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In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential

equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes

of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not
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§ 1. Introduction

Asymptotic stability is a fundamental concept in the qualitative theory of dynamical systems,

and it plays a significant role in numerous applications of the theory in almost all domains

where dynamic effects are present. The general theory of the stability of motion is presented in

monographs [19, 29–31, 36, 37]. The use of Lyapunov functions is important in the study of the

stability of solutions of systems of differential equations. This approach is based on the finding

that asymptotic stability is closely related to the existence of a Lyapunov function, which is a

proper, nonnegative function that decreases along the system’s paths that do not evolve in the

invariant set and vanishes only on an invariant set. There are different methods for the stability

analysis via Lyapunov functions for time-varying differential equations [3–8, 33–35]. However,

for nonlinear systems of differential equations the construction of such functions is a complex

problem. It turns out that the Lyapunov functions can be used not only for studying the stability

of solutions but also the asymptotic behaviors analysis [2, 12, 38, 39].

It is well known that the second method of Lyapunov [29, 30] provides sufficient conditions

to ensure various types of stability for a dynamical system described by ordinary differential

equations with perturbations [20, 21, 23–28]. The perturbation term could result from errors in

modeling a nonlinear system, aging of parameters or uncertainties and disturbances. In general,

we know some information on the upper bound of the term of perturbation. Given two solutions to

a dynamical system with initial conditions that are close at the same value of time, these solutions

will remain close over the entire time interval and not just at the initial time. This motivates us

to study the problem of uniform asymptotic stability of perturbed systems by assuming that

the nominal associated system is globally uniformly asymptotic stable “in variation” (see [10]

and the references therein) under some restrictions on the size of perturbations. The notion of

uniform Lipschitz stability [17, 18] lies somewhere between uniformly stability on one side and

the notions of asymptotic stability in variation and uniform stability in variation on the other side.

The problem concerning the asymptotical convergence of solutions of differential equations by

using continuously differentiable function with a negative definite derivative is a classical one.

In certain cases, Gronwall inequalities and Lyapunov theorems provide stability conditions that

do not require knowledge of the system trajectories. However, for some dynamical systems one

takes a Lyapunov function which is not necessarily differentiable that arises naturally.

https://doi.org/10.35634/vm240204
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The stability and asymptotic behavior of nonlinear systems have been studied in [10] using the

analogue of Alekseev’s variation of constants formula for nonlinear systems (see [1]). Dannan and

Elaydi have introduced the uniform Lipschitz stability [17], for systems of differential equations.

It was shown in [17] that, for linear systems, the notions of uniform Lipschitz stability and that

of uniform stability are equivalent. However, for nonlinear systems, the two notions are quite

distinct [17]. In fact, uniform Lipschitz stability lies somewhere between uniform stability on one

side and the notions of asymptotic stability in variation developped by Brauer [10] and uniform

stability in variation of Brauer and Strauss [9] on the other side.

In this paper, we use Lyapunov’s second method to define the behavior of solutions of some

nonlinear differential equations. Especially, we are looking for the asymptotic stability of the

solutions using Lyapunov function which are not necessarily smooth. We prove that the solutions

are bounded and converge to a certain closed set containing the origin. Furthermore, some

examples are given to show the applicability of the main results.

§ 2. Stability analysis

The qualitative behavior of the solutions of perturbed nonlinear systems of differential equa-

tions is often studied by obtaining a Lyapunov function for the unperturbed system and using it as

a Lyapunov function for the perturbed system. We wish to investigate the properties of solutions

of a system of differential equations when a Lyapunov function is known whose derivative, in

the sense of Dini, along solutions of the system satisfies a negative definitive condition under

the presence of perturbations. Let us consider a time-varying system described by the following

time-varying differential equation:

ẋ = f(t, x) (2.1)

where f : R+ × R
n −→ R

n is a continuous function and locally Lipschitz with respect to x such

that f(t, 0) = 0, ∀t > 0, and the associated perturbed systems:

ẋ = f(t, x) + g(t) (2.2)

where t ∈ R
+, g : R+ −→ R

n is a continuous function.

In the sequel, we give some of the main definitions that we need to study the asymptotic

behavior of the solutions. The notion of stability will be given in the sense of “Stability in

variation” (see [10, 11]).

Consider the time-varying system (2.1). Unless otherwise stated, we assume throughout the

paper that the function f(., .) encountered is sufficiently smooth. We often omit arguments of

function to simplify notation; Rn is the n-dimensional Euclidean vector space; R+ is the set of

all non-negative real numbers; ‖x‖ is the Euclidean norm of a vector x ∈ R
n; Br = {x ∈ R

n |
‖x‖ 6 r}, r > 0; ‖A‖ = max‖x‖=1 ‖Ax‖ is the norm of a matrix A.

For any x0 ∈ R
n and t0 ∈ R

+, we will denote by x(t, t0, x0), or simply by x(t), the unique

solution of (2.1) at time t0 starting from the point x0. We have, ∀t > t0 > 0,

x(t, t0, x0) = x0 +

∫ t

t0

f
(
s, x(s, t0, x0)

)
ds.

Let fx(t, x) be the matrix whose element in the ith row, jth column is the partial derivative

of the ith component of f with respect to the jth component of x, i. e., fx =

{
∂fi
∂xj

}n

i,j=1

. Let

x(t, t0, x0) be the solution of (2.1). We have

Φ(t, t0, x0) =
∂

∂x0

(
x(t, t0, x0)

)
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is a solution of the variational system:

ż = fx
(
t, x(t, t0, x0)

)
z. (2.3)

The matrix Φ(t, t0, x0) is called the fundamental matrix solution of (2.3) with respect to the

solution x(t, t0, x0). We have Φ(t, t0, x0)
∣∣∣
t=t0

= I .

We will define the notion of stability in terms of variational system with respect the solution

x = 0 (see [9, 10, 17, 18]).

Definition 2.1. The solution x = 0 of (2.1) is said to be globally uniformly Lipschitz stable in

variation [17, Definition 1.4], or, in other words, globally uniformly stable in variation [9],[2,

Definition 1.3] if there exists a positive constant M such that

‖Φ(t, t0, x0)‖ 6 M for all t > t0 > 0 and x0 ∈ R
n.

Note that, the solution x(t, t0, x0) of (2.1) satisfies the following equality:

x(t, t0, x0) =

(∫ 1

0

Φ(t, t0, sx0) ds

)
x0. (2.4)

From (2.4), it follows that, if the solution x = 0 of (2.1) is globally uniformly stable in variation,

then

‖x(t, t0, x0)‖ 6 M‖x0‖ for all t > t0 > 0 and x0 ∈ R
n.

For linear systems, global uniform stability in variation and uniform stability coincide [17,

Theorem 2.1]. The following simple property can be stated for the variational system.

Proposition 2.1. If the zero solution of (2.1) is globally uniformly stable in variation, then the

zero solution is globally uniformly stable for

ż = fx
(
t, x(t, t0, 0)

)
z. (2.5)

P r o o f. Indeed, let zero be globally uniformly stable in variation for (2.1). Then there exists

M > 0 such that ∀ t > t0 > 0 ∀ x0 ∈ R
n ‖Φ(t, t0, x0)‖ 6 M . By (2.4), ∀ t > t0 > 0 ∀ x0 ∈ R

n

‖x(t, t0, x0)‖ 6 M‖x0‖.

Denote x0 = (x01 , . . . , x0i , . . . , x0n)
T . Since x(t, t0, 0) = 0, we have

∥∥∥∥
∂x(t, t0, 0)

∂x0i

∥∥∥∥ =

∥∥∥∥limh→0

x(t, t0, (0, . . . , h, . . . , 0))− x(t, t0, 0)

h

∥∥∥∥ 6 lim
h→0

M‖h‖
‖h‖ = M.

