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ON FIXED POINTS OF MULTI-VALUED MAPS IN METRIC SPACES AND
DIFFERENTIAL INCLUSIONS!

A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed.
The obtained result allows to study the existence of fixed points for multi-valued maps that have as images
any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous,
with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and
functional-differential equations with discontinuities and inclusions generated by multi-valued maps with
arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation
of solutions to the Cauchy problem for a differential inclusion with noncompact in R™ right-hand side are
derived.
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Introduction

Let R™ be the n-dimensional real space with the norm | - |. Using the standard notation, by
C"[a, b] we mean the set of all continuous functions x : [a,b] — R", by AC"[a, b] the set of absolutely
continuous, by L"[a, b] the set of Lebesgue integrable, and by L7 [a, b] the set of essentially bounded
x : [a,b] — R™ We omit here the index n in the case of n = 1. Given a metric space (X, 0,),
we use the following notation: M = X \ M is the complement of a set M C X; int M is the
interior of M; Sy (wo,7) = {z € X : oy(w,20) = 7}, Bl (wo,7) = {z € X : oy(v,20) < 7},
B, (zg,r) ={x € X : o, (x,x9) < r} are, respectively, a sphere, an open, and a closed ball of radius
r > 0 centered at zg in the space X; o, (x, M) = yien{/[ 04 (x,y) is the distance from a point z to a

set M in X; d, (M, My) = sup o, (z, M) is the Hausdorff semideviation from a set M; to Mo;

€My
dist, (M7, My) = max {dX (M, Ms);d, (Mg,Ml)} is the Hausdorff distance between sets M; and
M.

Let clos(X), clbd(X), and comp(X) stand for the spaces of nonempty closed, nonempty closed
bounded, and nonempty compact subsets of X, respectively. These spaces we endow with the metric
defined by the Hausdorff distance dist,, . In the case of closed unbounded sets this metric is usually
called the extended Hausdorff metric since it may have infinite values.

While studying the problems of qualitative theory of differential inclusions and controlled systems
[1-3] there has appeared the necessity of considering in the space clos(R™) a metric that would have
finite values only, guarantee the completeness of clos(R™), and be such that convergence of a sequence
{H;}°, C clos(R™) with respect to this metric would mean convergence (in the Hausdorff metric),

for every r > 0, of the sequence of sets HE € clbd(R™) such that, for every i, H: C H', |J H! = H",
r>0

and Hﬁl - Hﬁz when 71 < 7. It was managed to build such a metric for the space of nonempty
closed convex subsets of R" (see [3]). In the work [4], there was presented a metric in the whole
of clos(R™); with respect to this metric, the convergence of a sequence {H;}°, is equivalent to
convergence (in the Hausdorff metric), for every r > 0, of the sequence of sets H: € clbd(R™) such
that H: N B,,(0,7) = H* N B,,(0,7). In [5], a similar metric was obtained in clos(X) with X an
arbitrary metric space. In construction of the metric the following obvious properties of the Hausdorff
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distance were used: for any F,G € clos(X), 8 € X, and r > 0 one has

dist, (FUBS(0,r),GUBS(6,r)) < oo, (1)
dist, (FUBS(0,r),GUB?(0,r)) < dist, (F,G). (2)

Relations (1), (2) can be also utilized for «improving» topological properties of multi-valued
maps. Let us have a map X 3 x +— ®(z) € clos(X) which is not continuous (upper semicontinuous
or lower semicontinuous) in the Hausdorff metric, moreover, for any x1,x9 € X, x1 # w2, there can
be held dist, (®(x1), ®(x2)) = oo. Build a new «improved» map ® : X — clos(X) defined by

O(z) = ®(x) U BL(0,7), (3)

where 6 € X, r > 0. This map, according to (1) and (2), can posses already some continuity properties
or even be Lipschitz. In such a case, there appears a possibility to investigate the corresponding
equations and inclusions using the known methods. For example, if there can be justified the existence
of a fixed point Z for the map ®, and if one is able to prove that z ¢ BY(0,7), then 7 will also be a
fixed point for the initial «bad» map P.

