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In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential
equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes
of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not
necessarily smooth. The proposed approach for stability analysis is based on the determination of the
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§ 1. Introduction

Asymptotic stability is a fundamental concept in the qualitative theory of dynamical systems,
and it plays a significant role in numerous applications of the theory in almost all domains
where dynamic effects are present. The general theory of the stability of motion is presented in
monographs [19,29-31,36,37]. The use of Lyapunov functions is important in the study of the
stability of solutions of systems of differential equations. This approach is based on the finding
that asymptotic stability is closely related to the existence of a Lyapunov function, which is a
proper, nonnegative function that decreases along the system’s paths that do not evolve in the
invariant set and vanishes only on an invariant set. There are different methods for the stability
analysis via Lyapunov functions for time-varying differential equations [3-8,33-35]. However,
for nonlinear systems of differential equations the construction of such functions is a complex
problem. It turns out that the Lyapunov functions can be used not only for studying the stability
of solutions but also the asymptotic behaviors analysis [2,12,38,39].

It is well known that the second method of Lyapunov [29,30] provides sufficient conditions
to ensure various types of stability for a dynamical system described by ordinary differential
equations with perturbations [20,21,23-28]. The perturbation term could result from errors in
modeling a nonlinear system, aging of parameters or uncertainties and disturbances. In general,
we know some information on the upper bound of the term of perturbation. Given two solutions to
a dynamical system with initial conditions that are close at the same value of time, these solutions
will remain close over the entire time interval and not just at the initial time. This motivates us
to study the problem of uniform asymptotic stability of perturbed systems by assuming that
the nominal associated system is globally uniformly asymptotic stable “in variation” (see [10]
and the references therein) under some restrictions on the size of perturbations. The notion of
uniform Lipschitz stability [17, 18] lies somewhere between uniformly stability on one side and
the notions of asymptotic stability in variation and uniform stability in variation on the other side.
The problem concerning the asymptotical convergence of solutions of differential equations by
using continuously differentiable function with a negative definite derivative is a classical one.
In certain cases, Gronwall inequalities and Lyapunov theorems provide stability conditions that
do not require knowledge of the system trajectories. However, for some dynamical systems one
takes a Lyapunov function which is not necessarily differentiable that arises naturally.


https://doi.org/10.35634/vm240204

M. A. Hammami, R. Hamlili, V. A. Zaitsev 223

The stability and asymptotic behavior of nonlinear systems have been studied in [10] using the
analogue of Alekseev’s variation of constants formula for nonlinear systems (see [1]). Dannan and
Elaydi have introduced the uniform Lipschitz stability [17], for systems of differential equations.
It was shown in [17] that, for linear systems, the notions of uniform Lipschitz stability and that
of uniform stability are equivalent. However, for nonlinear systems, the two notions are quite
distinct [17]. In fact, uniform Lipschitz stability lies somewhere between uniform stability on one
side and the notions of asymptotic stability in variation developped by Brauer [10] and uniform
stability in variation of Brauer and Strauss [9] on the other side.

In this paper, we use Lyapunov’s second method to define the behavior of solutions of some
nonlinear differential equations. Especially, we are looking for the asymptotic stability of the
solutions using Lyapunov function which are not necessarily smooth. We prove that the solutions
are bounded and converge to a certain closed set containing the origin. Furthermore, some
examples are given to show the applicability of the main results.

§ 2. Stability analysis

The qualitative behavior of the solutions of perturbed nonlinear systems of differential equa-
tions is often studied by obtaining a Lyapunov function for the unperturbed system and using it as
a Lyapunov function for the perturbed system. We wish to investigate the properties of solutions
of a system of differential equations when a Lyapunov function is known whose derivative, in
the sense of Dini, along solutions of the system satisfies a negative definitive condition under
the presence of perturbations. Let us consider a time-varying system described by the following
time-varying differential equation:

i = f(t,z) 2.1)

where f: R x R® — R™ is a continuous function and locally Lipschitz with respect to x such
that f(¢,0) = 0, Vt > 0, and the associated perturbed systems:

&= [t ) +9(t) (2.2)

where t € RT, g: RT — R" is a continuous function.

In the sequel, we give some of the main definitions that we need to study the asymptotic
behavior of the solutions. The notion of stability will be given in the sense of “Stability in
variation” (see [10, 11]).

Consider the time-varying system (2.1). Unless otherwise stated, we assume throughout the
paper that the function f(.,.) encountered is sufficiently smooth. We often omit arguments of
function to simplify notation; R" is the n-dimensional Euclidean vector space; R™ is the set of
all non-negative real numbers; ||x|| is the Euclidean norm of a vector x € R"; B, = {x € R" |
|z|| <7}, r > 05 ||A|| = maxg=1 [|Az|| is the norm of a matrix A.

For any 2o € R" and ¢, € R", we will denote by x(¢, ¢y, o), or simply by z(¢), the unique
solution of (2.1) at time ¢, starting from the point xy. We have, Vt > t;, > 0,

t
x(t, to, To) = xo + / f(s,x(s, to, ZEO)) ds.

to

Let f,.(t,z) be the matrix whose element in the ith row, jth column is the partial derivative

. af"
of the ith component of f with respect to the jth component of z, i.e., f, = { 6f } . Let
Lj)ij=1
x(t, to, x¢) be the solution of (2.1). We have

(I)(t,to,l‘o) = i l‘(t,to,[[’o)
8:60
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is a solution of the variational system:

i = fu(t, z(t, to, z0)) 2. (2.3)
The matrix ®(t, ¢y, xo) is called the fundamental matrix solution of (2.3) with respect to the
solution x(t, o, x9). We have ®(t, to, xo) =1
=to

We will define the notion of stability i 1n terms of variational system with respect the solution
x =0 (see [9,10,17,18]).

Definition 2.1. The solution z = 0 of (2.1) is said to be globally uniformly Lipschitz stable in
variation [17, Definition 1.4], or, in other words, globally uniformly stable in variation [9],[2,
Definition 1.3] if there exists a positive constant M such that

H@(t,to,ﬂfo)” < M for all ¢ =ty = 0 and Tg € R™.

Note that, the solution x(¢, to, o) of (2.1) satisfies the following equality:

x(t, to, xg) = (/1 O(t, 19, sxo) ds)a:o. (2.4)
0

From (2.4), it follows that, if the solution z = 0 of (2.1) is globally uniformly stable in variation,
then
H.’L‘(t to,l’o)” MH.T()H for all ¢ =ty = 0 and Xo € R™.

For linear systems, global uniform stability in variation and uniform stability coincide [17,
Theorem 2.1]. The following simple property can be stated for the variational system.