So, for the transition matrix Φ(t, t0, 0) of the variational equation ż = fx
(
t, x(t, t0, 0)

)
z, we have

‖Φ(t, t0, 0)‖ =

∥∥∥∥
∂x(t, t0, 0)

∂x0

∥∥∥∥ 6 M.

It follows that the zero solution of (2.5) is globally uniformly stable. �

Remark 2.1. Note that, the local version of Proposition 2.1 takes place as well. Namely, if

the zero solution of (2.1) is locally uniformly (Lipshitz) stable in variation [17, Definition 1.3],

[18, Definition 3.4], then the zero solution of (2.5) is locally uniformly stable. Indeed, if the zero

solution of (2.1) is locally uniformly Lipshitz stable in variation, then, due to [17, Theorem 3.3],

the zero solution of (2.1) is locally uniformly Lipshitz stable. Now, by [17, Theorem 3.4], the

zero solution of (2.5) is locally uniformly Lipshitz stable. Since system (2.5) is linear, we get, by

[17, Theorem 2.1], that the zero solution of (2.5) is locally uniformly stable.
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Example 2.1. Let us give a simple example to show that one can lose the uniform character of

attractiveness of solutions. Let us consider the following scalar differential equation:

ẋ = − x

t + 1
, x ∈ R, t > 0.

Then,

x(t, t0, x0) = x0
t0 + 1

t + 1
.

We have

|x(t, t0, x0)| 6 |x0|, ∀ t > t0 > 0, ∀ x0 ∈ R
n.

The origin is globally uniformly stable in variation. Moreover, limt→∞ |x(t, t0, x0)| = 0. We

have: for any ǫ > 0, there exists δ = ǫ such that if |x0| < δ, then |x(t, t0, x0)| 6 |x0| < δ = ǫ
for t > t0 > 0. This implies that the origin is asymptotically stable. But it is not uniformly

attractive, and therefore, the origin is not uniformly asymptotically stable, because, for T > 0 and

t = t0 + T , one gets x(t, t0, x0) = x0
t0+1

t0+T+1
, which tends to x0 as t0 → ∞.

Definition 2.2 (see [2, Definition 1.4]). The solution x = 0 of (2.1) is said to be globally uniformly

slowly growing in variation if for every ε > 0 there exists a positive constant M , possibly

depending on ε, such that

‖Φ(t, t0, x0)‖ 6 Meε(t−t0) for all t > t0 > 0 and x0 ∈ R
n.

Definition 2.3 (see [2, Definition 1.5]). The solution x = 0 of (2.1) is said to be globally expo-

nentially stable in variation if there exist two positive constants λ1 and λ2, which are independent

of the initial condition, such that

‖Φ(t, t0, x0)‖ 6 λ1e
−λ2(t−t0) for all t > t0 > 0 and x0 ∈ R

n.

Example 2.2. As an example, consider the following scalar differential equation:

ẋ = −(t+ 1)x, x(t0) = x0.

The solution with respect to the initial condition is given by:

x(t, t0, x0) = Φ(t, t0, x0)x0 where Φ(t, t0, x0) = e−0.5
(
(t+1)2−(t0+1)2

)
.

It follows that, for all t > t0 > 0 and x0 ∈ R
n,

‖Φ(t, t0, x0)‖ 6 e−0.5(t−t0)(t+t0+2)
6 e−(t−t0).

The above estimation implies that the zero solution is globally exponentially stable in variation.

Remark 2.2. Note that the exponential stability can be just local. As an example of system

showing exponential stability but not global exponential stability, one can consider the following

scalar differential equation: ẋ = −x + x2. A simple computation shows that the solution with

respect to (t0, x0) is given by:

x(t, t0, x0) =
x0e

−(t−t0)

x0e−(t−t0) − x0 + 1
.

The zero solution is exponentially stable but is not globally exponentially stable, because if we

take t = t0, x0 = 1, then the solution x(t, t0, x0) is equal to 1 when t goes to infinity.
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Moreover, the exponential stability implies the asymptotic stability, but the converse is not

true. As an example, we consider the differential equation: ẋ = −x3/2. The solution of the initial

value problem with the initial condition x(t0) = x0 is given by:

x(t, t0, x0) = x0

(
x2
0(t− t0) + 1

)−1/2
, t > t0 > 0.

It can be seen from the above solution that the zero solution is globally uniformly asymptotically

stable but not exponentially stable.

Definition 2.4 (see [10]). The solution x = 0 of (2.1) is called asymptotically stable in variation

if there exists a positive constant K such that, for every t0 > 0 and all t > t0,

∫ t

t0

‖Φ(t, s, 0)‖ ds 6 K.

The following result is established by Brauer [10, Theorem 1].

Proposition 2.2. If the solution x = 0 of (2.1) is asymptotically stable in variation, then there

exist constants α > 0 and M̃ > 0 such that

∫ t

t0

sup
‖x0‖6α

‖Φ(t, s, x0)‖ ds 6 M̃,

for every sufficiently large t0 and all t > t0 > 0.

Note that, if the trivial solution x = 0 of (2.1) is asymptotically stable in variation, then

[10, Lemma 3], for each t0 > 0 and ‖x0‖ 6 α,

lim
t→+∞

‖Φ(t, t0, x0)‖ = 0.

Here, we have supposed that f(t, 0) = 0, ∀t > 0. For the studying stability of the perturbed

system (2.2) in the case where g(t) 6= 0 for a certain t > 0, we shall study the asymptotic behavior

of solutions in a neighborhood of the origin, in the sense that the solutions converge to a certain

small ball Br, r > 0, centered at the origin. Therefore, we introduce the notion of exponential

stability of Br (see [6, 7, 13–16, 20, 27]).

Definition 2.5. The set Br = {x ∈ R
n | ‖x‖ 6 r} is said to be globally uniformly exponentially

stable with respect to the system (2.2), if there exist λ1 > 0 and λ2 > 0 such that solutions

x(t, t0, x0) of the system (2.2) satisfy the inequality

‖x(t, t0, x0)‖ 6 λ1‖x0‖e−λ2(t−t0) + r ∀ t > t0 > 0, ∀x0 ∈ R
n \Br.

The factor λ2 in the above definition will be named the convergence speed while factor λ1

will be named the transient estimate.

Remark 2.3. It is worth to notice that, if we take r = 0 with g(t) = 0, ∀t > 0, then one

deals with the standard concept of the global exponential stability of the origin viewed as an

equilibrium point. It turns out that Definition 2.5 can be considered more general as the standard

one, but by taking the radius small enough one can study the asymptotic behavior of the solutions

near the origin which are not necessarily an equilibrium point. In this case, we shall study the

asymptotic behavior of a small ball centered at the origin for 0 6 ‖x(t)‖ − r, ∀t > t0 > 0, so

that the initial conditions are taken outside the ball Br. If r is small enough, then the trajectories

approach a small neighborhood of the origin when t goes to infinity. In our case we consider
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systems which have disturbances (perturbations) where their presence in the model entails that the

origin is not an equilibrium point and their boundedness gives that the radius r is strictly positive.

Under these conditions the convergence of the solutions would be towards a small ball where the

resulting radius is not optimal. It is possible that we can improve the asymptotic behavior by

minimizing this radius. In certain situations we can give the solution directly. If not then one can

use integral inequalities or the Lyapunov approach. The best we can do is to estimate r to be as

small as possible. Moreover in our situation for the convergence of the solutions it’s convenient

to take initial conditions outside this ball. It turns out that the state approaches the origin (or

some sufficiently small neighborhood of it) in a sufficiently fast manner. Therefore, if the bound

of perturbation term depends on a parameter ε with lim
ε→0

r(ε) = 0, then the state will converges to

the origin exponentially when t tends to infinity and ε → 0.