This idea was implemented in [5] in order to get a result on existence of fixed points for a
multi-valued map not satisfying the assumptions of the Nadler fixed point theorem or other known
fixed point principles. In this work we present more general statement based on a rather universal
way of constructing the map ®. The method turns out to be efficient when the images of the
original map ® are arbitrary subsets of the space X, and defining ® by equality (3) represents one
of its particular cases. The mentioned result we apply then for studying the solvability of ordinary
differential inclusions generated by multi-valued maps with noncompact in R™ right-hand sides.
Among numerous situations in which the conditions of the classical existence theorems for differential
inclusions do not hold, one usually chooses to investigate the case when the corresponding multi-
valued map has unbounded closed images. In many works the Nadler principle or its generalizations
are used in order to prove the existence of solutions for such inclusions, and one has to assume that
the corresponding multi-valued map with closed images is Lipschitz with respect to the extended
Hausdorff metric (see. e.g., [6,7]). Using the fixed point theorem derived in this paper allows to relax
considerably these requirements and to enlarge the class of inclusions under discussion.

§ 2. On fixed points of multi-valued maps

Recall some facts about multi-valued maps acting in metric spaces.

Given metric spaces (€2, g, ), (X, 0, ), we use the notation ® : Q — X to indicate a multi-valued
map 2 3 w — P(w) C X. We write ® : Q — clos(X) if it is known that for every w €  the
set ®(w) is nonempty and closed, ® : Q — clbd(X) if ®(w) is nonempty bounded and closed, and
® :  — comp(X) in the case of compact images. Let ¢ > 0 and Q9 C Q. A map ¢ : Q — X is
called g-Lipschitz (or Lipschitz with constant q) on the set Q if the inequality

dist,, (®(w1), ®(w2)) < qo, (w1, w2) (4)

holds for every wy,ws € Q. In the case of = X and ¢ < 1, a map & satisfying (4) is called
contracting or g-contracting on the set Q9 C X. An element x € X such that x € ®(z) is called «
fized point of & : X — X.

In the following statement a technique analogous to (3) is used to «improve» the properties of
multi-valued maps that are not contracting; it gives an opportunity to apply the fixed point principles
and, in many cases, to verify the existence of fixed points.

Theorem 1. Let X be a complete metric space and ® : X — X. Assume there exist maps
A: X — X, B: X — X such that for the map

X 2a— ®x) = (d(x) NAx)) UB(z) € X (5)
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there are xg € X, q € (0,1), and ro > 0 satisfying the following conditions:
1) the set ®(x) is nonempty and closed in X for every x € B, (wo,ro);

)
2) the map ® is g-contracting on the ball B, (a:o,ro);
)

3 (1 - q)_lgx (330, &)($0)) < To.
If for every x € BY, (a:o,ro), the set B(x) is either empty or such that

0x (20, B(x)) > 7o, (6)
then for every r satisfying the inequality
(1-— q)_lgx (:Eo, CT)(:L"O)) <r <y, (7)
the map ® has a fired point T € BY, (mo,r).

P roof. According to the fixed point principle [8, p. 42|, for any r satisfying inequality (7),
there exists a point & € X such that

e (@), oy(r0.7)<r

If B(z) = @, then, obviously, z € ®(z) N.A(Z). In the case when B(z) # @, for x = Z, inequality (6)
takes place, from which it follows that o, (zo,Z) < 0y (a:o,B(a’:)), and hence Z ¢ B(Z). So, in this
situation, the inclusion & € ®(z) N .A(Z) is also true. Thus,  is a fixed point of the map P. O

Remark 1. The hypothesis of ® to be g-contracting can be relaxed; it suffices to note that in
the proof of the fixed point principle [8, p. 42| used in Theorem 1, the property of g-contraction is
needed only for the sequence of iterations, so one can require that the inequality

dist (EI;(xl),EI;(m)) < qoy (x1, x2)

takes place not for all elements zy,73 € B, (mo,ro), but for those connected by the relation

2y € ®(z1). This observation has been used before, for example, in [9).

