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GLOBAL ASYMPTOTIC STABILIZATION OF BILINEAR CONTROL SYSTEMS

WITH PERIODIC COEFFICIENTS 1

Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear con-
trol systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global
asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control
constructed as the quadratic form of the phase variables and depends on time periodically.
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§ 1. Introduction

The present paper continues the research carried out in [Z.I, Z.II]2. Consider a bilinear control
system with periodic coefficients

ẏ = (F (t) + u1G1(t) + . . . + urGr(t))y, y ∈ R
n, t ∈ R+, (1)

where F , Gk are C l functions, l > 0, F (t + T ) ≡ F (t), Gk(t + T ) ≡ Gk(t), t ∈ R+ := [0,+∞),
k = 1, r, T > 0. Sufficient conditions for uniform global asymptotic stabilization of the solution
y = 0 of the system (1) were obtained in [Z.I, Z.II] for the case in which the drift F (t)y of the system
(1) is constant, i.e. F (t)y ≡ Fy. Then those conditions were obtained for systems reducible by a

Lyapunov transformation to a system (1) with a constant drift, in particular, for systems (1) with
a time-varying periodic drift F (t)y. In the present paper, we obtain new sufficient conditions for
uniform global asymptotic stabilization of the origin of the system (1) with a periodic drift F (t)y.
These conditions do not depend on any Lyapunov transformation. In contrast to results in [Z.II,
§ 5], these conditions are obtained directly rather than as a consequence of Theorems 8–10 [Z.II].
These conditions differ from those in [Z.II, § 5] and are more general. The proven results improve
some of the results of [Z.I, Z.II]. They are a further generalization of the Jurdjevic–Quinn theorems
on stabilization of the null solution by damping control to periodic systems.

By R
n denote the real n-dimensional vector space with the canonical basis e1 = col (1, 0, . . . , 0),

. . . , en = col (0, . . . , 0, 1). Next, |x| =
√

x⊤x is the norm in R
n, ⊤ is the operation of transposition

of a vector or a matrix, Oδ := {x ∈ R
n : |x| < δ}, Mn,m is the space of real n × m matrices,

Mn := Mn,n, I ∈ Mn is the identity matrix. We identify a quadratic form V (t, y) = y⊤P (t)y
with the symmetric matrix P (t) ∈ Mn defining this form. The inequality P (t) > 0 (or P (t) 6 0)
for a matrix P (t) = P⊤(t) means, by definition, that the quadratic form V (t, y) = y⊤P (t)y is
positive definite (respectively, negative semi-definite), i.e. ∃α > 0 ∀ t ∈ R+ ∀ y ∈ R

n V (t, y) > α|y|2
(respectively, V (t, y) 6 0).

Proofs of the main results are based on the Krasovsky theorem on global asymptotic stability
of the null solution of a system of differential equations with periodic coefficients. Let us formulate
this theorem. Consider a system

ẏ = f(t, y), y ∈ R
n, t ∈ R+, (2)

where f ∈ C(R+×R
n), f(t, 0) ≡ 0, t ∈ R+, and f is semi-globally Lipschitz continuous in y, i.e. for

any compact set K ⊂ R
n there exists a ℓK such that |f(t, y′)− f(t, y′′)| < ℓK |y′ − y′′|, ∀ y′, y′′ ∈ K,

1The research is supported by the Russian Foundation for Basic Research (projects no. 12–01–00195, 12–01–31077).
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t ∈ R+. By y(t, t0, y0) denote the solution of (2) with an initial condition y(t0) = y0. The solution
y = 0 of (2) is said to be asymptotically stable in the whole [1, § 5] (or, in other words, globally

asymptotically stable [2, I.2]) if
(a) it is Lyapunov stable, and
(b) it is globally attractive, i.e.

∀ δ > 0 ∀ η > 0 ∀ t0 > 0 ∃T = T (δ, η, t0) > 0 ∀ y0 ∈ Oδ ∀t > t0 + T |y(t, t0, y0)| < η.

The solution y = 0 of (2) is said to be uniformly globally asymptotically stable [2, I.2] if
(a) it is uniformly stable, i.e. ∀ ε > 0 ∃ δ > 0 ∀ t0 > 0 ∀ y0 ∈ Oδ ∀t > t0 |y(t, t0, y0)| < ε;
(b) it is uniformly globally attractive, i.e.

∀ δ > 0 ∀ η > 0 ∃T = T (δ, η) > 0 ∀ t0 > 0 ∀ y0 ∈ Oδ ∀t > t0 + T |y(t, t0, y0)| < η.

We say that a function γ belongs to class K∞ [3, § 4.4] if γ : R+ → R+, γ(0) = 0, it is continuous,
strictly increasing, and γ(s) → ∞ as s → ∞. Let V (t, y) be a C1 function. We use the notation
V̇ (t, y) := ∂V (t, y)/∂t+∇yV (t, y) ·f(t, y) for the derivative of V along the trajectories of (2). Define
E(V ) = {(t, y) ∈ R+ × R

n : V̇ (t, y) = 0} and let M(V ) be the union of all solutions y(t), t ∈ R+

of (2) with the property that (t, y(t)) ∈ E(V ) for all t > 0. The set M(V ) is said to be the largest

positive invariant set of the system (2) relative to E(V ). The following theorem of Krasovsky holds.