Example 2.3. Taking into account the above Remark, one can illustrate the convergence of the

solutions by different methods. As the first example, let us consider the following scalar dif-

ferential equation: ẋ = −x + e−2t. Here one can give the general solution explicitly. A simple

computation shows that the solution with respect to (t0, x0) is given by:

x(t, t0, x0) = e−(t−t0)x0 + e−(t+t0) − e−2t.

It follows that

|x(t, t0, x0)| 6 |x0|e−(t−t0) + 2, t > t0 > 0.

The last estimate shows a uniform convergence towards a certain neighborhood of the origin

where the convergence speed λ2 = 1 and the transient estimate λ1 = 1. Therefore, if the initial

conditions are taken outside the ball B2, then the trajectories reach to this set when t goes to

infinity.

Example 2.4. Note that the disturbance term can depend on the state; in the study of the conver-

gence of solutions, the method of integral inequalities is a fundamental and very useful tool to

have an idea for the asymptotic behavior of the system. The following example shows the con-

vergence towards a neighborhood of the origin in the nonlinear case by using a suitable integral

inequality. Let us consider the perturbed equation:

ẋ(t) = −λx(t) + |x(t)|p, t > 0, x ∈ R, λ > 0, 0 < p < 1.

The solution with respect to the initial condition
(
t0, x(t0)

)
, t0 > 0, is given by:

x(t) = e−λ(t−t0)x(t0) +

∫ t

t0

e−λ(t−s)|x(s)|p ds.

It follows that

|x(t)| 6 e−λ(t−t0)|x(t0)|+
∫ t

t0

e−λ(t−s)|x(s)|p ds.

We have

eλt|x(t)| 6 eλt0 |x(t0)|+
∫ t

t0

eλs|x(s)|p ds.

Let us set u(t) = eλt|x(t)|. Then we get

u(t) 6 u(t0) +

∫ t

t0

e(1−p)λsup(s) ds.
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From [22, Theorem 21], we have

u(t) 6
{(

u(t0)
)1−p

+ (1− p)

∫ t

t0

e(1−p)λsds
} 1

1−p

.

Thus,

u(t) 6
{(

u(t0)
)1−p

+
1

λ

[
e(1−p)λt − e(1−p)λt0

]} 1

1−p

.

Since, for any q > 1 and any a, b > 0,

(a + b)q 6 2q−1(aq + bq),

then, by taking q =
1

1− p
> 1, we obtain:

u(t) 6 2
1

1−p
−1
{(

u(t0)
)
+
(1
λ

[
e(1−p)λt − e(1−p)λt0

]) 1

1−p
}
.

Then

eλt|x(t)| 6 2
p

1−p

(
eλt0 |x(t0)|

)
+

(
2p

λ

) 1

1−p [
e(1−p)λt − e(1−p)λt0

] 1

1−p . (2.6)

We have [
e(1−p)λt − e(1−p)λt0

] 1

1−p 6
(
e(1−p)λt)

1

1−p = eλt. (2.7)

From (2.6) and (2.7), it follows that

|x(t)| 6 2
p

1−p |x(t0)|e−λ(t−t0) +

(
2p

λ

) 1

1−p

.

So, we obtain an estimate on the solution as in Definition 2.5.

Furthermore, we can study the convergence of solutions to a small neighborhood of the origin

by using the Lyapunov approach, in this sense. Let us consider the following example.

Example 2.5. For the following scalar equation, we will use Lyapunov techniques as an effective

tool especially for the study of convergence of solutions, since we can take the Lyapunov function

of the system without disturbances as a Lyapunov function candidate for the entire system with

the disturbance. Let us consider the following perturbed differential equation

ẋ = −x+ ε
x

x2 + 1
e−t, x ∈ R, ε > 0.

Take V (t, x) = x2. By taking the derivative along the trajectories, we obtain:

V̇ (t, x) = −2x2 + 2ε
x2

x2 + 1
e−t 6 −2x2 + 2εe−t.

Hence,

V̇ (t, x) 6 −2V (t, x) + 2ε. (2.8)

Let us find an estimation for V
(
t, x(t)

)
from the differential inequality (2.8). Denote z(t) =

= V
(
t, x(t)

)
. Let the initial state z(t0), t0 > 0, satisfy condition

z(t0) > ε > 0. (2.9)
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From (2.8), it follows that

ż(t) 6 −2z(t) + 2ε, t > t0. (2.10)

Replace u(t) := z(t)− ε. Hence, from (2.10), it follows that

u̇(t) 6 −2u(t), t > t0, (2.11)

and, from (2.9), it follows that u(t0) > 0. Denote u(t) := v(t)e−2(t−t0). Then, from (2.11), it

follows that v̇(t) 6 0, t > t0. Hence, v(t) 6 v(t0) = u(t0). Therefore,

u(t) = v(t)e−2(t−t0) 6 v(t0)e
−2(t−t0) = u(t0)e

−2(t−t0).

So,

z(t) 6
(
z(t0)− ε

)
e−2(t−t0) + ε, t > t0. (2.12)

Now, using the fact that V (t, x) = x2, we obtain from (2.12) that

x2(t) 6
(
x2(t0)− ε

)
e−2(t−t0) + ε, t > t0. (2.13)

Let the initial condition x(t0) is taken outside [−√
ε,+

√
ε]. Hence, x2(t0) − ε > 0, and, in

particuar, (2.9) holds. Then, from (2.13), it follows that

|x(t)| 6 (x2(t0)− ε)1/2e−(t−t0) +
√
ε 6 ‖x(t0)‖e−(t−t0) +

√
ε, t > t0.

So, we get the estimate on the solution as in Definition 2.5, and this estimation gives the ex-

ponential convergence of the solution toward the ball B√
ε = [−√

ε,+
√
ε]. Here, the bound of

perturbation term depends on the parameter ε with lim
ε→0

r(ε) = 0, then the state will converges to

the origin exponentially when t tends to infinity and ε → 0.

In the sequel, we will recall the definitions of comparison functions. For time-varying systems,

the authors in [32] studied how definitions of uniform global asymptotic stability that have been

employed over the years in a variety of monographs and publications lack “uniformity”. Uniform

global attraction and uniform local stability are sometimes combined to make uniform global

asymptotic stability. In order to study the asymptotic behavior of system (2.2), we will use the

K, K∞ and KL functions which perfectly and rigorously characterize the uniform asymptotic

stability (see [25, 29, 36]).

• A continuous function α : [0,+∞) → [0,+∞) is said to belong to class K [29, Defi-

nition 4.2] if it is strictly increasing and α(0) = 0. It is said to belong to class K∞, if

α(r) → +∞ as r → +∞.

• A continuous function β : [0,+∞) × [0,+∞) → [0,+∞) is said to belong to class KL
[29, Definition 4.3] if, for each fixed s, the mapping β(r, s) belongs to class K with

respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s → +∞.

By [29, Lemma 4.5], the zero equilibrium of system (2.2) with g(t) ≡ 0 is globally uniformly

asymptotically stable if and only if there exists a class KL function β such that ‖x(t, t0, x0)‖ 6

6 β(‖x0‖, t− t0), ∀ t > t0 > 0, ∀x0 ∈ R
n.