In order to use efficiently the theorem proved above one needs to know how to choose properly
the maps A, B playing a crucial role in construction (5) of the map ®. It is obvious that the map ®
deserves to be called «improving» for the map ® if for any z1, 2

dist (®(z1), P(a2)) < dist (D(1), P(a2)). (8)

We consider some recipes of defining the maps A, B.
First of all, one may set A(xz) = X. In this case inequality (8) holds if the map B : X — clos(X)
is such that

dist, (B(a1), B(z2)) < disty (®(z1), P(22))

for all z1, 2. The latter obviously takes place when B(x) = B = const. In [5], the complement of
an open ball, i.e., the set BY (0,7), 0 € X, r > 0, was taken as B. Using such a design of the map ®
one can get, for example, the following analog of the fixed point theorem obtained in |9, p. 75].

Corollary 1. Let X be a complete metric space, ® : X —o X, and let there exist xg € X,
q € (0,1), and ro > 0 such that:
1) the set ®(x) N By (x9,70) is nonempty and closed for every x € BY (x0,70);
2) for any x1,x9 € Bf{ (mo,ro) there holds the inequality

dy (®(x1) N By (0, 70), B(22)) < qoy (1, 22); (9)

3) (1 - q)_lgx (gjO)F(gjO)) < 7.
Then for every r satisfying the inequality (1—q) to, (a:o, @(mo)) < r < ro, the map ® has a fired
point T € BY, (mo, 7‘).
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Proof follows directly from Theorem 1 if in definition (5) of the map P: X — X we set
A(x) = X, B(x) = B%(x0,70)- Indeed, in this case, for any z1,22 € B, (mo,ro), there holds the
estimate

dy (®(x1) N By (20,70), P(22)) >

> dX ( (<I>(x1) N BX ((L’(),TQ)) U B; (LE(),TQ), (I)(JZQ) U B;’( (IEQ,TQ)) = dX (@(azl), (I)(xg))
Then, from inequality (9), we get

dist, (®(z1), ®(x2)) = max{dX (P(z1), ®(22)); dy (P(22), <I>(:171))} < qoy (21, 22),

so condition 2) of Theorem 1 is satisfied. All the other requirements of Theorem 1 are also fulfilled,
it follows directly from the hypotheses of the corollary. O

We continue to discuss the ways of choosing the maps A, B and consider the situation when X
is a linear normed space. In this case, it is convenient to define A(z) = B, (0,r), B(x) = S, (0,r),
where 6 € X, r > 0; then the map

$: X — clos(X), ®(x) = (®(z)NBy(8,7))US,(8,r) (10)

will satisfy inequality (8). This construction was used in [4] for the space R™. In the paper [5], there is
given an example of the map ® : R — clos(R) such that dist, (<I>(3:1), <I>(x2)) = oo for any z1,x9 € R,
x1 # 9, but the corresponding map (10) is contracting; based on this property, there is proved the
existence of a fixed point for the initial map ®.

Here we give an example illustrating how Theorem 1 can be applied to studying functional
equations and inclusions; we prove the existence of a fixed point for a map which is neither continuous,
no bounded, and even not defined on the whole of the metric space considered.

Example 1. Let us have measurable functions h : [0,1] — [0,1], ¢ : [0,1] — R4. Consider the
equation

|z(t)] = —In|cosx(h(t))| + g(t), te€]0,1], (11)

with respect to the unknown function x € L]0, 1]. Assume that for some measurable set 7' C [0, 1]

there holds
WT)=0 = p(h™(T)) =0 (12)

(here p stands for the Lebesgue measure). According to [10, p. 706], this condition is necessary and
sufficient for the composition z(h(-)) to be measurable for any measurable function z(-). We prove

that, if

ess sup|cosg(h(t))|_1 < {/5/4, (13)

te[0,1]

then equation (11) has a solution.