Theorem 1 (see [1, § 14], [2, II.1]). Suppose that the system (2) is periodic, i.e. f(t + T, y) ≡
f(t, y), T > 0, t ∈ R+, y ∈ R

n. Suppose that there exists a C1 function V : R+ × R
n → R having

period T such that for some function γ ∈ K∞ and for all t ∈ R+, y ∈ R
n the following conditions

hold:

1) V (t, y) > γ(|y|); V (t, 0) = 0. 2) V̇ (t, y) 6 0. 3) M(V ) = {0}.
Then the solution y = 0 of (2) is globally asymptotically stable.

Remark 1. The properties of uniform and non-uniform global asymptotic stability are equiva-
lent for time-varying periodic systems (in particular, for time-invariant systems). Therefore, Theo-
rem 1 in fact asserts uniform global asymptotic stability of the null solution of (2).

§ 2. Main results

Consider the periodic system (1). Let

ẏ = F (t)y, y ∈ R
n, t ∈ R+ (3)

be the corresponding non-perturbed system, i.e. the system (1) with u := (u1, . . . , ur) = 0. By
Y (t, s) denote the Cauchy matrix of the system (3), i.e. the solution of the matrix initial value
problem Ẏ = F (t)Y , Y (s) = I. We define the operator Di

F G(t), i > 0 by the equalities

D0
F G(t) := G(t), DF G(t) := G(t)F (t) − F (t)G(t) + Ġ(t), Di+1

F G(t) := DF (Di
F G)(t).

We define the operator W i
F P (t), i > 0, where P (t) is a symmetric matrix, by the equalities

W 0
F P (t) := P (t), WF P (t) := F⊤(t)P (t) + P (t)F (t) + Ṗ (t), W i+1

F P (t) = WF (W i
F P )(t).

Thus, for a quadratic form V (t, y) = y⊤P (t)y, the derivative of V along the trajectories of (3) is
V̇ (t, y) = y⊤R(t)y, where R(t) = WF P (t).

Suppose C l+1 function V0(t, y) = y⊤P (t)y, t ∈ R+ satisfies the following conditions:

1) P (t + T ) ≡ P (t); 2) P (t) = P⊤(t) > 0; 3) WF P (t) 6 0. (4)

Let us construct the control function with period T

ûk(t, y) = −y⊤
(
G⊤

k (t)P (t) + P (t)Gk(t)
)
y, y ∈ R

n, t ∈ R+, k = 1, r. (5)
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Substituting ûk(t, y) into the system (1), we obtain the closed-loop system

ẏ = H(t, y) = F (t)y +

r∑

k=1

ûk(t, y)Gk(t)y, y ∈ R
n, t ∈ R+ (6)

whose right-hand side is T -periodic in t. Finding the derivative of V0(t, y) along the trajectories of
(6), we get

V̇0(t, y) = y⊤(WF P )(t)y −
r∑

k=1

û2
k(t, y).

By using condition 3) in (4), we obtain the inequality V̇0(t, y) 6 0, t > 0, y ∈ R
n. Therefore

conditions (4) imply that the function V0(t, y) satisfies conditions 1), 2) of Theorem 1 for the
system (6). Consider the set E(V0) = {(t, y) ∈ R+ × R

n : V̇0(t, y) = 0}. The set E(V0) coincides
with the set

E0(V0) =
{
(t, y) ∈ R+ × R

n : y⊤(WF P )(t)y = 0 & y⊤
(
G⊤

k (t)P (t) + P (t)Gk(t)
)
y = 0, k = 1, r

}
.

Let M(V0) be the largest positive invariant set of the system (6) relative to E(V0). If M(V0) = {0},
then, by Theorem 1, the null solution of the system (6) is uniformly globally asymptotically stable.
Suppose that ξ(t) = ξ(t, 0, y0), t ∈ R+ is a solution of the system (6) belonging to M(V0). Then

ξ⊤(t)(WF P )(t)ξ(t) = 0, ξ⊤(t)
(
G⊤

k (t)P (t) + P (t)Gk(t)
)
ξ(t) = 0 ∀ t > 0, k = 1, r. (7)

It follows that control (5) vanishes along the solution ξ(t), i.e. ûk(t, ξ(t)) ≡ 0, t ∈ R+, k = 1, r.
Hence, ξ̇(t) ≡ F (t)ξ(t), t ∈ R+. This means that ξ(t) is a solution of the equation (3). Therefore,
ξ(t) = Y (t, 0)y0. Substituting this equality into (7), we obtain the identities

y⊤0 Y ⊤(t, 0)(WF P )(t)Y (t, 0)y0 ≡ 0, t ∈ R+, (8)

y⊤0 Y ⊤(t, 0)
(
G⊤

k (t)P (t) + P (t)Gk(t)
)
Y (t, 0)y0 ≡ 0, t ∈ R+, k = 1, r. (9)