The asymptotic behavior of the solutions of (2.2) can be studied in a neighborhood of the

origin, in this case the solutions converge to a certain small ball.
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Definition 2.6. The ball Br is said to be globally uniformly asymptotically stable with respect to

the system (2.2), if there exists a class KL function β such that the solutions x(t, t0, x0) of the

system (2.2) satisfy the inequality

‖x(t, t0, x0)‖ 6 β(‖x0‖, t− t0) + r, ∀ t > t0 > 0, ∀x0 ∈ R
n \Br.

When the origin is not an equilibrium point, one can examine the asymptotic behavior of the

solution with regard to a small ball centered at the origin. There are many results which relate

the asymptotic stability of the zero solution of the unperturbed system to that the zero solution

of the perturbed equation. The relation can be studied through a slight variant of the nonlinear

variation of constants formula. Let x̃(t, t0, x0) be the solution of (2.2) passing through (t0, x0)
and x(t, t0, x0) be the solution of (2.1) passing through (t0, x0). Then (see, e.g., [1, 9]), we have

x̃(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ
(
t, s, x̃(s, t0, x0)

)
g(s) ds.

So, by imposing some restrictions on the term of perturbation, one can reach conclusions on the

stability of the perturbed system.

In the sequel, we give an example of class of scalar perturbed linear differential equations

where solutions satisfy an estimation as the one given in Definition 2.6. In fact, the qualita-

tive analysis of solutions of linear differential equations and their perturbed linear differential

equations is crucial for addressing a wide range of practical issues in the fields of mechanical,

electrical, control, and economic engineering. As a result, several authors have investigated many

questions along these lines and highlighted a variety of attributes where they suppose in general

that the origin is an equilibrium point.

Example 2.6. Let us consider the following scalar linear system:

ẋ = a(t)x+ g(t), t > 0,

where a(·) is continuous and g(·) is a continuous bounded function. Then, one has

x(t, t0, x0) = x0 exp
(∫ t

t0

a(s) ds
)
+

∫ t

t0

g(τ) exp
(∫ t

τ

a(s) ds
)
dτ.

Note that, the concept of stability of the nominal unperturbed scalar linear time-varying equa-

tion is related to the transition matrix Φ(t, t0) = exp
(∫ t

t0

a(τ) dτ
)

. The asymptotic stability is

characterized by the fact that

lim
t→+∞

∫ t

t0

a(τ) dτ = −∞.

The exponential stability is characterized by the fact that

lim sup
t→+∞

1

t− t0

∫ t

t0

a(τ) dτ < 0.

So, if the nominal unperturbed system is exponentially stable at the origin and the estimation

∫ t

t0

g(τ) exp
(∫ t

τ

a(s) ds
)
dτ 6 r

holds for some r > 0, then one can obtain an estimation on the solutions in presence of the

term of perturbation, where the radius r of the ball Br depends on the size of the bound of
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the function g. Indeed, to obtain an estimation as in Definition 2.6, it suffices to suppose that

the nominal system is globally uniformly asymptically stable, which is characterized by the

fact that

∫ t

t0

a(τ) dτ 6 λ1 − λ2(t − t0), λ1 > 0, λ2 > 0, ∀t > t0 > 0. In this case, with

β(|x0|, t− t0) = eλ1 |x0| exp
(
− λ2(t− t0)

)
one has |x(t, t0, x0)| 6 β(|x0|, t− t0) + r.

Example 2.7. Note that, we can take in the example above a nominal unperturbed system which

is non-linear, instead of a linear one. As an example, we consider the differential equation:

ẋ = −etx3. (2.14)

The solution is given by

x(t, t0, x0) =
x0√

1 + 2x2
0(e

t − et0)
, t > t0 > 0. (2.15)

We have: for any x0 ∈ R and t > t0 > 0,

1 + 2x2
0(e

t − et0) = 1 + 2x2
0e

t0(et−t0 − 1) > 1 + 2x2
0(e

t−t0 − 1). (2.16)

Set β(r, s) =
r√

1 + 2r2(es − 1)
, r > 0, s > 0. Then β(0, s) = 0,

∂β

∂r
=

1
(
1 + 2r2(es − 1)

)3/2 > 0.

Hence, β(r, s) is strictly increasing in r. Next,

∂β

∂s
= − r3es

(
1 + 2r2(es − 1)

)3/2 < 0.

Hence, β(r, s) is strictly decreasing in s. Moreover, β(r, s) → 0 as s → +∞. Therefore, it

belongs to class KL.

From (2.15) and (2.16), it follows that

|x(t, t0, x0)| 6
|x0|√

1 + 2x2
0(e

t − et0)
6

|x0|√
1 + 2x2

0(e
t−t0 − 1)

= β(|x0|, t− t0).

It follows that the zero solution of system (2.14) is globally uniformly asymptotically stable.

Calculating Φ(t, t0, x0), we get:

Φ(t, t0, x0) =
(
1 + 2x2

0(e
t − et0)

)−3/2
.

Thus, |Φ(t, t0, x0)| 6 1, ∀ t > t0 > 0 Then, by considering a disturbance similar to the one given

in the previous example, we can arrive at a similar estimate on the trajectories.

The perturbations were represented by an additive term on the right-hand side of the equation

of state (2.2) and the origin was not supposed to be an equilibrium point of the system. Based

on the stability of the nominal system (2.1), which had the origin as its equilibrium point, we

cannot expect that the solution of the perturbed system will approach the origin as t goes to

infinity. The best we can hope for is that for a small perturbation term the solution tends to a

small set containing the origin. However, the desired state of the system may be mathematically

unstable, but the system may oscillate close enough to that state that the performance is considered
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acceptable. In a typical situation we do not know g but just some information about it, for

example the upper bound on the norm of g. A natural approach is to solve this problem by using

a Lyapunov function for the nominal system as a Lyapunov function candidate for the whole

system.

Stability analysis for linear time-varying systems is of increasing interest in theory. One

reason is the growing importance of adaptive controllers for which the underlying closed-loop

adaptive system often is time-varying and linear which can be modeled as

ẋ = A(t)x, (2.17)

where A is an n × n-matrix whose entries are real-valued piecewise continuous functions of

t ∈ R
+. The space of solutions has dimension n. A basis of the space of solutions of this

system, i. e., the set {x1, . . . , xn} of linearly independent solutions, is called a fundamental set

of solutions. The matrix Ψ(t) = [x1(t) . . . xn(t)], whose columns are the basis vectors of the

solution space, is called a fundamental matrix. A fundamental matrix is a solution to the matrix

equation

Ψ̇(t) = A(t)Ψ(t)

and conversely, any nonsingular solution of the above system is a fundamental matrix of the

linear system. Let Ψ(t) be a fundamental matrix. Then

Φ(t, t0) = Ψ(t)Ψ−1(t0), t > t0,

is called the state transition matrix. Notice that the above definition is consistent in the sense

that Φ(t, t0) is uniquely defined by A(t) and independent of the particular choice of Ψ(t) (see

[19, Ch. II, Sect. 2]).

We have a characterization for uniform asymptotic stability. The trivial solution of the linear

system (2.17) is globally uniformly asymptotically stable if and only if it is exponentially stable

[29, Sect. 4.6] that is there exist positive constants k and γ such that

‖Φ(t, t0)‖ 6 ke−γ(t−t0), ∀t > t0 > 0.

The solution of (2.17) with the initial condition x(t0) = x0 is x(t) = Φ(t, t0)x0, t > t0. This

formula can be directly checked using the definition relation Φ(t, t0) = Ψ(t)Ψ−1(t0), t > t0.
It shows that the state transition matrix is a linear transformation that maps the initial condi-

tion x0 into the state x at time t. If the system is time-invariant (A(t) = A), then Φ(t, t0) =
= exp

(
A(t− t0)

)
. If A(t) is not constant and the matrices A(t) and A(s) commute for all (t, s),

then Φ(t, t0) = exp
(∫ t

t0

A(s) ds
)
.