We will use the usual metric in the space Ly[0,1], i.e., 0, (71, 22) = esssup |z1(t) — z2(t)].
te[0,1]
Put x = {§ + 7k, k € Z}, B(x,e) = Upezl5 + 7k — &, 5 + 7k + €], € > 0. For an arbitrary
function = € L0, 1], define the set

E(x,e) ={t€[0,1] : z(h(t)) € B(x,¢) }

According to (12), this set is measurable. Next, split the space Ls[0,1] into two classes: £2 [0, 1]
and L£1[0,1]. The elements of £1[0,1] are the functions z such that p(=(z,e)) > 0 for all £ > 0;
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Fig 1. The graphs of the functions x — F(t,z) and x — ﬁ’(t, x) in Example 1

a function = belongs to £ [0, 1] if and only if there exists an e > 0 such that u(Z(z,)) = 0. Consider

the maps
{£(—In|cosz|+g(t))} forz ¢ x,

F:[0,1] xR — R, F(t,w)i{ %) for x € x;

{y: y@t) € F(t,z(h(t)))} forze L£3][0,1],

P : Lo[0,1] — Lo[0,1], ®(x) = { & for x € £L1]0,1].

Then equation (11) is equivalent to the inclusion z € ® x; we investigate the latter with the help of

Theorem 1.
Put 9 = {z €R: |cosz| < 1/4/5 } and let the map a: [0,1] x R — R be defined by

. [ R forxz¢d,
a(t,w)—{g for z € ¥.

Next, define the maps b, F : [0,1] x R — clos(R), ® : Lso[0,1] — clos(Lso[0,1]) as follows:

b(t,z) = {i <g(t) ~In+\/4/5 ) } L F(t,2) = (F(t,2) Nalt,z)) Ub(t x);

(@) ={y: y(t) € F(t,2(h(t)) }

(the graphs of the multi-valued maps F(t,-) and F(t,-) are shown in Figure 1).

In definition (5), for the map ® considered, the operator A : Lso[0,1] —o Log[0,1] has values
A(z) = Lso[0,1] for any = satisfying p{t € [a,b] : [cosz(h(t))] < \/4/5} = 0, and A(z) = O
otherwise. Next, for a function y € ®(x), one has y € B(xz) if and only if the equality |y(t)| =
g(t) —In \/m takes place on some set of positive measure.

We show now that the multi-valued map P is contracting with coefficient 1/2. First of all, for
any x ¢ v there holds the estimate

1
= |tgz| = Veos2x —1< =

2

i In | |
g nlcosz

according to which the map F(¢,-) : R — clos(R) is 1/2-contracting for a.e. t € [0,1]. Pick
arbitrary x1,22 € Loo[0,1], denote 7 = o, (21,22), and choose any function y; € ®(z1); so,
yi(t) € ﬁ’(t,wl(h(t))) a.e. on [0,1]. Since the map F(t,-) is 1/2-contracting, for any § > 0 and
a.e. t € [0,1], the set

C(t) = Br (yu(t),27 (7 + 0)) N F(t, 22(h(t)))
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is not empty, and the multi-valued map t + C(t) is measurable. Thus, there exists a measurable
selection, say a function ya(-), such that o, (y1,y2) < 271(7 +6) and ya(t) € F(t,22(h(t))) for

a.e. t € [0,1]. From the arbitrariness of 6 > 0 it follows that distz_ (®(z1), ®(z2)) < 27'7. Hence,

the map @ is 1/2-contracting.
Let ¢ = g. Then taking into account relation (13), we obtain

(1—q) "o, (z0, B(0)) = 20,__ (0, (x0)) = etses[glﬁp(— In|cos g(h(t))]) =

= ln(esssup‘cosg(h(t))‘_1> <In+/5/4,
te[0,1]

and since
O (330,6(33)) =1In/5/4

for every z, there exists an rq satisfying all the hypotheses of Theorem 1. Thus, the solvability of
inclusion x € ® z is proved and so is the solvability of equation (11).