Let M0(V0) be the largest positive invariant set of the system (3) relative to E0(V0). This means
that M0(V0) ⊂ R

n is the union of all semi-trajectories y(t), t ∈ R+ of the system (3) with the
property that (t, y(t)) ∈ E0(V0) for all t > 0. In that case we obtain that ξ(t) ∈ M0(V0), t ∈ R+.
It follows that M(V0) ⊂ M0(V0). Therefore if M0(V0) = {0}, then M(V0) = {0}. The condition
M0(V0) = {0} means that the equalities (8), (9) hold only if y0 = 0. Thus, the following theorem
holds.

Theorem 2. Suppose that there exists a quadratic form V0(t, y) = y⊤P (t)y, P (t) = P⊤(t)
satisfying conditions (4) such that the following condition holds:

(A) the identities (8), (9) hold only if y0 = 0.
Then the null solution of the system (1) is uniformly globally asymptotically stabilizable by the

T -periodic control (5).

Remark 2. We proved a similar statement in [Z.I, Theorem 5]. In that theorem, the matrix F
was constant and we required existence of a time-invariant quadratic form satisfying (4). In this
theorem, the conditions are weaker. The matrices F and P may be T -periodic. Thus, Theorem 2
generalizes Theorem 5 [Z.1].

The following theorem generalizes Theorem 6 [Z.I] to systems with a periodic drift F (t)y. In
what follows, we assume that the smoothness l = ∞ unless otherwise specified. We write the
following identities:

y⊤0 Y ⊤(t, 0)
(
W i+1

F P
)
(t)Y (t, 0)y0 ≡ 0, t ∈ R+, (10)

y⊤0 Y ⊤(t, 0)
(
W i

F

(
G⊤

k (t)P (t) + P (t)Gk(t)
))

Y (t, 0)y0 ≡ 0, t ∈ R+, (11)

y⊤0 Y ⊤(t, 0)
((

Di
F Gk(t)

)⊤
P (t) + P (t)

(
Di

F Gk(t)
))

Y (t, 0)y0 ≡ 0, t ∈ R+. (12)
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Theorem 3. Suppose that there exists a quadratic form V0(t, y) = y⊤P (t)y, P (t) = P⊤(t),
satisfying conditions (4) such that one of the following conditions holds:

(a) the identities (10), (11) hold for all k = 1, r, i ∈ N only if y0 = 0;
(b) the identities (10), (12) hold for all k = 1, r, i ∈ N only if y0 = 0;
(c) there exists a ν > 0 such that the identities (8), (12) hold for all k = 1, r, i = 0, ν only if

y0 = 0.
Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of

the system (1).

P r o o f. Let us construct a quadratic form V0(t, y) = y⊤P (t)y satisfying conditions (4). Let us
prove that M0(V0) = {0}. Suppose ξ(t) ∈ M0(V0), t ∈ R+. Then ξ(t) is a solution of the equation
(3) and the equalities (7) hold. We denote y0 = ξ(0), then ξ(t) = Y (t, 0)y0. Differentiating (7)
i times, where i ∈ N, we get

ξ⊤(t)(W i+1
F P )(t)ξ(t) ≡ 0, t ∈ R+, (13)

ξ⊤(t)
(
W i

F

(
G⊤

k (t)P (t) + P (t)Gk(t)
))

ξ(t) ≡ 0, t ∈ R+, k = 1, r. (14)

Substituting ξ(t) = Y (t, 0)y0 into (13), (14), we obtain the identities (10), (11), k = 1, r, i ∈ N.
If the condition (a) of Theorem 3 is satisfied, then y0 = 0. In that case ξ(t) ≡ 0 and hence
M0(V0) = {0} as required.

Next, consider the function w(t, y) = y⊤(WF P )(t)y. We denote S(V0) = {(t, y) ∈ R+ × R
n :

w(t, y) = 0}. Since w(t, y) 6 0 ∀ t ∈ R+, ∀ y ∈ R
n, we see that every point (t̂, ŷ) ∈ S(V0) is a

maximum point for the function w(t, y). Therefore, ∂w(t̂, ŷ)/∂t = 0 and ∇yw(t̂, ŷ) = 0 for any
point (t̂, ŷ) ∈ S(V0) such that t̂ > 0. By (7), we have (s, ξ(s)) ∈ S(V0) for any s > 0. Therefore,
∇yw(t, y)

∣∣
(s,ξ(s))

= 0. We have ∇yw(t, y) = 2(WF P )(t)y. Hence (WF P )(s)ξ(s) = 0 for all s > 0.

