasl peryaspHas naparonojiorniyeckas rpynmna nojHOCThIo peryisipHa. [IoMmumMo 3Toro, Ml
JIOKa3bIBa€M HEKOTOPBIE PE3yJbTaThl, CB3aHHBIE C HEUETKOM MOJIyTONOJIOTHYECKOM TPYIION U HEYETKOU
KBa3HUTOIOJIOTMYecKor rpynmoil. Kpome Toro, ucnosb3ysi NpUBeICeHHbICE HAMU TOHATHS U HAHOTOMOJIOTHIO,
MBI TIPEJICTABIISIEM MPHIIOKECHUE B 00JIACTH MIPUHSTHUS PEIICHHUI BO BpEeMs aBapuu poOoTa.
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