Let us consider the time-varying system (2.1) in the case where the nominal system is linear,

namely, f(t, x) = A(t)x, and the perturbation term in system (2.2) is taken as g(t, x) instead

of g(t):
ẋ = A(t)x+ g(t, x). (2.18)

Suppose that A(t) is an (n× n) continuous and bounded matrix, g(t, x) is a continuous function,

and there exists a nonnegative continuous function ζ(t) such that

‖g(t, x)‖ 6 ζ(t), x ∈ R
n, t > 0.

We suppose that the bounds of the nonlinearities satisfy the following condition:

either

∫ +∞

0

ζ(s) ds < +∞ or lim
t→∞

ζ(t) = 0.
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If the function ζ(t) satisfies one of the last two conditions, then, for any given λ > 0 and for any

fixed t0 > 0,

lim
t→∞

e−λt

∫ t

t0

eλsζ(s) ds = 0.

This fact was shown in [27] for the case t0 = 0. It is clear that this is true for any fixed t0 > 0.
Further, if the nominal system is uniformly asymptotically stable, then the associated transition

matrix satisfies condition

‖Φ(t, t0)‖ 6 λ1e
−λ2(t−t0), ∀ t > t0 > 0,

for some λ1 > 0, λ2 > 0. The solution of system (2.18) with an initial condition x(t0) = x0

(t0 > 0) can be written as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)g
(
s, x(s)

)
ds, t > t0.

Then,

‖x(t)‖ 6 ‖Φ(t, t0)‖ ‖x0‖+
∫ t

t0

‖Φ(t, s)‖
∥∥g

(
s, x(s)

)∥∥ ds, t > t0.

It follows that

‖x(t)‖ 6 λ1‖x0‖e−λ2(t−t0) +

∫ t

t0

λ1e
−λ2(t−s)ζ(s) ds, t > t0.

Thus,

‖x(t)‖ 6 λ1‖x0‖e−λ2(t−t0) + λ1e
−λ2t

∫ t

t0

eλ2sζ(s) ds, t > t0.

Since

lim
t→∞

e−λ2t

∫ t

t0

eλ2sζ(s) ds = 0,

then there exists ζ̃ > 0 such that

e−λ2t

∫ t

t0

eλ2sζ(s) ds 6 ζ̃ , ∀t > t0.

It follows that

‖x(t)‖ 6 λ1‖x0‖e−λ2(t−t0) + λ1ζ̃ , t > t0.

Hence, as in Definition 2.5, the ball Br with r = λ1ζ̃ is globally uniformly exponentially stable

with respect to the system (2.18).

Note that (see [27]): if the function ζ(t) satisfies

∫ +∞

0

ζ(s) ds 6 ξ < +∞, then

e−λ2t

∫ t

t0

eλ2sζ(s) ds 6 e−λ2t

∫ t

0

eλ2sζ(s) ds 6
ξ

λ2

, ∀t > t0 > 0;

if the function ζ(t) satisfies ‖ζ(t)‖ 6 η, ∀t > 0, then e−λ2t

∫ t

t0

eλ2sζ(s) ds 6
η

λ2
, ∀t > t0 > 0.
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§ 3. Lyapunov approach

Lyapunov’s direct method allows one to determine the stability of a system without explicitly

integrating the differential equation. This method is a generalization of the idea that if there is an

appropriate energy function in a system, then we can study the rate of change of the energy of

the system to a certain stability. To make this precise, we need the following definitions.

Consider a continuous function V : R+ × R
n → R

+. V is said to be globally Lipschitzian in

x (uniformly in t ∈ R
+) if

|V (t, x)− V (t, y)| 6 K‖x− y‖
for some K > 0 and for all (t, x, y) ∈ R

+ × R
n × R

n. Corresponding to V we define the Dini

derivative D+V with respect to system (2.1) by

D+Vf(t, x) = lim sup
h→0+

1

h

(
V (t+ h, x+ hf(t, x))− V (t, x)

)
,

called the upper Dini derivative of V (., .) along the trajectory of (2.1). Let x(t) be a solution

of (2.1). Denote by V ′(t, x(t)
)

the upper right-hand derivative of V
(
t, x(t)

)
, i. e.,

V ′(t, x(t)
)
= lim sup

h→0+

1

h

(
V
(
t + h, x(t+ h)

)
− V

(
t, x(t)

))
.

If V (t, x) is continuous in t and Lipschitzian in x (uniformly in t) with the Lipschitz constant

K > 0, then (see [37, p. 3]),

D+Vf

(
t, x(t)

)
= V ′(t, x(t)

)
.

Note that, in case when the function V is differentiable, the derivative with respect to time

along the trajectories of system (2.1) is given by:

d

dt
V (t, x) =

∂V

∂t
(t, x) +

∂V

∂x
(t, x).f(t, x),

in this case, we have
d

dt
V (t, x) = V ′(t, x) = D+

f V (t, x).

Suppose that the nominal system (2.1) has a uniformly asymptotically/exponentially stable

equilibrium point at the origin, then under some sufficient conditions on the perturbation term

we can study the asymptotic behavior of the solutions of (2.2). A natural approach is to use

the Lyapunov function V (t, x) for the unperturbed system as a Lyapunov function candidate

for (2.2). Note that, one can reach the conclusion about the definiteness of V̇ (t, x) by imposing

some restrictions on g(t), using the Lyapunov function of the form

V(t, x) = V (t, x) + Ψ(t, x),

where the function Ψ(t, x) is defined by the expression:

Ψ(t, x) =

∫ +∞

t

∂V

∂x

(
s, φ(s, t, x)

)
· g(s) ds.

Here φ(s, t, x) is the solution of the unperturbed system (2.1) such that φ(t, t, x) = x, and

the auxiliary function Ψ(t, x) is chosen so that the function V(t, x) is positive definite, and its

derivative along the trajectories of (2.2) is negative definite. Naturally, the choice of Ψ(t, x)
depends on the perturbation term g(t) and its smoothness is given under some restrictions on

the dynamics of the system (see [5]). The strict Lyapunov functions are of great importance in
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the study of the stability of systems, and are a key tool for robustness analysis. In general, it

is more difficult to construct strict Lyapunov functions for time-varying systems than it is for

time-invariant systems. Using the above idea for constructing strict Lyapunov functions for time-

varying systems, the class of perturbed systems where the nominal system is linear is considered

by [4].

Suppose that the nominal system (2.1) has a uniformly asymptotically/exponentially stable in

variation equilibrium point at the origin with V (t, x) as a Lyapunov function candidate. Such

Lyapunov function should satisfy the following assumptions [2]:

(H1) V (t, x) is defined and continuous on R
+ × R

n;

(H2) ‖x‖ 6 V (t, x) 6 K1‖x‖ for all (t, x) ∈ R
+ × R

n, for some K1 > 1;
(H3) |V (t, x)− V (t, y)| 6 K2‖x− y‖ for all (t, x), (t, y) ∈ R

+ × R
n, for some K2 > 0.

In [10, 11] and [18], some properties and converse theorems for the kinds of stability in

variation sense are given. In the sequel, we recall some of them.

Let the trivial solution of (2.1) be globally uniformly stable in variation. Then (see [2]) there

exists a function V (t, x) which satisfies (H1), (H2), (H3) and the following property:

D+
f V (t, x) 6 0, ∀(t, x) ∈ R

+ × R
n.