Proposition 2.1. If the zero solution of (2.1) is globally uniformly stable in variation, then the
zero solution is globally uniformly stable for

i = fo(t,z(t,t,0))z. (2.5)

Proof Indeed, let zero be globally uniformly stable in variation for (2.1). Then there exists
M > 0 such that V¢ =ty = 0 Va:o e R” ”@(t,to,]ﬁo)” < M. By (24), Vi =ty = 0 VZCO e R"”
(2, o, o) || < Mo

Denote z = (zo,,- - -, To,, - - -, To, )" . Since z(t,1,0) = 0, we have
0u(t,t0,0)| _ | 9ltstos Oy 0) ~ altto,0)| o MIA] _
pro el h 7]

So, for the transition matrix (¢, to,0) of the variational equation 2 = f, (¢, z(t, %, 0))z, we have

(1. t0,0)]] = ]

oz (t, to, H

It follows that the zero solution of (2.5) is globally uniformly stable. U

Remark 2.1. Note that, the local version of Proposition 2.1 takes place as well. Namely, if
the zero solution of (2.1) is locally uniformly (Lipshitz) stable in variation [17, Definition 1.3],
[18, Definition 3.4], then the zero solution of (2.5) is locally uniformly stable. Indeed, if the zero
solution of (2.1) is locally uniformly Lipshitz stable in variation, then, due to [17, Theorem 3.3],
the zero solution of (2.1) is locally uniformly Lipshitz stable. Now, by [17, Theorem 3.4], the
zero solution of (2.5) is locally uniformly Lipshitz stable. Since system (2.5) is linear, we get, by
[17, Theorem 2.1], that the zero solution of (2.5) is locally uniformly stable.
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Example 2.1. Let us give a simple example to show that one can lose the uniform character of
attractiveness of solutions. Let us consider the following scalar differential equation:

f=——" zeR, t>0.
t+1
Then,
to+ 1
z(t,to, Tg) = T .
( y L0 0) 0t+1
We have
‘l’(t,to,ﬂfo)‘ < ‘SL’Q|, Vt>t0 20, Va:o e R"™.
The origin is globally uniformly stable in variation. Moreover, lim; o, |z(,to, 7o) = 0. We

have: for any € > 0, there exists 6 = € such that if |zq| < ¢, then |z(t, tg, zo)| < |zo] < § = €
for t > to > 0. This implies that the origin is asymptotically stable. But it is not uniformly
attractive, and therefore, the origin is not uniformly asymptotically stable, because, for 7" > 0 and

t =ty + T, one gets z(t, ty, 29) = 2o to’:ﬁil, which tends to z as t; — oo.

Definition 2.2 (see [2, Definition 1.4]). The solution = = 0 of (2.1) is said to be globally uniformly
slowly growing in variation if for every ¢ > 0 there exists a positive constant M, possibly
depending on ¢, such that

| D (L, to, wo)|| < Mest=*)  forall t >t; >0 and x, € R".

Definition 2.3 (see [2, Definition 1.5]). The solution x = 0 of (2.1) is said to be globally expo-
nentially stable in variation if there exist two positive constants A; and A\, which are independent
of the initial condition, such that

1D (t, Lo, o)|| < Me 2% forall t >ty >0 and x, € R".
Example 2.2. As an example, consider the following scalar differential equation:
T=—(t+ 1z, x(ty) = zo.

The solution with respect to the initial condition is given by:

ZE(t, to, l‘o) = (I)(t, to, ZL‘Q)I‘O where (I)(t, to, IL’Q) = 6_0'5((t+1)2_(t0+1)2) .
It follows that, for all ¢t > t; > 0 and 2y € R",
||(I>(t, to, $0)|| < 670.5(t7t0)(t+t0+2) < ef(tfto).
The above estimation implies that the zero solution is globally exponentially stable in variation.

Remark 2.2. Note that the exponential stability can be just local. As an example of system
showing exponential stability but not global exponential stability, one can consider the following
scalar differential equation: & = —x + z%. A simple computation shows that the solution with
respect to (tg, 7o) is given by:

xoe~ (1)

#(t: o, 20) = xoe~t—to) — xq+ 1

The zero solution is exponentially stable but is not globally exponentially stable, because if we
take t = to, xo = 1, then the solution (¢, ¢, zo) is equal to 1 when ¢ goes to infinity.
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Moreover, the exponential stability implies the asymptotic stability, but the converse is not
true. As an example, we consider the differential equation: & = —z3/2. The solution of the initial
value problem with the initial condition x(¢y) = x¢ is given by:

2ty to, wo) = o (22(t —to) +1) "2 £ =12 0.
It can be seen from the above solution that the zero solution is globally uniformly asymptotically
stable but not exponentially stable.

Definition 2.4 (see [10]). The solution z = 0 of (2.1) is called asymptotically stable in variation
if there exists a positive constant /' such that, for every ¢, > 0 and all ¢ > ¢,

t
/ |D(t, s,0)] ds < K.
to

The following result is established by Brauer [10, Theorem 1].

Proposition 2.2. If the solution x = 0 of (2.1) is asymptotically stable in variation, then there
exist constants o > 0 and M > 0 such that

t —~
/ sup ||®(¢,s,z0)|| ds < M,
t

o [lzoll<a
for every sufficiently large to and all t > ty > 0.

Note that, if the trivial solution x = 0 of (2.1) is asymptotically stable in variation, then
[10, Lemma 3], for each tq > 0 and ||zo|| < «,

i [|(t, o, 70)]| = 0.

Here, we have supposed that f(¢,0) = 0, V¢ > 0. For the studying stability of the perturbed
system (2.2) in the case where g(t) # 0 for a certain ¢ > 0, we shall study the asymptotic behavior
of solutions in a neighborhood of the origin, in the sense that the solutions converge to a certain

small ball B,, » > 0, centered at the origin. Therefore, we introduce the notion of exponential
stability of B, (see [6,7,13-16,20,27]).

Definition 2.5. The set B, = {x € R" | ||z|| < r} is said to be globally uniformly exponentially
stable with respect to the system (2.2), if there exist A\; > 0 and A2 > 0 such that solutions
x(t, 1o, zo) of the system (2.2) satisfy the inequality

||$(t,t0,l‘0)|| < )\1||l‘0||6_>\2(t_t0) +r Vi 2 to 2 0, \V/ZEQ e R"” \ Br-

The factor A\, in the above definition will be named the convergence speed while factor \;
will be named the transient estimate.