Concluding the discussion of Theorem 1, note that the presented method of «correctings maps
can be called universal in the sense that, by means of equality (5) and appropriate maps A, B, one
can turn any given map ® : X —o X into any required map ®: X — X. In order to do so, one should
choose the maps A, B : X — X so that A(z) N (®(z) \ ED(:U)) — @ and ®(z) \ A(z) C B(z) C ®(x)
for all z € X. Moreover, if d:X — clos(X), then A, B may also have closed images; it suffices to
set A(z) = O(F(z)\ F(z)), where O(M) is any open set containing M C X, and define a closed

set B(z) as mentioned above.

§ 2. Cauchy problem for a differential inclusion with noncompact right-hand side
Let F: R x R® — R"™. Consider the ordinary differential inclusion
T € F(t,x). (14)

We are concerned with conditions of existence and extendability of solutions to this inclusion, first
of all, in the case when its right-hand side is unbounded and not necessarily closed-valued. Following
the definition in [11, pp. 7, 53], as a solution of inclusion (14) we understand a function defined on an
interval I (compact or noncompact, finite or infinite) that is absolutely continuous on every compact
interval [a,b] C I and satisfies the inclusion a.e. on I.

Given a number to and a vector ap € R™, the system consisting of inclusion (14) and the initial
condition

z(a) = ag (15)

is called the Cauchy problem for inclusion (14). The following theorem on solvability of problem (14),
(15) is based on rewriting this problem as an operator inclusion in a space of measurable functions;
we replace the multi-valued Nemytskii operator generated by the map F with the operator defined
by formula (10), which represents the Nemytskii operator generated by the map F' connected with
the initial map F' by means of the relation analogous to (10).

Theorem 2. Suppose there exist T > 0, o > 0, and integrable functions Ry : [to,to + T] — R4,
6 : [to,to +T] — R™ such that the map F : [to,to + T] x By, (a0, 0) — R™ defined by the equality

F(tv‘r) = (F(t7x) N BR” (H(t),Ro(t))) U SR" (e(t)vRO(t)) (16)

satisfies the following conditions:

1) F(t,x) € comp(R") for every x € B, (ag,0) and a.e. t € [to,to + T;
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2) the map F(-,x) : [to, to + T] — comp(R™) is measurable for every x € B, (a,0);
3) there is an integrable function k : [to,to + T| — Ry such that the function

v ltorto + T) = Ry, w(t) = k(t)/Ro(t)
1s essentially bounded and

disty, (F(t,z1), F(t,22)) < k(t)|z1 — 22 (17)

R”L
for a.e. t € [to,to + T and any x1,x2 € By, (g, 0).

t
If the function x.(t) = ag +/ 0(s)ds satisfies the inequality
to

0un (0(8), F'(t,24(1)))
esssup
t€(to, to+T) Ry (t)

<1, (18)

then there exists a T > 0 such that the Cauchy problem (14), (15) has a solution defined on [to,to+T7].

P r oo f. First of all, for a.e. t € [tg,to + T, there holds the equality

Oun (0(1), F(t,2:(1)) = 040 (0(2), F(t,2:(1))).- (19)
Indeed, for a.e. t € [tg,to + 1|, from assumption (18) it follows that

0an (0(1), F(t,2.(t))) < Ro(t),

and hence,

0an (1), F(t,24(1))) = 00n (0(t), F(t,2:(1)) N B (0(1), Ro(1))),
Oun (0(t), F(t,24(t))) < 02n (0(t), Sen (0(1), Ro(1))).

Taking into account definition (16) of the map F, from these relations we get (19).
Now, find a ¢ € (0,1) such that

QR'M (H(t)7 F(t7 x*(t)))
€SS sup
te(to,to+T) Ro(t)

<l-—gq (20)

(according to estimate (18) and equality (19), such a ¢ does exist). From essential boundedness of the
function v and absolute continuity of the Lebesgue integral it follows that there exists a 7 € (0,T")
such that

t

tee[ij,iyfﬂ (V(t) \ Ry(s) ds> < q, (21)
/tT (Ro(s) + 10(s)]) ds < o. (22)