Note that, for the existence of such function, it suffices to take as a Lyapunov function

candidate (see [2]):

V (t, x) = sup
s>0

‖φ(t+ s, t, x)‖, (t, x) ∈ R
+ × R

n.

Furthermore, let the trivial solution of (2.1) be globally uniformly slowly growing in variation.

Then (see [2]) there exists a function V (t, x) which satisfies (H1), (H2), (H3) and the following

estimation, for some ε > 0:

D+
f V (t, x) 6 εV (t, x), ∀(t, x) ∈ R

+ × R
n.

Here, a Lyapunov function candidate can be taken as:

V (t, x) = sup
s>0

‖φ(t+ s, t, x)‖e−εs, (t, x) ∈ R
+ × R

n.

In term of exponential stability, if the trivial solution of (2.1) is globally exponentially stable in

variation, then there exists a function V (t, x) which satisfies (H1), (H2), (H3) and the following

inequality, for some α̃ > 0 (see [2]):

D+
f V (t, x) 6 −α̃V (t, x), ∀(t, x) ∈ R

+ × R
n.

In this case, it suffices to take (see [2]):

V (t, x) = sup
s>0

‖φ(t+ s, t, x)‖eα̃s, (t, x) ∈ R
+ × R

n.

In any study of stability of dynamical systems under perturbations, the asymptotic equivalence

of two systems is one of the most important concepts. It can be used to study the robustness of the

unperturbed system or to explore whether the behavior of a complex system can be determined

by the behavior of a simpler system. The basic idea in studies of stability of nonlinear systems,

apparently, is to decompose the system into isolated subsystems and the systems connecting them,

and then determine the stability of the original system from the asymptotic behavior of the sub-

systems. However, in general, the original system and the subsystems may not be asymptotically

equivalent, which may produce misleading results.
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Some sufficient conditions can be obtained for the uniform Lipschitz stability of the sys-

tem (2.1) ẋ = f(t, x).
Suppose that there exists differentiable V (t, x) satisfying the following assumptions.

(A1) There exist two functions α1 and α2 of class K such that

α1

(
‖x‖

)
6 V (t, x) 6 α2

(
‖x‖

)
, ∀x ∈ R

n, ∀t > t0 > 0,

and
α1

−1
(
α2(s)

)

s
is bounded for s > 0 that is there exists a constant ζ > 0 such that

α1
−1
(
α2(s)

)

s
6 ζ, ∀s > 0.

(A2) V
′(t, x) = D+

f V (t, x) 6 0, ∀x ∈ R
n, t > t0 > 0.

Proposition 3.1. Suppose that there exists a Lyapunov function V (t, x) that satisfies (A1)
and (A2). Then the solution x(t, t0, x0) of (2.1) satisfies the following inequality for all

t > t0 > 0:
‖x(t, t0, x0)‖ 6 ζ‖x0‖.

Indeed, from (A1) and (A2), one gets

α1

(
‖x(t, t0, x0)‖

)
6 V

(
t, x(t, t0, x0)

)
6 V (t0, x0) 6 α2

(
‖x0‖

)
, ∀x0 ∈ R

n, ∀t > t0 > 0.

Thus,

‖x(t, t0, x0)‖ 6 α1
−1
(
α2(‖x0‖)

)
6 ζ‖x0‖.

This implies that the solution x = 0 of (2.1) is uniformly Lipschitz stable [17, Definition 1.1].

§ 4. Asymptotic behavior of solutions

In this section, we give some new results on asymptotic behavior and growth properties of

the solutions of (2.2) under some restrictive conditions on the perturbation term based on the

following well known comparison lemma [29, Lemma 3.4].

Lemma 4.1. Consider a scalar differential equation:

u̇(t) = h(t, u), u(t0) = u0, (4.1)

where h(t, u) is continuous in t and locally Lipschitz in u, for all t > 0 and all u ∈ J ∈ R.

Let [t0, ϑ) be the maximal interval of existence of the solution u(t), and suppose u(t) ∈ J for all

t ∈ [t0, ϑ). Let v(t) be a continuous function such that

D+v(t) 6 h
(
t, v(t)

)
, v(t0) 6 u0,

with v(t) ∈ J for all t ∈ [t0, ϑ). Then, v(t) 6 u(t) for all t ∈ [t0, ϑ).

This lemma can provide an estimation on V
(
t, x(t)

)
from some bounds on D+

f V (t, x). Let

x(t) = x(t, t0, x0) be a solution of (2.1) existing for t > t0 > 0. Suppose that V (t, x) is

continuous in t and globally Lipschitzian in x (uniformly in t ∈ R+) and satisfies the inequality:

D+
f V (t, x) 6 h

(
t, V (t, x)

)

for (t, x) ∈ R
+ × R

n. Then, if V (t0, x0) 6 u0, then we have

V
(
t, x(t)

)
6 u(t), for t > t0 > 0. (4.2)
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The origin may not be an equilibrium point of the perturbed system (2.2). We can no longer

study the stability of the origin as an equilibrium point, and we should not expect the solution of

the perturbed system to approach the origin as t tends to infinity. The best we can hope that for a

small perturbation term the solution will approach to a small set containing the origin in the case

where g(t) 6= 0 for some t > 0. We first present the following result, which gives an estimate

of the solutions of the perturbed system when we suppose that the nominal system is globally

uniformly stable in variation.

Now, for asymptotic convergence, we need the following lemma (see [26, Lemma 2.4]).

Lemma 4.2. Let y : [0,+∞) −→ [0,+∞) be a differentiable function, α be a class K∞ function

and c be a positive real number. Assume that for all t ∈ [0,+∞) we have

ẏ(t) 6 −α
(
y(t)

)
+ c.

Then, there exists a class KL function βα such that

y(t) 6 α−1(2c) + βα

(
y(0), t

)
.

Theorem 4.1. Suppose that there exists a Lyapunov function V (t, x) satisfying conditions (H1),
(H2), (H3), and there exist a function α ∈ K∞ and a number c > 0 such that the following

inequality holds:

D+
f V (t, x) 6 −α

(
‖x‖

)
+ c, ∀(t, x) ∈ R

+ × R
n. (4.3)

Then, the solutions of (2.1) converge globally uniformly asymptotically to a certain ball centered

at the origin.

P r o o f. From (4.3), by using (H2), we get

D+
f V (t, x) 6 −α

(
1

K1
V (t, x)

)
+ c.

Thus,

D+
f V (t, x) 6 −α1

(
V (t, x)

)
+ c, (4.4)

where α1(r) = α
(
r/K1

)
∈ K∞. Let x(t) = x(t, t0, x0) be a solution of (2.1) and V (t0, x0) = u0,

u0 > 0. Consider the equation (4.1) where

h(t, u) ≡ h(u) = −α1(u) + c. (4.5)

Consider the solution u(t, t0, u0) of (4.1), (4.5). Since equation (4.1), (4.5) is time-invariant, we

have

u(t, t0, u0) = u(t− t0, 0, u0) = u(τ, 0, u0) (4.6)

where τ = t− t0.
Let us apply Lemma 4.2 to the function y(τ) = u(τ, 0, u0). Thus,

u(τ, 0, u0) 6 βα1

(
u0, τ

)
+ α−1

1 (2c)

where βα1
is a function of the class KL. By taking into account (4.2) and (4.6), it follows that

V
(
t, x(t, t0, x0)

)
6 u(t, t0, u0) = u(τ, 0, u0) 6 βα1

(
V (t0, x0), t− t0

)
+ α−1

1 (2c).

Hence, from (H2),
‖x(t, t0, x0)‖ 6 βα1

(
K1‖x0‖, t− t0

)
+ α−1

1 (2c).