Remark 2.3. It is worth to notice that, if we take » = 0 with g(¢) = 0, V¢ > 0, then one
deals with the standard concept of the global exponential stability of the origin viewed as an
equilibrium point. It turns out that Definition 2.5 can be considered more general as the standard
one, but by taking the radius small enough one can study the asymptotic behavior of the solutions
near the origin which are not necessarily an equilibrium point. In this case, we shall study the
asymptotic behavior of a small ball centered at the origin for 0 < ||z(¢)|| — r, ¥Vt > to = 0, so
that the initial conditions are taken outside the ball B,.. If r is small enough, then the trajectories
approach a small neighborhood of the origin when ¢ goes to infinity. In our case we consider
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systems which have disturbances (perturbations) where their presence in the model entails that the
origin is not an equilibrium point and their boundedness gives that the radius r is strictly positive.
Under these conditions the convergence of the solutions would be towards a small ball where the
resulting radius is not optimal. It is possible that we can improve the asymptotic behavior by
minimizing this radius. In certain situations we can give the solution directly. If not then one can
use integral inequalities or the Lyapunov approach. The best we can do is to estimate r to be as
small as possible. Moreover in our situation for the convergence of the solutions it’s convenient
to take initial conditions outside this ball. It turns out that the state approaches the origin (or
some sufficiently small neighborhood of it) in a sufficiently fast manner. Therefore, if the bound
of perturbation term depends on a parameter € with ll_)I% r(e) = 0, then the state will converges to

the origin exponentially when ¢ tends to infinity and ¢ — 0.

Example 2.3. Taking into account the above Remark, one can illustrate the convergence of the
solutions by different methods. As the first example, let us consider the following scalar dif-
ferential equation: # = —xz + e 2!, Here one can give the general solution explicitly. A simple
computation shows that the solution with respect to (to, zo) is given by:

z(t, tg, mg) = e~ Tty 4 = (tHl0) _ =2

It follows that
|z(t, to, 20)| < |wole™ 1) +2, t >ty >0.

The last estimate shows a uniform convergence towards a certain neighborhood of the origin
where the convergence speed Ay = 1 and the transient estimate A\; = 1. Therefore, if the initial
conditions are taken outside the ball B,, then the trajectories reach to this set when ¢ goes to
infinity.

Example 2.4. Note that the disturbance term can depend on the state; in the study of the conver-
gence of solutions, the method of integral inequalities is a fundamental and very useful tool to
have an idea for the asymptotic behavior of the system. The following example shows the con-
vergence towards a neighborhood of the origin in the nonlinear case by using a suitable integral
inequality. Let us consider the perturbed equation:

(t) = =Az(t) + ()P, t=>0, zeR, A>0, 0<p<l.

The solution with respect to the initial condition (¢, (to)), to = 0, is given by:

t

z(t) = e Mg (1) +/ e N9 |1(5)|P ds.

to

It follows that .

lx(t)| < e’A(t’t°)|x(t0)| —i—/ e*A(t’s)\x(s)V’ ds.

to

We have .
Ma(t)] < la(to)| + / le(s)P ds.

to

Let us set u(t) = e*|z(t)|. Then we get

t
u(t) < ulty) —i—/ eU=PsyP(5) ds.

to
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From [22, Theorem 21], we have

Thus,

Since, for any ¢ > 1 and any a,b > 0,

(a+b)* <277} (a” +07),

1
then, by taking ¢ = 15 > 1, we obtain:
-p

1 =
U(t) < 2ﬁ—1{(u(to)) + (X [e(lfp))\t o 6(1*]7))\150]) }
Then )
P 2P\ 1-p L
eMz(t)] < 27 (e”o|x(t0)|> + (T) [e(1mPIAE — elI=P)Mo] 1y (2.6)
We have N
0PN _ (=] 5 (1 PTG = M (2.7)

From (2.6) and (2.7), it follows that

1
P\ T-p
()] < 275 [a(to) e + < X )

So, we obtain an estimate on the solution as in Definition 2.5.

Furthermore, we can study the convergence of solutions to a small neighborhood of the origin
by using the Lyapunov approach, in this sense. Let us consider the following example.

Example 2.5. For the following scalar equation, we will use Lyapunov techniques as an effective
tool especially for the study of convergence of solutions, since we can take the Lyapunov function
of the system without disturbances as a Lyapunov function candidate for the entire system with
the disturbance. Let us consider the following perturbed differential equation

xXr
et rzeR, &>0.

Tr=—x+¢

Take V (¢, x) = x2. By taking the derivative along the trajectories, we obtain:
2
(&
x?2+1

V(t,x) = =222 + 2 —22% + 2ee .

Hence, .
V(t,z) < =2V (t,x) + 2e. (2.8)

Let us find an estimation for V (¢, z(t)) from the differential inequality (2.8). Denote z(t) =
=V (t,x(t)). Let the initial state z(to), to > 0, satisfy condition

2(t) =€ > 0. (2.9)
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From (2.8), it follows that
2(t) < =2z2(t) +2¢, t=to. (2.10)

Replace u(t):= z(t) — . Hence, from (2.10), it follows that
u(t) < =2u(t), t=to, (2.11)

and, from (2.9), it follows that u(ty) > 0. Denote u(t) := v(t)e2¢=%)  Then, from (2.11), it
follows that o(t) < 0, t > to. Hence, v(t) < v(to) = u(to). Therefore,

u(t) = U(t)e_Q(t—to) < U<t0>€—2(t—t0) _ U(to)e_Q(t_tO)_

So,
(1) < (2(to) —e)e™ T e, 1>t (2.12)

Now, using the fact that V (¢, z) = 2%, we obtain from (2.12) that
() < (2*(to) — ge 2T p et >t (2.13)

Let the initial condition x(ty) is taken outside [—+/¢,++/2]. Hence, 2%(ty) — ¢ > 0, and, in
particuar, (2.9) holds. Then, from (2.13), it follows that

()] < (22 (to) — €)% 4 VE < a(to)lle ™ + Ve, >t

So, we get the estimate on the solution as in Definition 2.5, and this estimation gives the ex-

ponential convergence of the solution toward the ball B z = [—+/c, ++/¢]. Here, the bound of

perturbation term depends on the parameter ¢ with lin% r(e) = 0, then the state will converges to
E—

the origin exponentially when ¢ tends to infinity and € — 0.

In the sequel, we will recall the definitions of comparison functions. For time-varying systems,
the authors in [32] studied how definitions of uniform global asymptotic stability that have been
employed over the years in a variety of monographs and publications lack “uniformity”. Uniform
global attraction and uniform local stability are sometimes combined to make uniform global
asymptotic stability. In order to study the asymptotic behavior of system (2.2), we will use the
K, K& and KL functions which perfectly and rigorously characterize the uniform asymptotic
stability (see [25,29,36]).

e A continuous function « : [0,+00) — [0,+00) is said to belong to class K [29, Defi-
nition 4.2] if it is strictly increasing and «(0) = 0. It is said to belong to class K, if
a(r) — 400 as r — +o00.

e A continuous function § : [0, +00) X [0,+00) — [0,400) is said to belong to class KL
[29, Definition 4.3] if, for each fixed s, the mapping J3(r,s) belongs to class K with
respect to r and, for each fixed r, the mapping 5(r, s) is decreasing with respect to s and
B(r,s) — 0as s — +o0.