By continuity, this equality holds for s = 0. Thus,
(
F⊤(t)P (t) + P (t)F (t) + Ṗ (t)

)
ξ(t) ≡ 0, t ∈ R+. (15)

The equality (15) implies that

ξ⊤(t)
(
G⊤

k (t)
[
F⊤(t)P (t) + P (t)F (t) + Ṗ (t)

]
+

+
[
F⊤(t)P (t) + P (t)F (t) + Ṗ (t)

]
Gk(t)

)
ξ(t) ≡ 0, t ∈ R+

(16)

for all k = 1, r. Let us prove by induction that the identity

ξ⊤(t)
((

Di
F Gk(t)

)⊤
P (t) + P (t)

(
Di

F Gk(t)
))

ξ(t) ≡ 0, t ∈ R+ (17)

holds for all i ∈ N, k = 1, r. Next, for simplicity, we omit t ∈ R+; let prime and dot denote the
derivative. The equality (14) has the following form for i = 1:

ξ⊤
[
F⊤(G⊤

k P + PGk) + (G⊤
k P + PGk)F + (Ġ⊤

k P + PĠk) + (G⊤
k Ṗ + ṖGk)

]
ξ ≡ 0. (18)

Subtracting (16) from (18), we get

ξ⊤
[
(GkF − FGk + Ġk)

⊤P + P (GkF − FGk + Ġk)
]
ξ ≡ 0. (19)

The identity (19) is nothing else than the identity (17) for i = 1. Therefore, the basis of induction
is proved. Let the identity (17) hold for i = s. Differentiating (17) for i = s, we obtain

ξ⊤
[
F⊤

{
(Ds

F Gk)
⊤P + P (Ds

F Gk)
}

+
{
(Ds

F Gk)
⊤P + P (Ds

F Gk)
}
F+

+
(
(Ds

F Gk)
⊤
)′

P + P (Ds
F Gk)

′ + (Ds
F Gk)

⊤P ′ + P ′(Ds
F Gk)

]
ξ ≡ 0.

(20)
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The equality (15) implies that

ξ⊤
[
(Ds

F Gk)
⊤
{
F⊤P + PF + Ṗ

}
+

{
F⊤P + PF + Ṗ

}
(Ds

F Gk)
]
ξ ≡ 0, t ∈ R+ (21)

for all k = 1, r. Subtracting (21) from (20), we get

ξ⊤
[{

(Ds
F Gk)F − F (Ds

F Gk) + (Ds
F Gk)

′
}⊤

P + P
{
(Ds

F Gk)F − F (Ds
F Gk) + (Ds

F Gk)
′
}]

ξ ≡ 0. (22)

The identity (22) coincides with (17) for i = s + 1. By induction, (17) holds for all i ∈ N, k = 1, r.
Substituting ξ(t) = Y (t, 0)y0 into (17), we obtain the identities (12). Thus, the identities (10), (12)
hold for all i ∈ N, k = 1, r. Therefore, if the condition (b) of Theorem 3 is satisfied, then y0 = 0. In
that case ξ(t) ≡ 0 and hence M0(V0) = {0} as required.

Finally, substituting ξ(t) = Y (t, 0)y0 into (7) and (17), we obtain that the identities (8), (12)
hold for all k = 1, r, i = 0, ν for every ν > 0. Thus, if the condition (c) of Theorem 3 is satisfied,
then y0 = 0. Hence, ξ(t) ≡ 0 and therefore M0(V0) = {0}. The theorem is proved.

Remark 3. The conditions (a) and (b) of Theorem 3 are equivalent if the conditions (4) are
satisfied. The condition (c) is stronger than (b) if the condition (4) are satisfied. Therefore, Theorem
3 under the conditions (c) is weaker than under the condition (b) or (a). On the other hand, being
under the condition (c) it is sufficient to require C l-smoothness of F , Gk and C l+1-smoothness of
V0 rather than C∞, where l > 0 is a sufficiently large number such that ν 6 l.

Let us construct the following subspaces in R
n and Mn for every t ∈ R+:

Zν(t, y) = span {(Di
F Gk)(t)y, k = 1, r, i = 0, ν}, ν > 0, y ∈ R

n,

Zν(t) = span {(Di
F Gk)(t), k = 1, r, i = 0, ν}, ν > 0,

Kν(t, y) = span {F (t)y, (Di
F Gk)(t)y, k = 1, r, i = 0, ν}, ν > 0, y ∈ R

n,

Kν(t) = span {F (t), (Di
F Gk)(t), k = 1, r, i = 0, ν}, ν > 0.

The following inclusions hold for all t > 0, y ∈ R
n:

Z0(t) ⊂ Z1(t) ⊂ . . . ⊂ Z∞(t)
∩ ∩ ∩

K0(t) ⊂ K1(t) ⊂ . . . ⊂ K∞(t) ⊂ Mn,

Z0(t, y) ⊂ Z1(t, y) ⊂ . . . ⊂ Z∞(t, y)
∩ ∩ ∩

K0(t, y) ⊂ K1(t, y) ⊂ . . . ⊂ K∞(t, y) ⊂ R
n.