Set β̃(r, s) := βα1
(K1r, s). Then, β̃ ∈ KL and

‖x(t, t0, x0)‖ 6 β̃
(
‖x0‖, t− t0

)
+ α−1

1 (2c).

Thus, the ball Bδ with δ = α−1
1 (2c) is globally uniformly asymptotically stable. �
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Corollary 4.1. Suppose that there exists a Lyapunov function V (t, x) satisfying conditions (H1),
(H2), (H3), and there exist functions α ∈ K∞ and c : (0,+∞) → (0,+∞) such that the following

inequality holds:

D+
f V (t, x) 6 −α

(
‖x‖

)
+ c(ε), ∀(t, x) ∈ R

+ × R
n, ε > 0.

Then, the solutions of (2.1) converge globally uniformly asymptotically to the ball Bδ(ε) with

δ(ε) = α−1
1

(
2c(ε)

)
.

Note that, if lim
ε→+0

c(ε) = 0, then the solutions approach the origin.

The stability analysis of perturbed differential equations is generally based on the stability of

the nominal system, provided that the size of the perturbation is known, as is knowledge of the

upper bound of the perturbation term that may arise from modeling errors or perturbations. By

utilizing the given form of the equations, one can study the asymptotic behaviors of the system

without explicit knowledge of the solutions.

Let us consider the following perturbed system:

ẋ = f(t, x) + g(t, x) (4.7)

where t ∈ R
+; f : R+ × R

n −→ R
n is a continuous function, locally Lipschitz with respect to x

such that f(t, 0) = 0, ∀t > 0; g : R+ ×R
n −→ R

n is a continuous function, which represents the

disturbance term, such that

‖g(t, x)‖ 6 λ(t, x)α0(‖x‖) + ξ(t, x), ∀ t ∈ R+, ∀ x ∈ R
n, (4.8)

where λ(·), ξ(·) ∈ C(R+ × R
n,R+) and α0 ∈ K∞.

Now, with the above appropriate condition made on the perturbation term g(t, x), we exam-

ine the behavior of solutions to the perturbed system (4.7) with the properties given in (H1),
(H2), (H3).

Theorem 4.2. Suppose that there exists a Lyapunov function V (t, x) such that conditions (H1),
(H2) and (H3) are fulfilled, and there exists α ∈ K∞ such that the following inequality holds:

D+
f V (t, x) 6 −α(‖x‖), ∀(t, x) ∈ R

+ × R
n. (4.9)

Suppose that the perturbation term satisfies inequality (4.8), where

sup
t∈R+×Rn

λ(t, x) 6 λ0 < +∞, (4.10)

sup
t∈R+×Rn

ξ(t, x) 6 κ < +∞, (4.11)

and α0 is selected such that, for some l ∈ (0, 1), for all r > 0,

α0(r) 6
l

K2λ0

α(r). (4.12)

Then, the solutions of (4.7) converge globally uniformly asymptotically to a certain ball centered

at the origin.
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P r o o f. Let us take the Lyapunov function V (t, x) satisfying conditions (H1), (H2), (H3) and

inequality (4.9). Now, we consider the upper right-hand derivative of V (t, x) with respect the

perturbed system (4.7). We have

D+
f+gV (t, x) 6 D+

f V (t, x) +K2‖g(t, x)‖.

By using (4.8) and (4.9), we obtain

D+
f+gV (t, x) 6 −α(‖x‖) +K2

(
λ(t, x)α0(‖x‖) + ξ(t, x)

)
,

for all (t, x) ∈ R
+ × R

n. By using (4.10) and (4.11), we get

D+
f+gV (t, x) 6 −α(‖x‖) +K2

(
λ0α0(‖x‖) + κ

)
,

for all (t, x) ∈ R
+ × R

n. By (4.12), we have

D+
f+gV (t, x) 6 −(1 − l)α(‖x‖) +K2κ.

Thus, the last inequality together with (H2) yields

D+
f+gV (t, x) 6 −(1− l)α

( 1

K1
V (t, x)

)
+K2κ.

So,

D+
f+gV (t, x) 6 −α2

(
V (t, x)

)
+ c,

where α2(r) = (1 − l)α
(

1
K1

r
)
∈ K∞ and c = K2κ. By using the reasoning from the proof

of Theorem 4.1, starting from (4.4) to the end of the proof of Theorem 4.1, we obtain that the

solutions of (4.7) converge globally uniformly asymptotically to a certain ball centered at the

origin, and the ball Bδ with δ = α−1
2 (2K2κ) is globally asymptotically stable for (4.7). �

Note that, if κ is small enough, then the radius of the ball also becomes small. Therefore,

if the bound κ depends on a parameter ε with lim
ε→0

κ(ε) = 0, then the state will approches to the

origin exponentially when t tends to infinity and ε → 0. This can be illustrated in the following

examples.

Example 4.1. Consider the differential equation:

ẋ = −x+ ε
|x|

|x|+ 1
sin2 t, t > 0, x ∈ R, (4.13)

with ε > 0. Equation (4.13) has the form (4.7), where f(t, x) = −x, g(t, x) = ε
|x|

|x|+ 1
sin2 t.

Take V (t, x) = |x|. Then conditions (H1), (H2) and (H3) are fulfilled if K1 = K2 = 1. We have

D+V (t, x) = −|x|. Hence, inequality (4.9) holds for α(r) = r ∈ K∞. Next, inequality (4.8)

holds for

λ(t, x) ≡ 0, α0(r) = r, ξ(t, x) = ε sin2 t.

Take κ = ε. Let l ∈ (0, 1) be arbitrary. Set λ0 := l. Then inequalities (4.10), (4.11), (4.12) are

fulfilled. We have α2(r) = (1− l)r, c = ε. By Theorem 4.2, solutions of (4.13) converge globally

uniformly asymptotically to the ball Bδ with δ = α−1
2 (2ε) = 2ε/(1− l)
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Example 4.2. Consider the differential equation:

ẋ = −1

2
x3 + ε

1

|x|+ 1
sin2 t, t > 0, x ∈ R, (4.14)

with ε > 0. Equation (4.14) has the form (4.7), where f(t, x) = −x3/2, g(t, x) = ε 1
|x|+1

sin2 t.

Take V (t, x) = |x|. Then conditions (H1), (H2) and (H3) are fulfilled if K1 = K2 = 1. We have

D+V (t, x) = −|x|3/2. Hence, inequality (4.9) holds for α(r) = r3/2 ∈ K∞. Next, inequality

(4.8) holds for

λ(t, x) ≡ 0, α0(r) = r3/2, ξ(t, x) = ε sin2 t.

Take κ = ε. Let l ∈ (0, 1) be arbitrary. Set λ0 := l. Then inequalities (4.10), (4.11), (4.12) are

fulfilled. We have α2(r) = (1 − l)r3/2, c = ε. By Theorem 4.2, solutions of (4.14) converge

globally uniformly asymptotically to the ball Bδ with δ = α−1
2 (2ε) = (4ε/(1− l)

)1/3
.

Example 4.3. Consider the differential equation:

ẋ = −x3 + ε sin t(x3 + cos x), t > 0, x ∈ R, (4.15)

with ε > 0. Equation (4.15) has the form (4.7), where f(t, x) = −x3, g(t, x) = ε sin t(x3+cosx).
Take V (t, x) = |x|. Then conditions (H1), (H2) and (H3) are fulfilled if K1 = K2 = 1. We have

D+V (t, x) = −|x|3. Hence, inequality (4.9) holds for α(r) = r3 ∈ K∞. Next, inequality (4.8)

holds for

λ(t, x) = ε| sin t|, α0(r) = r3, ξ(t, x) = ε| sin t cosx|.
Set λ0 := ε and κ := ε. Then inequalities (4.10) and (4.11) are fulfilled. Suppose that ε < 1.
Set l := ε. Then l ∈ (0, 1) and inequality (4.12) holds. We have α2(r) = (1 − ε)r3, c = ε. By

Theorem 4.2, if ε ∈ (0, 1), then solutions of (4.15) converge globally uniformly asymptotically to

the ball Bδ with δ = α−1
2 (2ε) = (2ε/(1− ε)

)1/3
.