By [29, Lemma 4.5], the zero equilibrium of system (2.2) with g(¢) = 0 is globally uniformly
asymptotically stable if and only if there exists a class L function 3 such that ||z (¢, t, zo)|| <
< B(lwoll, t —to), Vt=to >0, Yoy € R™

The asymptotic behavior of the solutions of (2.2) can be studied in a neighborhood of the
origin, in this case the solutions converge to a certain small ball.
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Definition 2.6. The ball B, is said to be globally uniformly asymptotically stable with respect to
the system (2.2), if there exists a class L function 3 such that the solutions z(t, ¢y, zo) of the
system (2.2) satisfy the inequality

l2(t, to, o) || < Blwoll,t —to) + 7,  Vt=ty >0, VageR"\ B,

When the origin is not an equilibrium point, one can examine the asymptotic behavior of the
solution with regard to a small ball centered at the origin. There are many results which relate
the asymptotic stability of the zero solution of the unperturbed system to that the zero solution
of the perturbed equation. The relation can be studied through a slight variant of the nonlinear
variation of constants formula. Let Z(¢, ¢y, o) be the solution of (2.2) passing through (%o, x¢)
and x(t,to, x¢) be the solution of (2.1) passing through (tg, o). Then (see, e.g., [1,9]), we have

t
Z(t, to, o) = x(t, to, o) +/ D(t,s,2(s, to, o)) g(s) ds.
to
So, by imposing some restrictions on the term of perturbation, one can reach conclusions on the
stability of the perturbed system.

In the sequel, we give an example of class of scalar perturbed linear differential equations
where solutions satisfy an estimation as the one given in Definition 2.6. In fact, the qualita-
tive analysis of solutions of linear differential equations and their perturbed linear differential
equations is crucial for addressing a wide range of practical issues in the fields of mechanical,
electrical, control, and economic engineering. As a result, several authors have investigated many
questions along these lines and highlighted a variety of attributes where they suppose in general
that the origin is an equilibrium point.

Example 2.6. Let us consider the following scalar linear system:
i =a(t)e+g(t), >0,

where a(-) is continuous and g(+) is a continuous bounded function. Then, one has

2(t, to, %) = %o exp( /t () ds) + /t o) exp( / "a(s) ds) dr.

0 0 T

Note that, the concept of stability of the nominal unperturbed scalar linear time-varying equa-

t
tion is related to the transition matrix ®(¢,t5) = exp ( / a(7) dT). The asymptotic stability is
t
characterized by the fact that ’
t

lim a(t)dr = —o0.
t——+o0 to

The exponential stability is characterized by the fact that

1 t
lim sup / a(t)dr < 0.
ttoo =10 Jy,

So, if the nominal unperturbed system is exponentially stable at the origin and the estimation

/ttg(f) exp (/Tta(s) ds)dT <r

0

holds for some » > 0, then one can obtain an estimation on the solutions in presence of the
term of perturbation, where the radius r of the ball B, depends on the size of the bound of
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the function g. Indeed, to obtain an estimation as in Definition 2.6, it suffices to suppose that
the nominal system is globally uniformly asymptically stable, which is characterized by the

t
fact that /a(r) dr < A — Xt —to), A\t > 0, Ay > 0, V& > t, > 0. In this case, with
to

B(|zol,t — to) = eM|xo| exp ( — Aa(t — to)) one has |2(t, to, zo)| < B(|zol,t — to) + 7

Example 2.7. Note that, we can take in the example above a nominal unperturbed system which
is non-linear, instead of a linear one. As an example, we consider the differential equation:

= —e'a? (2.14)
The solution is given by
(t, o, 7o) o E>1>0 (2.15)
x(t, tg, xg) = , . :
0 V14 2 (et — eto) e
We have: for any zp € Rand ¢t > ¢, > 0,
1+ 2z3(e! — ) =1+ 2zdefo (e — 1) > 1+ 222(e' P — 1), (2.16)

,
V14 2r2(es — 1)

Set 5(r, s) = ,7>0,s>0. Then 5(0,s) =0,

9B _ 1
o (14 2r2(es — 1))

37 > 0.

Hence, §(r, s) is strictly increasing in 7. Next,
oB r3es
05 (142r2(es — 1))

< 0.

Hence, (3(r,s) is strictly decreasing in s. Moreover, 5(r,s) — 0 as s — +oo. Therefore, it
belongs to class L.
From (2.15) and (2.16), it follows that

|o] < |o]
V14 252(et —eto) /14 232 (et~t0 —

|z (¢, to, zo)| <

) = B(|xol, t — to).

It follows that the zero solution of system (2.14) is globally uniformly asymptotically stable.
Calculating (¢, ¢, zo), we get:
Ot to, o) = (1+ 222" — €))%,
Thus, |®(t, to, )| < 1, Vit =ty = 0 Then, by considering a disturbance similar to the one given
in the previous example, we can arrive at a similar estimate on the trajectories.

The perturbations were represented by an additive term on the right-hand side of the equation
of state (2.2) and the origin was not supposed to be an equilibrium point of the system. Based
on the stability of the nominal system (2.1), which had the origin as its equilibrium point, we
cannot expect that the solution of the perturbed system will approach the origin as ¢ goes to
infinity. The best we can hope for is that for a small perturbation term the solution tends to a
small set containing the origin. However, the desired state of the system may be mathematically
unstable, but the system may oscillate close enough to that state that the performance is considered
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acceptable. In a typical situation we do not know ¢ but just some information about it, for
example the upper bound on the norm of g. A natural approach is to solve this problem by using
a Lyapunov function for the nominal system as a Lyapunov function candidate for the whole
system.

Stability analysis for linear time-varying systems is of increasing interest in theory. One
reason is the growing importance of adaptive controllers for which the underlying closed-loop
adaptive system often is time-varying and linear which can be modeled as

&= A(t)z, (2.17)

where A is an n X n-matrix whose entries are real-valued piecewise continuous functions of
t € R*. The space of solutions has dimension n. A basis of the space of solutions of this
system, i.e., the set {z1,...,x,} of linearly independent solutions, is called a fundamental set
of solutions. The matrix VU(t) = [z1(t) ... x,(t)], whose columns are the basis vectors of the
solution space, is called a fundamental matrix. A fundamental matrix is a solution to the matrix
equation

U(t) = A(t)U(t)

and conversely, any nonsingular solution of the above system is a fundamental matrix of the
linear system. Let W(¢) be a fundamental matrix. Then

Dt tg) = V()W L), t=to,

is called the state transition matrix. Notice that the above definition is consistent in the sense
that (¢, o) is uniquely defined by A(t) and independent of the particular choice of W(¢) (see
[19, Ch. II, Sect. 2]).