Lemma 1. 1. Suppose that there exists a quadratic form V0(t, y) = y⊤P (t)y, P (t) = P⊤(t),
satisfying conditions (4). Then the distribution Z∞ has dimension less than n along any semi-

trajectory ξ(t), t > 0 of the system (3) belonging to M0(V0), i.e.

dim Z∞
(
t, ξ(t)

)
< n ∀ t ∈ R+. (23)

2. Suppose that the stronger condition holds, namely, suppose that there exists a time-invariant

quadratic form V0(y) = y⊤Py, P = P⊤ > 0 such that WF P (t) := F⊤(t)P + PF (t) 6 0. Then the

distribution K∞ has dimension less than n along any semi-trajectory ξ(t), t > 0 of the system (3)
belonging to M0(V0), i.e.

dim K∞
(
t, ξ(t)

)
< n ∀ t ∈ R+. (24)

P r o o f. Consider a solution ξ(t) = ξ(t, 0, y0) of the system (3) such that ξ(t) ∈ M0(V0) ∀ t > 0.
If y0 = 0, then ξ(t) ≡ 0. Thus K∞

(
t, ξ(t)

)
= Z∞

(
t, ξ(t)

)
= {0} ∀ t ∈ R+. The assertion is obvious.

Suppose y0 6= 0. Then ∀ t > 0 ξ(t) 6= 0, by uniqueness of solution, and the equalities (7) hold. We
have ∇yV0(t, y) = 2P (t)y. Therefore the second equality in (7) implies

〈
∇yV0

(
t, ξ(t)

)
, Gk(t)ξ(t)

〉
≡ 0, t ∈ R+, k = 1, r, (25)



22 V. A. Zaitsev

MATHEMATICS 2012. No. 2

[we denote by 〈a, b〉 the inner product of a, b ∈ R
n here]. Next, the proof of Theorem 3 implies the

equalities (17) for all i ∈ N, k = 1, r. The equalities (17) imply that

〈
∇yV0

(
t, ξ(t)

)
, (Di

F Gk)(t)ξ(t)
〉
≡ 0, t ∈ R+, k = 1, r, i ∈ N. (26)

The equalities (25) and (26) imply that the vector ∇yV0

(
t, ξ(t)

)
is orthogonal to the space

Z∞
(
t, ξ(t)

)
for any t ∈ R+. Since ξ(t) 6= 0 for all t > 0 and P (t) > 0, we have P (t)ξ(t) 6= 0

for all t > 0. Therefore, ∇yV0

(
t, ξ(t)

)
6= 0 ∀ t > 0. This implies (23).

If the matrix of the quadratic form is constant, i.e. P (t) ≡ P , then ∇yV0(y) = 2Py. The first
equality in (7) has the form

ξ⊤(t)
(
F⊤(t)P + PF (t)

)
ξ(t) ≡ 0, t ∈ R+.

This is equivalent to 〈
∇yV0(ξ(t)), F (t)ξ(t)

〉
≡ 0, t ∈ R+. (27)

The equalities (25), (26), and (27) imply that the vector ∇yV0(ξ(t)) is orthogonal to the space
K∞

(
t, ξ(t)

)
for any t ∈ R+. Since ∇yV0(ξ(t)) 6= 0 ∀ t > 0, this implies (24). The lemma is proved.

Lemma 1 obviously implies the following theorems generalizing Theorem 7 [Z.I] to systems (1)
with a periodic drift.

Theorem 4. Suppose that there exists a quadratic form V0(t, y) = y⊤P (t)y, P (t) = P⊤(t),
satisfying conditions (4), and the following condition holds:

∃ t0 ∈ R+ ∀ y ∈ R
n \ {0} ∃ ν > 0 dim Zν(t0, y) = n. (28)

Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of the

system (1).

P r o o f. By Theorem 2, it is sufficient to prove that M0(V0) = {0}. Consider a solution
ξ(t) = ξ(t, 0, y0) of the system (3) starting from the point ξ(0) = y0 6= 0 such that ξ(t) ∈ M0(V0)
∀ t > 0. Hence ξ(t) 6= 0 ∀ t > 0, and in particular, ξ(t0) 6= 0. By the condition of the theorem, for
the point y1 = ξ(t0) there exists a ν > 0 such that dim Zν

(
t0, ξ(t0)

)
= n. This contradicts condition

(23). The theorem is proved.

Theorem 5. Suppose that there exists a time-invariant quadratic form V0(y) = y⊤Py, P =
P⊤ > 0 such that WF P (t) 6 0, and the following condition holds:

∃ t0 ∈ R+ ∀ y ∈ R
n \ {0} ∃ ν > 0 dim Kν(t0, y) = n. (29)

Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of the

system (1).

The proof of Theorem 5 is similar to the proof of Theorem 4. The proof of Theorem 4 is identical
to the proof of Theorem 4 [Z.I]. The first condition in Theorem 5 is stronger than in Theorem 4,
but the second one is weaker. The first condition in Theorem 5 is satisfied, for example, if F (t)
is a skew-symmetric matrix. In that case one can set P = I. Theorems 4 and 5 imply obvious
corollaries.