Define the functional space

L=<y:[to,to+7] = R" : esssup M <ol
tefto, to+r]  o(t)

Note that the space £ is not empty (for example, the function 6 belongs to this space); one has

y € L if and only if there exists a A > 0 such that the inequality |y(t) — 0(¢)| < ARy(t) takes place

for a.e. t € [tg,to + 7]. This means that £ C L"[tg, to + 7]. We define a metric in £ by the equality
ly(t) — ()]

0,(y,2) = esssup ————, y,z€ L.
e te€[to,to+T] Ro(t) ’ ’
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Obviously, the space £ with respect to this metric is complete. It should be noticed that, if a
function y € L satisfies the inequality o, (y,0) < 1, then the inclusion y(t) € BS, (0(t), Ro(t)) holds
for a.e. t € [to,to + 7.

Denote by F. : [tg,to + 7] X R™ — R™ the restriction of the map F, define the corresponding
Nemytskii operator

N : C"to,to+ 7] = L, Nz ={ye L:y(t) € Fr(t,x(t)) for ae.t€ [to,to+ 7]}

and the integral operator

t
I:B,(0,1) — C"[to,to+ 7], (I2)(t) = +/ z(s)ds, t € [to,to+ 7]
to
By using Theorem 1, we show that the map NI : B,.(6,1) — L has a fixed point g, so there will
be justified the existence of the solution z = Iy € AC™[to, to + 7] to the Cauchy problem (14), (15).
All the successive reasoning is verifying the conditions of Theorem 1 for the operator & = N1.

Define the function ay(t) = ag, t € [to,to + 7). From inequality (22) there follows the inclusion
I(B.(0,1)) C Bonyyy 4000 (@0, 0).

Denote by F, : [to, to + 7] % B, (ag,0) — comp(R"™) the restriction of the map F given by
(16). According to condition (17), the map Fi(t,-) : B,, (ag,0) — comp(R"™) is continuous for
a.e. t € [to, to+7]; from assumption 1) it follows that F, (-, z) : [to, to+7] — comp(R™) is measurable
for every € B,,(ag,0). Thus, the map I?’T satisfies the Caratheodory conditions, and hence,

for every x € B there exists a measurable selection y of the map Fy(-,z(-)) (see,

C"[to,toiT] (do’ 0-)’
g., [12]), so y(t) € Fr(t,x(t)) for a.e. t € [to,to + 7]. According to (16), any such selection is
an element of the space £, moreover, g,(y,0) < 1. This means that we can define the Nemytskii
operator generated by the map F; :
N:B ag,0) — L, Nz = {yel:y() e E.(t,z(t)) for a.e. t € [to, to + 7]} (23)

C™[tg,to+7] (

Let us verify that Nz € clbd(L) for any = € By g1 (@05 0). From what is said above it

follows that the set Nz is bounded and Nz C B -(6,1); show that Nz is closed. Consider a sequence
{:}22, € Nz such that 0,(yi,y) — 0, i — oo. Then |y;(t) — y(t)| — 0 for a.e. t € [tg,to + 7],
and since the set E-(t,z(t)) is closed in R", there holds the inclusion y(t) € F,(t,x(t)). Therefore,
Yy e N x, and hence, the set Nz is closed.

Now we prove that the superposition NI : B.(6,1) — clbd (E) is g-contracting. Let x1,x2 €
Binigior-(@0,0). Take an arbitrary y, € Nz; and consider the ball B, (y1(t),7:(t)) of radius
re(t) = k(t)|z1(t) — x2(t)| + €, where € > 0. From estimate (17) it follows that for a.e. t € [to,to + 7]
the set By, (y1(t),r<(t)) N F(t, x5(t)) is not empty. Next, the map t — B, (y1(t), 7+ (t)) N F(t, z5(t))
is measurable, hence it has a measurable selection, say y5. So we have y5 € Nz and |y, (t) —y5(t)] <
re(t) for a.e. t € [to,tp + 7]. Then

ly1(t) — y5(8)| re(t)
0,(y1,y5) = esssup —————" < esssup
C( 2) te(to,to+7] R (t) te(to,to+T] RO(t)