We have a characterization for uniform asymptotic stability. The trivial solution of the linear
system (2.17) is globally uniformly asymptotically stable if and only if it is exponentially stable
[29, Sect. 4.6] that is there exist positive constants k£ and ~ such that

[@(t, to)|| < e U700 Wt > 15 > 0.

The solution of (2.17) with the initial condition z(ty) = x is z(t) = (¢, to)xe, t = to. This
formula can be directly checked using the definition relation ®(¢,ty) = W(t)U 1 (ty), t > .
It shows that the state transition matrix is a linear transformation that maps the initial condi-
tion xy into the state x at time ¢. If the system is time-invariant (A(t) = A), then ®(t,ty) =
= exp (A(t — to)). If A(¢) is not constant and the matrices A(t) and A(s) commute for all (¢, s),

t
then ®(¢,ty) = exp (/ A(s) ds).
t
Let us consider the q[ime-varying system (2.1) in the case where the nominal system is linear,

namely, f(¢,x) = A(t)z, and the perturbation term in system (2.2) is taken as g(¢,x) instead

of g(t):
T =A(t)xr + g(t, z). (2.18)

Suppose that A(t) is an (n X n) continuous and bounded matrix, g(¢, x) is a continuous function,
and there exists a nonnegative continuous function ((¢) such that

lg(t,z)[ < C(1), zeR", =0

We suppose that the bounds of the nonlinearities satisfy the following condition:

+o0
either / ((s)ds < +o0 or tlim ¢(t)=0.
0 —00
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If the function ((t) satisfies one of the last two conditions, then, for any given A > 0 and for any
fixed to 2 O,

t
lim e_/\t/ e*((s)ds = 0.

t—o00 to

This fact was shown in [27] for the case ¢, = 0. It is clear that this is true for any fixed ¢, > 0.
Further, if the nominal system is uniformly asymptotically stable, then the associated transition
matrix satisfies condition

1Dt to)|| < e 200 Wi >1,>0,

for some A\; > 0, Ay > 0. The solution of system (2.18) with an initial condition x(tq) = zg
(to = 0) can be written as

x(t) = ®(t,t9)xo + /tt ®(t,s)g(s,z(s)) ds, t > to.
Then,
@)1 < 1@, o) [} [ oll +/t 1o (t, s)ll g (s, 2(s)) || ds, ¢ > to.

It follows that

t
()] < Aullaofle =) +/ Me I (s)ds,  t > .

to
Thus,
t
[z (2)]] < A flzolle2010) + A16”15/ e°((s)ds, t>to.

to

Since

t
lim e_’\2t/ e*2*((s)ds = 0,

t—o0 to

then there exists Z > ( such that

t
e ! / 2((s)ds < ¢, Yt =t
to
It follows that
()] < Mllolle 00 + X ¢, t >t

Hence, as in Definition 2.5, the ball B, with r = )\15 is globally uniformly exponentially stable

with respect to the system (2.18).
+o0

Note that (see [27]): if the function ((¢) satisfies C(s)ds < & < o0, then
0
t t g
e_’\2t/ e*%((s) ds < e_’\2t/ e*2*((s) ds < o Vit >ty > 0;
to 0 2

t
if the function ((t) satisfies ||((¢)]| < n, Vt > 0, then eht/ ¢ (s) ds < IR Vit >ty > 0.
to 2
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§ 3. Lyapunov approach

Lyapunov’s direct method allows one to determine the stability of a system without explicitly
integrating the differential equation. This method is a generalization of the idea that if there is an
appropriate energy function in a system, then we can study the rate of change of the energy of
the system to a certain stability. To make this precise, we need the following definitions.

Consider a continuous function V: RT x R® — R*. V is said to be globally Lipschitzian in
x (uniformly in ¢ € RY) if

V(t,2) = Vt,y)| < Ko —y]

for some K > 0 and for all (¢,z,y) € Rt x R™ x R™. Corresponding to V' we define the Dini
derivative DTV with respect to system (2.1) by

D'V (t, ) = lim sup %(V(t +h,x+ hf(t,z) = V(t,x)),

h—0t

called the upper Dini derivative of V(.,.) along the trajectory of (2.1). Let x(t) be a solution
of (2.1). Denote by V' (t,z(t)) the upper right-hand derivative of V (¢, z(t)), i.e.,

1
V'(t,2(t)) = limsup — (V(t + h,z(t+ h)) — V(, x(t)))
h—0+ h
If V(t,x) is continuous in ¢ and Lipschitzian in x (uniformly in ¢) with the Lipschitz constant
K > 0, then (see [37, p. 3]),
D*Vy(t,x(t)) = V'(t, z(1)).

Note that, in case when the function V' is differentiable, the derivative with respect to time
along the trajectories of system (2.1) is given by:

d ov ov
—V(t,z) = E(t,x) + %(t,x).f(t,x),

in this case, we have

d
£V(t, x) =V'(t,x) = Dy V(t,z).

Suppose that the nominal system (2.1) has a uniformly asymptotically/exponentially stable
equilibrium point at the origin, then under some sufficient conditions on the perturbation term
we can study the asymptotic behavior of the solutions of (2.2). A natural approach is to use
the Lyapunov function V'(¢,z) for the unperturbed system as a Lyapunov function candidate
for (2.2). Note that, one can reach the conclusion about the definiteness of V (¢, z) by imposing
some restrictions on ¢(t), using the Lyapunov function of the form

V(t,z) =V (t,z)+ V(L z),

where the function W (¢, z) is defined by the expression:

U(t,z) = /t h 88—;/(5, o(s,t, x)) - g(s)ds.

Here ¢(s,t,z) is the solution of the unperturbed system (2.1) such that ¢(¢,t,z) = =z, and
the auxiliary function W(¢, x) is chosen so that the function V(t, z) is positive definite, and its
derivative along the trajectories of (2.2) is negative definite. Naturally, the choice of W(¢,x)
depends on the perturbation term ¢(¢) and its smoothness is given under some restrictions on
the dynamics of the system (see [5]). The strict Lyapunov functions are of great importance in
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the study of the stability of systems, and are a key tool for robustness analysis. In general, it
is more difficult to construct strict Lyapunov functions for time-varying systems than it is for
time-invariant systems. Using the above idea for constructing strict Lyapunov functions for time-
varying systems, the class of perturbed systems where the nominal system is linear is considered
by [4].