Corollary 1. Suppose that there exists a quadratic form V0(t, y) = y⊤P (t)y, P (t) = P⊤(t),
satisfying conditions (4), and the following condition holds:

∃ t0 ∈ R+ ∃ ν > 0 Zν(t0) = Mn. (30)

Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of the

system (1).
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Corollary 2. Suppose that there exists a time-invariant quadratic form V0(y) = y⊤Py, P =
P⊤ > 0 such that WF P (t) 6 0, and the following condition holds:

∃ t0 ∈ R+ ∃ ν > 0 Kν(t0) = Mn. (31)

Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of the

system (1).

Remark 4. It is sufficient to require C l-smoothness of F , Gk and C l+1-smoothness of V0 in
Theorems 4, 5 and in Corollaries 1, 2, where l > 0 is a sufficiently large number such that ν 6 l.

Next, we find in which case there exists a quadratic form satisfying conditions (4). The following
statement holds. It is valuable in itself.

Theorem 6. The following conditions are equivalent.

1. The system (3) with a T -periodic C l matrix F (t) is Lyapunov stable.

2. There exists a T -periodic C l+1 matrix P (t) = P⊤(t) > 0 such that (WF P )(t) 6 0.

The implication 2 ⇒ 1 obviously follows from First Lyapunov Theorem. The implication 1 ⇒ 2
is proved below. The matrix P (t) is constructed from the Cauchy matrix of the system (3). Thus
Theorems 2, 3, 4, 6 and Corollary 1 imply the following assertion.

Corollary 3. Suppose that the T -periodic system (3) is Lyapunov stable and one of the following

conditions holds: (A) of Theorem 2, or (a), (b) or (c) of Theorem 3, or (28), or (30). Then the

T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of the system (1).
Here the matrix P (t) is constructed using Theorem 6.

Theorem 5 and Corollary 2 imply, in particular, the following assertion.

Corollary 4. Let the matrix F (t) of the T -periodic system (1) be skew-symmetric, and let con-

dition (29) or (31) hold. Then the T -periodic control (5), where P (t) = I, uniformly globally

asymptotically stabilizes the null solution of the system (1).

In Corollaries 3 and 4, it is sufficient to require the same C l-smoothness of F , Gk as is required
in the corresponding assertions from which Corollaries 3 and 4 follow.

Remark 5. The assertions proved in this section are more general than Corollaries 10–13 of
section 5 [Z.II] obtained for the same system (1). The conditions and/or the control function in
the assertions [Z.II, Sect. 5] depend on a Lyapunov matrix L(t) transforming a system (1) with a
time-varying periodic drift F (t)y to a system (1) with a time-invariant drift. The conditions and
the control function obtained here in Theorems 3, 4, and 5 and in Corollaries 1, 2, 3, and 4 do not
depend on any Lyapunov transformation. Furthermore, Theorem 3 does not impose the same rigid
condition 2) of Theorem 8 [Z.II] as Corollary 10 [Z.II] does. Therefore, Theorem 3 is stronger than
Corollary 10 [Z.II]. Theorems 4 and 5 and Corollary 11 [Z.II] overlap, but do not follow from one
another. The formulations of Theorems 4 and 5 are simpler and clearer than the formulation of
Corollary 11 [Z.II]. Theorem 6 and Corollaries 3 and 4 are new.

§ 3. Consequence for consistent systems

Let us introduce the following notation. Let ⊗ be the tensor (Kronecker) product of matrices;
let vec : Mn → R

n2

be the mapping that “expands” each matrix H = {hij}, i, j = 1, n, over rows

into the column vector vec H = col (h11, . . . , h1n, . . . , hn1, . . . , hnn) ∈ R
n2

. For the system (1), we
construct a linear control system

ż = R(t)z + T (t)v, z ∈ R
N , v ∈ R

r, t ∈ R+. (32)
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Here N = n2, R(t) = F (t)⊗ I − I ⊗F⊤(t) ∈ MN , I ∈ Mn; T (t) = [vec G1(t), . . . , vec Gr(t)] ∈ MN,r.
We say that the system (32) is the large system. The definition of consistency for an arbitrary
time-varying system (1) was introduced in [4]. Earlier [5], this notion was introduced for the system
ẏ =

(
F (t) + G(t)U(t)H(t)

)
y, which is a special case of the system (1).

The system (1) is consistent on interval [α, β] if and only if the large system (32) is completely
controllable on [α, β] [6, Proposition 2].

Suppose that the coefficients of the system (1) (and consequently, of the system (32)) are C l

functions. Let CR be the operator that takes each matrix T (t) ∈ MN,r to the matrix CRT (t) =
Ṫ (t)−R(t)T (t) ∈ MN,r. Set C0

RT (t) := T (t), Ci+1
R T := CR(Ci

RT ). It is known [7, § 20] that if there
exists a point t0 on [α, β] at which the rank of the matrix Λ(t) = [C0

RT (t), C1
RT (t), . . . , CN−1

R T (t)]
is equal to N , then the system (32) is completely controllable on [α, β]. If the coefficients of the
system (32) are analytic, then the converse also holds [8].