Similarly, it can be proved that for any ys € N x9 there exists a yj € N x1 such that

re(t)
0. (Y5, y2) < esssup
‘ tefto,to+r] Bo(t)

From the arbitrariness of € > 0 and the inequalities obtained we get the estimate

N Ne t) — t
dist, (Na1, Nz3) < esssup k(t)]a1(t) — 22(t)]
telto,to+7) Ry (t)
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Then for any z;, 22 € B,(6,1) there holds

~ ~ ¢
dist . (NIzl, NIzg) < esssup k(?) <

te(to,to+7] Ro(t)

/ (21(5) — 2a(s))ds

to

k() [* |21(s) — 22(s)| k() [*
< esssup Ry(s)—————=ds = 0,.(z1,22) esssup / Ry(s)ds.
tE[to,to—l—T] Ro(t) to ( ) RO(S) C( )te[to,to—l—T] Ro(t) to ( )

Now, taking into account inequality (21), we get
dist . (Nle,]v[zg) < qo, (21, 22),

so the map NT : B,(6,1) — clbd(L) is g-contracting.
According to the definitions (16), (23) of the map F' and corresponding Nemytskii operator N,
for any v € B, — (v, o), there takes place the equality

N(z) = (N(2) N A(2)) UB(),

where A(z) = B, (A,1) and B(x) is the set of functions having the following property: for y € N (z)
the inclusion y € B(x) is true if and only if there exists a set E C [to, o + 7] of measure u(E) > 0
such that y(t) € S, (0(t), Ro(t)) for a.e. t € E. Thus, for any = € B, ap, o) and arbitrary
y € B(z), we have o, (y,0) = 1.

So the map NT : B,(6,1) — clbd(L) is g-contracting,

tg,tg+7] (

NI(y) = (NI(y)nB,(0,1)) UBI(y), and o,(0,BI(y)) =1 forany y € B,(6,1).

To fulfill the conditions of Theorem 1, it only remains to show that (1 —¢q)~to, (6, NI (0)) <1 (we
can take any number between (1—¢q)~'p - (0, N $*) and 1 as rg). From measurability of the functions

0(-) and F,(-,z,(-)) there follows the existence of a measurable function u : [to, %o + 7] — R™ such
that u(t) € Fr(t, z.(t)) and [0(t) — u(t)| = 0gn (H(t),FVT(t,aj*(t))) for a.e. t € [to,to+ 7] (see, e.g., [7]).
Then, taking into account inequality (20), we get o,.(0,u) < 1 —¢. Thus, g, (H,Na:*) <1-—g¢q, and
the required estimate is derived.

So, all the assumptions of Theorem 1 are complied; the existence of a fixed point for the map

N1 is verified. O

Remark 2. If the functions Ry, 6 in Theorem 2 are defined on [ty — T, tp] and all the other
assumptions hold true for the map F : [tg — T, to] x B,.(ag,0) — R™ given by (16), then for
some 7 > 0, there exists a solution to problem (14), (15) defined on [ty — 7,tg]. Obviously, if the
assumptions of Theorem 2 take place for ¢ € [tg — T, to+ T, then the Cauchy problem has a solution
defined on [ty — 7,t9 + T].

From Theorem 2 one can deduce the known results about solvability of inclusions with closed-
valued and not necessarily bounded right-hand sides. For example, there takes place the following
generalization of the statements obtained in the papers [6,7].

Corollary 2. Let T > 0 and F : [to,to + T] x R™ — R™ be such that, for some o > 0, the
following conditions hold:
1) F(t,x) € clos(R") for any x € By, (ap,0) and a.e. t € [to,to+ T7;
2) the map F'(-,x) : [to,to + T] — clos(R™) is measurable for any x € By, (g, 0);
3) there exists an integrable function k : [to,to +T] — R4 such that

disty, (F(t,21), F(t,x2)) < k(t)|z1 — 22|

R

for any x1,22 € By, (a0, 0) and a.e. t € [tg,to + 1.
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If there exists a function x, € AC™[tg,to + T| satisfying the condition x.(a) = ap and such that
the function
[t07t0 + T] Sl Ogn (:E*(t)v F(t7x*(t))) € R-l—
is integrable, then there is a T > 0 such that the Cauchy problem (14), (15) has a solution defined
on [to,to + 7).