Suppose that the nominal system (2.1) has a uniformly asymptotically/exponentially stable in
variation equilibrium point at the origin with V' (¢,z) as a Lyapunov function candidate. Such
Lyapunov function should satisfy the following assumptions [2]:

(H1) V(t, ) is defined and continuous on R* x R";

(Ha) ||z]| < V(t,2) < Kil|z| for all (¢,x) € Rt x R", for some K; > 1;

(Hs) [V (t,x) = V(t,y)| < Ka|lz —y|| for all (¢,x), (t,y) € Rt x R, for some K, > 0.

In [10, 11] and [18], some properties and converse theorems for the kinds of stability in
variation sense are given. In the sequel, we recall some of them.

Let the trivial solution of (2.1) be globally uniformly stable in variation. Then (see [2]) there
exists a function V (¢, z) which satisfies (H1), (H2), (H3) and the following property:

DyV(t,z) <0, V(t,x) € R* xR".

Note that, for the existence of such function, it suffices to take as a Lyapunov function
candidate (see [2]):

V(t,2) =supllo(t + s,6,2), () € RY x R™.
s=>0
Furthermore, let the trivial solution of (2.1) be globally uniformly slowly growing in variation.
Then (see [2]) there exists a function V' (¢, x) which satisfies (H;), (H2), (H3) and the following
estimation, for some £ > 0:

DyV(t,x) <eV(tx), V(t,z) € RY xR"
Here, a Lyapunov function candidate can be taken as:

V(t,x) = sup lo(t + s,t,2)[[e™, (t,x) € R¥ x R™.
s=0
In term of exponential stability, if the trivial solution of (2.1) is globally exponentially stable in
variation, then there exists a function V (¢, z) which satisfies (H1), (H2), (H3) and the following
inequality, for some o > 0 (see [2]):

DiV(t,z) < —aV(t,z), VY(t,z) € RT x R"
In this case, it suffices to take (see [2]):

V(t,x) = sup ||¢(t + s,t,7)]|e®, (t,z) € RT x R™.
s=>0

In any study of stability of dynamical systems under perturbations, the asymptotic equivalence
of two systems is one of the most important concepts. It can be used to study the robustness of the
unperturbed system or to explore whether the behavior of a complex system can be determined
by the behavior of a simpler system. The basic idea in studies of stability of nonlinear systems,
apparently, is to decompose the system into isolated subsystems and the systems connecting them,
and then determine the stability of the original system from the asymptotic behavior of the sub-
systems. However, in general, the original system and the subsystems may not be asymptotically
equivalent, which may produce misleading results.
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Some sufficient conditions can be obtained for the uniform Lipschitz stability of the sys-
tem (2.1) £ = f(¢, x).

Suppose that there exists differentiable V' (¢, x) satisfying the following assumptions.

(A;) There exist two functions «; and s of class K such that

ar(|lz]) S V(tz) <aa(llz]]), Vo eR", Vit >0,

afl(ag(s))

S

and is bounded for s > 0 that is there exists a constant ¢ > 0 such that

afl(ag(s))

S

(A) V'(t,2) = DfV(t,x) <0, Vo €R", >t >0.

<G Vs 20

Proposition 3.1. Suppose that there exists a Lyapunov function V(t,z) that satisfies (A;)
and (Ay). Then the solution x(t,ty,zo) of (2.1) satisfies the following inequality for all
t>1, > 0:

(2, to, o) | < Clloll

Indeed, from (A;) and (A;), one gets
Ozl(Hl‘(t,to,l‘o)H) < V(t,[[’(t,to,[[’o)) < V(to,l‘o) < OQ(HI‘()H), \V/ZL'Q € Rn, Vit 2 to 2 0.

Thus,
(2, to, o) || < en™" (aa([|zol)) < ol

This implies that the solution x = 0 of (2.1) is uniformly Lipschitz stable [17, Definition 1.1].

§4. Asymptotic behavior of solutions

In this section, we give some new results on asymptotic behavior and growth properties of
the solutions of (2.2) under some restrictive conditions on the perturbation term based on the
following well known comparison lemma [29, Lemma 3.4].

Lemma 4.1. Consider a scalar differential equation:
U(t) = h<t7 U), u(tO) = Up, (41)

where h(t,u) is continuous in t and locally Lipschitz in u, for all t > 0 and all w € J € R.
Let [to, V) be the maximal interval of existence of the solution u(t), and suppose u(t) € J for all
t € [to, ). Let v(t) be a continuous function such that

D+U(t) < h(ta U(t)), U(to) < U,
with v(t) € J for all t € [ty, ). Then, v(t) < u(t) for all t € [ty, V).

This lemma can provide an estimation on V (¢, z(t)) from some bounds on DfV(t,x). Let
x(t) = x(t,to, x9) be a solution of (2.1) existing for ¢ > ¢, > 0. Suppose that V (¢, x) is
continuous in ¢ and globally Lipschitzian in x (uniformly in ¢ € R ) and satisfies the inequality:

DV (t,x) < h(t,V(t,x))
for (t,z) € Rt x R™. Then, if V (¢, x¢) < ug, then we have

V(t,z(t)) <u(t), fort>ty>0. (4.2)
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The origin may not be an equilibrium point of the perturbed system (2.2). We can no longer
study the stability of the origin as an equilibrium point, and we should not expect the solution of
the perturbed system to approach the origin as ¢ tends to infinity. The best we can hope that for a
small perturbation term the solution will approach to a small set containing the origin in the case
where g(t) # 0 for some ¢ > 0. We first present the following result, which gives an estimate
of the solutions of the perturbed system when we suppose that the nominal system is globally
uniformly stable in variation.

Now, for asymptotic convergence, we need the following lemma (see [26, Lemma 2.4]).

Lemma 4.2. Let y: [0,+00) —> [0, +00) be a differentiable function, o be a class K, function
and ¢ be a positive real number. Assume that for all t € [0, +00) we have

y(t) < —a(yt)) +c
Then, there exists a class KCL function B, such that
y(t) < a™'(2¢) + Ba(y(0),1).

Theorem 4.1. Suppose that there exists a Lyapunov function V (t,x) satisfying conditions (H),
(Hs), (H3), and there exist a function o € Ko, and a number ¢ > 0 such that the following
inequality holds:

DiV(t,x) < —a(|z]]) + ¢ Y(t,z) € RY x R", (4.3)

Then, the solutions of (2.1) converge globally uniformly asymptotically to a certain ball centered
at the origin.

Proof From (4.3), by using (H:), we get

1
+
DyV(t,z) < —« (EV(t,x)) +c.