We apply the mapping vec−1 to the columns of the matrix CRT (t). Then the kth column turns
into the matrix Ġk(t) − (F (t)Gk(t) − Gk(t)F (t)), which is nothing else than the matrix DF Gk(t).
Applying the mapping vec−1 to the kth column of the matrix Ci

RT (t), we obtain the matrix Di
F Gk(t).

Thus, the condition rankΛ(t0) = N is equivalent to

span
{

Di
F Gk(t0), k = 1, r, i = 0, n2 − 1

}
= Mn. (33)

Therefore the following proposition holds.

Proposition 1. Suppose that the coefficients of the system (1) are analytic. Then the system

(1) is consistent on [α, β] if and only if there exists a point t0 ∈ [tα, tβ ] such that the equality (33)
is satisfied.

It follows that, for a system (1) that is consistent on some interval [α, β] and has analytic
coefficients, the condition (30) holds for ν = n2 − 1.

Now assume that the coefficients of the system (1) (and consequently, of the system (32))
are T -periodic. If an arbitrary T -periodic system (32) is completely controllable on some [α, β],
then it is completely controllable on any interval of length NT . Therefore, one does not need
to specify the interval of complete controllability (and, accordingly, of consistency) for periodic
systems. Proposition 1 and Corollary 3 imply the following assertion.

Corollary 5. Suppose that the coefficients of the system (1) are analytic and T -periodic, and

the following conditions hold:

(a) the system (1) is consistent;

(b) the system (3) is Lyapunov stable.

Then the T -periodic control (5) uniformly globally asymptotically stabilizes the null solution of

the system (1). Here the matrix P (t) is constructed using Theorem 6.

Corollary 5 and Corollary 16 [Z.II] coincide. The difference is in the construction of stabilizing
control. In Corollary 16 [Z.II], we additionally need to construct a Lyapunov transformation and
the resulting control function is, generally speaking, 2T -periodic.

§ 4. Proof of Theorem 6

We use the following notation in this section. Let C
n = {x = col (x1, . . . , xn) : xj ∈ C, j = 1, n}

be the complex n-dimensional vector space with the norm |x| =
√

x∗x; let ∗ be the Hermitian
conjugation of a vector or a matrix, i.e. x∗ = x⊤; let Mn,m(C) be the space of the complex n × m
matrices and Mn(C) := Mn,n(C); let |A| = max|x|=1 |Ax| be the norm in Mn(C).

Suppose R ∈ Mn(C) is a Hermitian matrix, i.e. R = R∗. It defines the quadratic form V (x) =
x∗Rx on C

n. For each x ∈ C
n we have V (x) ∈ R. Indeed, let R = P + iS, x = p + iq, P, S ∈ Mn,

p, q ∈ R
n. The equality R = R∗ implies that P⊤ = P , S⊤ = −S. It follows that

V (x) = x∗Rx = (p⊤ − iq⊤)(P + iS)(p + iq) = p⊤Pp + q⊤Pq − 2p⊤Sq. (34)
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The equality (34) implies, in particular, that if x ∈ R
n, then

x∗Rx = x∗(Re R)x. (35)

We identify the quadratic form V (x) = x∗Rx with the Hermitian matrix R = R∗ defining this form.
The inequality R > 0 (R 6 0) means for the matrix R = R∗ that the quadratic form V (x) = x∗Rx
is positive definite (respectively, negative semi-definite), i.e. ∀x ∈ C

n \ {0} V (x) > 0 (respectively,
V (x) 6 0).

When all eigenvalues of A ∈ Mn(C) have a negative real part, A is called a Hurwitz matrix. The
following assertion holds (see, e.g., [9, Theorems 12.3.3, 13.1.1]).

Lemma 2. Let a matrix A ∈ Mn(C) be a Hurwitz matrix. Then for any positive definite Her-

mitian matrix H ∈ Mn(C) there exists a positive definite Hermitian matrix R ∈ Mn(C) such that

A∗R + RA = −H. (36)

The solution R of the Lyapunov equation (36) is unique. It is defined by the formula

R =

∫ ∞

0
exp(A∗t)H exp(At) dt. (37)

The improper integral (37) converges. One can verify that the matrix R is Hermitian and positive
definite.

Consider a system of differential equations

ẋ = Ax, x ∈ C
n. (38)

Lemma 3. Let the system (38) be Lyapunov stable. Then there exists a Hermitian matrix Q =
Q∗ > 0 such that A∗Q + QA 6 0.

This proposition was proved in Lemma 2 [Z.II] for a real system. Let us prove this Lemma for
the complex system (38).