§ 5. Robustness with respect to time scaling

Consider, for some ǫ > 0, the following system associated to (2.1):

ẏ = ǫf(ǫt, y), (5.1)

where f : R+ × R
n −→ R

n is a continuous function and locally Lipschitz with respect to y such

that f(t, 0) = 0, ∀t > 0. For any x0 ∈ R
n and t0 ∈ R

+, we denote by y(t, t0, x0), or simply

by y(t), the unique solution of (5.1) at time t0 starting from the point x0. We have, ∀t > t0 > 0,

y(t, t0, x0) = x0 +

∫ t

t0

ǫf
(
ǫs, y(s, t0, x0)

)
ds.

Remark that, one has

y(t, t0, x0) = x(ǫt, ǫt0, x0), ∀t > t0 > 0.

Indeed,

d

dt
y(t, t0, x0) =

d

dt
x(ǫt, ǫt0, x0) = ǫ

d

d(ǫt)
x(ǫt, ǫt0, x0),

d

dt
y(t, t0, x0) = ǫf

(
ǫt, y(t, t0, x0)

)
= ǫf

(
ǫt, x(ǫt, ǫt0, x0)

)
,

and y(t, t0, x0)
∣∣
t=t0

= x0 = x(ǫt, ǫt0, x0)
∣∣
t=t0

.
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Theorem 5.1. Suppose that there exists r > 0 such that the ball Br is globally uniformly asymp-

totically stable with respect to the system (2.1). Then, for any ǫ > 0, Br is globally uniformly

asymptotically stable with respect to the system (5.1) as well.

P r o o f. Taking into account Definition 2.6, there exists a class KL function β such that

‖x(t, t0, x0)‖ 6 β(‖x0‖, t− t0) + r, ∀ t > t0 > 0, ∀x0 ∈ R
n \Br.

Thus, using the fact that y(t, t0, x0) = x(ǫt, ǫt0, x0), ∀t > t0 > 0, which is the corresponding

solution of (5.1), one gets

‖y(t, t0, x0)‖ = ‖x(ǫt, ǫt0, x0)‖ 6 β
(
‖x0‖, ǫ(t− t0)

)
+ r. �

Example 5.1. Let us consider the scaling system associated to the one given in Example 4.1

ẏ = −ǫy + ε
|ǫy|

|y|+ 1
sin2 ǫt, x ∈ R, ǫ > 0. (5.2)

Since the solution x(t, t0, x0) satisfies

‖x(t, t0, x0)‖ 6 β(‖x0‖, (t− t0)) + 2ε/(1− l),

for certain KL function β, then, one has

‖y(t, t0, x0)‖ 6 β(‖y0‖, ǫ(t− t0)) + 2ε/(1− l).

It follows that, the ball Bδ with δ = 2ε/(1 − l) is globally asymptotically stable with respect to

the system (5.2).

Conclusion

In this paper, some new sufficient conditions for the asymptotic or exponential stability of

a class of nonlinear time-varying differential equations have been presented by using Lyapunov

functions that are not necessarily differentiable. The notions of stability in variation and Lipschitz

stability have been discussed as well. Moreover, the global uniform asymptotic stability for

perturbed nonautonomous systems by using Lyapunov approach has been studied. The present

results have been applied to some examples.

Funding. The study of V. A. Zaitsev was funded by the Ministry of Science and Higher Education
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35. Tunç C., Tunç O. New qualitative criteria for solutions of Volterra integro-differential equations, Arab

Journal of Basic and Applied Sciences, 2018, vol. 25, issue 3, pp. 158–165.

https://doi.org/10.1080/25765299.2018.1509554

36. Vidyasagar M. Nonlinear systems analysis, Englewood Cliffs: Prentice Hall, 1993.

37. Yoshizawa T. Stability theory by Liapunov’s second method, Tokyo: The Mathematical Society of

Japan, 1966.

38. Zaitsev V. A., Kim I. G. On the stability of linear time-varying differential equations, Proceedings of

the Steklov Institute of Mathematics, 2022, vol. 319, suppl. 1, pp. S298–S317.

https://doi.org/10.1134/s0081543822060268

39. Zaitsev V., Kim I. Exponential stabilization of linear time-varying differential equations with uncertain

coefficients by linear stationary feedback, Mathematics, 2020, vol. 8, issue 5, article 853.

https://doi.org/10.3390/math8050853

Received 19.10.2023

Accepted 27.05.2024

https://doi.org/10.3846/1392-6292.2007.12.297-308
https://doi.org/10.1080/00207179.2013.774464
https://doi.org/10.1093/imamci/dnu016
https://doi.org/10.1023/A:1013099004015
https://doi.org/10.1080/00207179208934253
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1016/j.automatica.2006.07.012
https://doi.org/10.1080/25765299.2018.1509554
https://doi.org/10.1134/s0081543822060268
https://doi.org/10.3390/math8050853


244 On the stability in variation

Mohamed Ali Hammami, Doctor of Physics and Mathematics, Professor, Department of Mathematics,

Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia.

ORCID: https://orcid.org/0000-0002-9347-4525

E-mail: MohamedAli.Hammami@fss.rnu.tn

Rabie Hamlili, Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Tunisia.

E-mail: hamlilirabie13@gmail.com

Vasilii Aleksandrovich Zaitsev, Doctor of Physics and Mathematics, Head of the Laboratory of Mathemat-

ical Control Theory, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia.

ORCID: https://orcid.org/0000-0002-0482-4520

E-mail: verba@udm.ru

Citation: M. A. Hammami, R. Hamlili, V. A. Zaitsev. On the stability in variation of non-autonomous

differential equations with perturbations, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.

Komp’yuternye Nauki, 2024, vol. 34, issue 2, pp. 222–247.

https://orcid.org/0000-0002-9347-4525
mailto:MohamedAli.Hammami@fss.rnu.tn
mailto:hamlilirabie13@gmail.com
https://orcid.org/0000-0002-0482-4520
mailto:verba@udm.ru


ВЕСТНИК УДМУРТСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. КОМПЬЮТЕРНЫЕ НАУКИ

МАТЕМАТИКА 2024. Т. 34. Вып. 2. С. 222–247.

М. А. Хаммами, Р. Хамлили, В. А. Зайцев

Об устойчивости в вариации неавтономных дифференциальных уравнений с возмущениями

Ключевые слова: неавтономные дифференциальные уравнения, возмущение, функции Ляпунова,

асимптотическая устойчивость.

УДК 517.9

DOI: 10.35634/vm240204

В данной статье исследуется проблема устойчивости в вариации решений неавтономных дифферен-

циальных уравнений. Представлены некоторые новые достаточные условия асимптотической или

экспоненциальной устойчивости для некоторых классов нелинейных нестационарных дифференци-

альных уравнений, использующие функции Ляпунова, которые не обязательно являются гладкими.

Предлагаемый подход для анализа устойчивости основан на определении границ, характеризующих

асимптотическую сходимость решений к некоторому замкнутому множеству, содержащему начало

координат. Кроме того, приведены некоторые иллюстративные примеры, демонстрирующие спра-

ведливость основных результатов.
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