Thus,
DiV(t,z) < —ar(V(t,2)) +ec, (4.4)

where o (1) = a(r/Kl) € Kwo- Let z(t) = x(t, to, xo) be a solution of (2.1) and V (g, x9) = uy,
up = 0. Consider the equation (4.1) where

h(t,u) = h(u) = —ay(u) + c. 4.5)

Consider the solution wu(, ¢, ug) of (4.1), (4.5). Since equation (4.1), (4.5) is time-invariant, we
have
u(t, to, ug) = u(t — to,0,ug) = u(r, 0, up) (4.6)

where 7 =t — tg.
Let us apply Lemma 4.2 to the function y(7) = u(7, 0, ug). Thus,

u(7,0,up) < Ba, (uO,T) + a7t (20)
where [(,, is a function of the class L. By taking into account (4.2) and (4.6), it follows that
V(t, x(t, to, z0)) < ult,to, uo) = u(7,0,u0) < Bay (V (o, z0),t — to) + o7 ' (2¢).

Hence, from (H,),
(¢, to, o) | < Bay (Kullzoll, t = to) + a7 (2¢).

Set 5(7’, S) := P, (K17, s). Then, E € KL and
l(t, to, zo)ll < B(lloll, t — to) + a7 (20).

Thus, the ball Bs with § = a;'(2¢) is globally uniformly asymptotically stable. O
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Corollary 4.1. Suppose that there exists a Lyapunov function V (t, x) satisfying conditions (H1),
(H2), (Hs3), and there exist functions a € K, and ¢ : (0, +00) — (0, +00) such that the following
inequality holds:

DiV(t,x) < —a(|lz]]) + c(e), V(t,z) e R* xR", &>0.
Then, the solutions of (2.1) converge globally uniformly asymptotically to the ball By with

§(e) = o' (2¢(e)).

Note that, if 1i1£10 c¢(e) = 0, then the solutions approach the origin.
E—>

The stability analysis of perturbed differential equations is generally based on the stability of
the nominal system, provided that the size of the perturbation is known, as is knowledge of the
upper bound of the perturbation term that may arise from modeling errors or perturbations. By
utilizing the given form of the equations, one can study the asymptotic behaviors of the system
without explicit knowledge of the solutions.

Let us consider the following perturbed system:

= f(t,z)+ g(t, x) 4.7)

where t € R*; f: R™ x R® — R" is a continuous function, locally Lipschitz with respect to x
such that f(¢,0) =0, Vt > 0; g: RT x R® — R™ is a continuous function, which represents the
disturbance term, such that

lg(t, 2)|| < At w)ao([|]) +€(L,2), VieRy, VoeR (4.8)
where (), £(+) € C(RT x R",R") and oy € K.

Now, with the above appropriate condition made on the perturbation term g(t, x), we exam-
ine the behavior of solutions to the perturbed system (4.7) with the properties given in (H;),

(Ha), (Ha).

Theorem 4.2. Suppose that there exists a Lyapunov function V (t, ) such that conditions (H,),
(Hz) and (H3) are fulfilled, and there exists o € K, such that the following inequality holds:

D7V (t,x) < —a(llz]), Y(t,z) € RT xR" (4.9)

Suppose that the perturbation term satisfies inequality (4.8), where

sup  A(t,z) < A < 400, (4.10)
teR+ xR"

sup &(t,z) < kK < 400, 4.11)
teR*T xR”

and « is selected such that, for some | € (0,1), for all r > 0,

l

<
ap(r) K2>\00z

(r). (4.12)

Then, the solutions of (4.7) converge globally uniformly asymptotically to a certain ball centered
at the origin.
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Proof Letus take the Lyapunov function V' (¢, ) satisfying conditions (1), (H2), (H3) and
inequality (4.9). Now, we consider the upper right-hand derivative of V' (¢, z) with respect the
perturbed system (4.7). We have

D+

figV (L2) S DV (L x) + Kolg(t, 2).

By using (4.8) and (4.9), we obtain
D}, V(t.x) < —a(le]) + Ka(Mt. 2)aol|l2]) + E(t, ).
for all (t,z) € Rt x R™. By using (4.10) and (4.11), we get

Di V(@) < —a(llz]]) + K2 (Aoowo(l|z]]) + ),

for all (t,z) € RT x R™. By (4.12), we have

D+

V() < —(1 = Da(|[z]]) + Kak.

Thus, the last inequality together with (Hs) yields

1
D Vit,e) < —(1— l)a(EV(t, x)) + Kok
So,

D+

gVt ) < —ap (V(t,z)) +c

where ay(r) = (1 — l)a(z7) € K and ¢ = Kyw. By using the reasoning from the proof
of Theorem 4.1, starting from (4.4) to the end of the proof of Theorem 4.1, we obtain that the
solutions of (4.7) converge globally uniformly asymptotically to a certain ball centered at the

origin, and the ball Bs with § = a; '(2K5k) is globally asymptotically stable for (4.7). O

Note that, if « is small enough, then the radius of the ball also becomes small. Therefore,
if the bound « depends on a parameter € with lin% k(e) = 0, then the state will approches to the
e—

origin exponentially when ¢ tends to infinity and € — 0. This can be illustrated in the following
examples.

Example 4.1. Consider the differential equation:

2]

|z| + 1

T=-—T+¢€ sin’t, t>0, x€R, (4.13)

with € > 0. Equation (4.13) has the form (4.7), where f(t,z) = —z, g(t,x) = g| :ﬂ :

x
Take V (¢, ) = |x|. Then conditions (H;), (H2) and (H3) are fulfilled if K; = K, = 1. We have
DtV (t,x) = —|z|. Hence, inequality (4.9) holds for a(r) = r € K. Next, inequality (4.8)
holds for

sin’t.

Mt,2) =0, ao(r) =7, €&t x)=-csin’t.