P r o o f. Let the system (38) be Lyapunov stable. Then there exists a matrix S ∈ Mn(C)
such that A = S−1JS, where J = diag{J1, J2}; here J1 ∈ Mα(C), Reλj(J1) = 0, j = 1, α
and the elementary divisors corresponding to the eigenvalues λj of the matrix J1 are linear, i.e.
J1 = diag{δ1i, . . . , δαi}, δj ∈ R, j = 1, α; J2 ∈ Mn−α(C), Reλj(J2) < 0, j = 1, n − α. By structure
of the matrix J1, we have J∗

1 + J1 = 0 ∈ Mα(C).
Let H ∈ Mn−α(C) be an arbitrary Hermitian positive definite matrix, i.e. H = H∗ > 0. Set

T = diag{0,H} ∈ Mn(C), where 0 ∈ Mα. Then T ∗ = T > 0. Set W = S∗TS. Then we have
W ∗ = W > 0 also. Since the matrix J2 is a Hurwitz matrix, we see from Lemma 2 that there exists
a matrix R ∈ Mn−α(C), R∗ = R > 0 such that J∗

2 R+RJ2 = −H < 0. Set L = diag{I,R} ∈ Mn(C),
where I ∈ Mα. Then L∗ = L > 0. Set Q = S∗LS. Then we have Q∗ = Q > 0 also. Thus,

A∗Q + QA = (S−1JS)∗S∗LS + S∗LS(S−1JS) = S∗(J∗L + LJ)S =

= S∗ diag{J∗
1 + J1, J

∗
2 R + RJ2}S = S∗ diag{0,−H}S = S∗(−T )S = −W 6 0.

The lemma is proved.
P r o o f o f T h e o r e m 6. Let us prove the implication 1 ⇒ 2. Let us construct the

monodromy matrix Y (T, 0) of the system (3). Let us find any logarithm of the matrix Y (T, 0) and
set

A =
1

T
ln Y (T, 0). (39)

Then A ∈ Mn(C) and exp(AT ) = Y (T, 0). Set

L(t) = exp(At)Y (0, t), t ∈ R+. (40)
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Since F (t) is a C l function, it follows that Y (0, t) is a C l+1 function; hence, L(t) is a C l+1 function.
Matrix L(t) is complex, T -periodic. It satisfies the equation

L̇(t) = AL(t) − L(t)F (t), t ∈ R+. (41)

In addition, L(t) is a Lyapunov matrix, i.e. supt∈R+

(
|L(t)| + |L−1(t)| + |L̇(t)|

)
< ∞. Let us apply

the Lyapunov transformation x = L(t)y to the system (3). The system (3) turns into the system

ẋ = Ax, x ∈ C
n, A ∈ Mn(C).

This system is Lyapunov stable, because the Lyapunov transformation preserves the property of
stability. By Lemma 3, there exists a matrix Q = Q∗ > 0 such that

A∗Q + QA 6 0. (42)

Let us construct the matrix
R(t) = L∗(t)QL(t). (43)

Then R ∈ C l+1
(
R+,Mn(C)

)
, R(t + T ) ≡ R(t), R(t) = R∗(t) > 0, t ∈ R+. We write R(t) in the

form R(t) = P (t) + iS(t), P (t), S(t) ∈ Mn. Here

P (t) =
(
R(t) + R(t)

)
/2, S(t) = (−i)

(
R(t) − R(t)

)
/2. (44)

Then P ∈ C l+1
(
R+,Mn)

)
, P (t + T ) ≡ P (t), P (t) = P⊤(t) > 0, t ∈ R+. Let us show that

WF P (t) 6 0. We have WF R(t) = WF P (t) + iWF S(t). It follows from the equality (35) that for
any y ∈ R

n the equality
y⊤(WF R)(t)y = y⊤(WF P )(t)y (45)

holds. On the other hand, using (41), (43), and omitting t ∈ R+ for simplicity, we get

WF R = F⊤R + RF + Ṙ = F ∗R + RF + L̇∗QL + L∗QL̇ =

= F ∗L∗QL + L∗QLF + (AL − LF )∗QL + L∗Q(AL − LF ) = L∗(A∗Q + QA)L.
(46)

Hence, equality (46) and inequality (42) imply that for any y ∈ C
n the inequality

y∗(WF R)(t)y = y∗L∗(t)
(
A∗Q + QA

)
L(t)y 6 0

holds. By (45), for any y ∈ R
n, we have

y⊤(WF P )(t)y = y⊤(WF R)(t)y = y∗(WF R)(t)y 6 0.

Thus, the matrix P (t) is the desired symmetric matrix. For constructing this matrix, we used
formulas (39), (40), (42), (43), (44). Theorem 6 is proved.
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Глобальная асимптотическая стабилизация билинейных управляемых систем с периоди-

ческими коэффициентами

Ключевые слова: глобальная асимптотическая устойчивость, стабилизация, функция Ляпунова, били-

нейные системы, периодические системы.

УДК 517.977 + 517.925.51

Для билинейной управляемой системы с периодическими коэффициентами получены достаточные усло-

вия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство осно-

вано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения

для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно

имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.
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