Take k = e. Let [ € (0,1) be arbitrary. Set A\¢ := [. Then inequalities (4.10), (4.11), (4.12) are
fulfilled. We have as(r) = (1 —1)r, ¢ = €. By Theorem 4.2, solutions of (4.13) converge globally
uniformly asymptotically to the ball Bs with § = s, (2¢) = 2¢/(1 — 1)
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Example 4.2. Consider the differential equation:

1
i:—§x3+€‘x|+1sin2t, t>0, x€R, (4.14)
with ¢ > 0. Equation (4.14) has the form (4.7), where f(t,z) = —2%/2, g(t,z) = 5mﬁ sin? ¢.
Take V (¢, x) = |x|. Then conditions (H;), (Hs) and (H3) are fulfilled if K; = K, = 1. We have
DYV (t,r) = —|z|*/2. Hence, inequality (4.9) holds for a(r) = r®/2 € K. Next, inequality

(4.8) holds for

Mt,2) =0, ao(r) =7r/2, &(t,x) = esin®t.
Take k = €. Let [ € (0,1) be arbitrary. Set g := [. Then inequalities (4.10), (4.11), (4.12) are
fulfilled. We have ay(r) = (1 — [)r®/2, ¢ = . By Theorem 4.2, solutions of (4.14) converge
globally uniformly asymptotically to the ball Bs with § = a,'(2¢) = (4¢/(1 — l))l/ ’

Example 4.3. Consider the differential equation:
= —2®+esint(2® +cosz), t>0, zecR, (4.15)

with ¢ > 0. Equation (4.15) has the form (4.7), where f(t,z) = —z°, g(t,x) = e sint(x>+cos x).
Take V' (¢,x) = |x|. Then conditions (H;), (H2) and (H3) are fulfilled if K; = K> = 1. We have
DYV (t,r) = —|z|>. Hence, inequality (4.9) holds for a(r) = r® € K. Next, inequality (4.8)
holds for
At,z) = ¢|sint|, ao(r)=7> &(t,z) =e|sintcosz|.

Set \g := ¢ and k := €. Then inequalities (4.10) and (4.11) are fulfilled. Suppose that ¢ < 1.
Set [ :=¢. Then [ € (0,1) and inequality (4.12) holds. We have ay(r) = (1 — &)r®, c = . By
Theorem 4.2, if ¢ € (0, 1), then solutions of (4.15) converge globally uniformly asymptotically to
the ball Bs with § = a;'(2¢) = (2¢/(1 —¢))"".

§ 5. Robustness with respect to time scaling

Consider, for some € > 0, the following system associated to (2.1):

y=ef(et,y), (5.1)

where f: Rt x R" — R™ is a continuous function and locally Lipschitz with respect to y such
that f(¢,0) = 0, V& > 0. For any zy € R" and t, € R", we denote by y(¢,t, x¢), or simply
by y(t), the unique solution of (5.1) at time ¢, starting from the point zo. We have, V¢ > t, > 0,

t
y(t, to, v0) = 20 +/ ef (es,y(s, to, 20)) ds.
to

Remark that, one has
y(t, to, o) = x(et, eto, xg), Vt=tg = 0.

Indeed,
d d d
ay(t, to, SL’Q) = al’(@f, Eto, SL’Q) = 6@1’(615, Eto, SL’Q),
d
_y(ta to, l’o) = Ef(Eta y(t7 to, :EO)) = Ef(€t7 l’(Et, elo, l’o)),

dt

and y(t,to, x0)|,_, = xo = x(et, eto, 20)|,_, .
t=to t=to
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Theorem 5.1. Suppose that there exists v > 0 such that the ball B, is globally uniformly asymp-
totically stable with respect to the system (2.1). Then, for any € > 0, B, is globally uniformly
asymptotically stable with respect to the system (5.1) as well.

P r o o f. Taking into account Definition 2.6, there exists a class KL function 8 such that
|lx(t,to, z0)|| < B(||zol|,t —to) +7, VE=ty =0, VrgeR"\ B,.

Thus, using the fact that y(¢,to, z9) = x(et, eto, xg), VYt = to = 0, which is the corresponding
solution of (5.1), one gets

ly(t. to, zo)|| = [[x(et, eto, o) || < B(llzoll, et —to)) + 7. 0
Example 5.1. Let us consider the scaling system associated to the one given in Example 4.1

ey

S sin®et, z€R, €>0. (5.2)

y=—ey+e

Since the solution x(t, to, z¢) satisfies

[ (t, to, o) || < B[lzoll, (2 = to)) + 2¢/(1 = 1),

for certain ICL function /3, then, one has

ly(Z, o, zo)[| < B(llyoll, €(t — t0)) +22/(1 = 1).

It follows that, the ball Bs with 6 = 2¢/(1 — 1) is globally asymptotically stable with respect to
the system (5.2).

Conclusion

In this paper, some new sufficient conditions for the asymptotic or exponential stability of
a class of nonlinear time-varying differential equations have been presented by using Lyapunov
functions that are not necessarily differentiable. The notions of stability in variation and Lipschitz
stability have been discussed as well. Moreover, the global uniform asymptotic stability for
perturbed nonautonomous systems by using Lyapunov approach has been studied. The present
results have been applied to some examples.
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M. A. Xammamu, P. Xamnunu, B. A. 3aiiyes
OO ycTOiYMBOCTH B BapHAllUM HEABTOHOMHBIX Mu((epeHnnaIbLHBIX YPABHEHHI ¢ BO3MYIIEHUSIMH

Kniouegvie crnoea: HeaBTOHOMHBIE AW(eEpeHLIMANBHBIE YpaBHEHHS, BO3MYILeHHE, GyHKIMK JIsmyHOBa,
ACUMITOTHYECKasi YCTOMYUBOCTD.

YIK 517.9
DOI: 10.35634/vm240204

B manHOI#1 cTarbe nccnemyercs mpobdaemMa yCTOMYNBOCTH B BapHAIlHH PEIICHIH HeaBTOHOMHEIX muddepeH-
LUaJIbHBIX ypaBHeHHH. [IpencTaBieHbl HEKOTOPhIE HOBBIE JOCTATOYHBIC YCIOBHS aCHUMITOTHYECKOW WM
AKCITOHCHIIMATFHOW YCTOMYNBOCTH TSI HEKOTOPBIX KJIACCOB HETMHEHHBIX HECTAITMOHAPHBIX MU depeHITH-
QNBHBIX YPaBHEHUH, UCHONB3YyIOIIKMe GYHKIUHU JISIyHOBA, KOTOphIE HE 00S3aTENIbHO SIBIISFOTCS TIAKUMH.
[Ipenmaraemsrii TOX0 AJIST aHATN3a YCTOHYMBOCTA OCHOBAH Ha OMPEACTICHUH TPaHUI], XapaKTSPU3YIOTIIIX
ACUMIOTOTUYECKYIO CXOAMMOCTh PEHICHUN K HEKOTOPOMY 3aMKHYTOMY MHOXECTBY, COAEpIKAIIeMy Hadajo
koopauHat. KpoMme TOro, MpUBEICHB HEKOTOPHIC MJUTIOCTPATHBHBIC TPUMEPHI, IEMOHCTPUPYIOIIHE CIIpa-
BEJUIMBOCTh OCHOBHBIX PE3YJBTATOB.

®unancupoBanme. VccnenoBanus B. A. 3aiinieBa BBINOIHEHBI NpU MOAAEPKKE MHHUCTEPCTBA HayKH U
BhICIIero oOpa3zoBaHus PD B pamkax rocymapcTBeHHOro 3amaHus, mpoekt FEWS-2024-0009.
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