P r oo f. In definition (16) of the map F, set
H(t) = i’*a RO(t> = k(t) + 2QRn (x*(t), F(t,x*(t))), te [thtO + T]

Obviously, the map F satisfies conditions 1),2) of Theorem 2, moreover, v(t) = k(t)/Ro(t) < 1 for
a.e. t € [to,to + T]. Further, according to [4], for any z1,xz2 € R™ we get

disty, (F(t,21), F(t,22)) < dist,, (F(t,21),F(t,22)), t € [to,to + 11,

so the map F complies condition 3) of Theorem 2. Finally, the last assumption of the theorem,
inequality (18), is also satisfied; indeed,

00 (08), F(t.2n(®)) _ 00 (6(8), Flt.2u())

Ro(t) k() + 204, (0(t), F(t,2.(1)))

, € [to,to +T7.

N —

O

Remark 3. Let us note that estimate (18) in condition 3) of Theorem 2 cannot be relaxed.
It cannot be replaced, for instance, by the assumption that there exists an € > 0 such that the
inequality

Orn (9(75), F(t7 l‘*(t))) < RO(t) —€ (24)
is true for a.e. t € [to, to + T']. Below we give an example that confirms this observation.

Example 2. Consider the map

1
{t *(@+3)}, fort#0, z<0,

F:Ry xR —clos(R), F(t,z) = {ti%(x—l)}, fort#0, x>0,
{0}, fort=0, xR

(so, for any pair (t,z), the image F'(t,x) consists of a single point, see Figure 2). It can easily
be verified that the Cauchy problem for corresponding differential inclusion (14) with the initial
condition x(0) = 0 is not solvable on [0, 7], 7 > 0.

1 1 _1
Let 0(t) =t *, then z,(t) = 2t*, F(t,z.(t)) = {2 —t *}. Next, set Ro(t) = 2t

~ _1 _1
€ (0,1]. So, we have F(t,z) = F(t,z) U{ —t *; 3t * } for any |z| < o, t > 0. Clearly, this map
satisfies conditions 1),2) of Theorem 2. Besides, for all |z1| < o, |22| < o, there holds the estimate

1
* and take any

~ ~ _1
dist, (F(t,z1), F(t,z2)) <t * |21 — 2],

1
i.e., condition 3) is complied with k(t) =t > and v(t) = 1/2. Further, for a.e. t > 0 we have
1 1 1
o(0(t), F(t,z.()) =t * —(2—t *) =2t * —2=Ro(t) — 2,
so inequality (24) is true.
At the same time, condition (18) does not hold since for any 7" > 0,

1

o(6(t), F(t,2.(1))) 2 % 2
ess sup = esssup — = L.
t€[0,7] Ry (t) telo.] 2t 2
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0(t) + Ro(t)

Fig 2. The graphs of the functions x — F(t,z) and x — ﬁ’(t, x) for t # 0 in Example 2

Using Theorem 2 one can get conditions of continuation of solutions to differential inclusion (14).
Let D be a closed bounded domain (i.e., the closure of a nonempty open bounded connected set) in
R x R™.

Theorem 3. Let M : [a,b] — Ry be an integrable function, where [a,b] is the projection of D
onto R, i.e., [a,b] = {t : Jx (t,x) € D}. Suppose that for every point (ty, ) € int D there exist
T >0, 0 >0, and integrable functions Ry : [to —T,to+T] — Ry, 0 : [to—T,to+T] — R™ such that

10(£)] + Ro(t) < M(¢), te€[to—T,to+1T], (25)

and the map F [to—T,to+T] % By, (ag,0) — R™ given by (16) satisfies the conditions of Theorem 2
on the interval [to—T,to+T]. Then any solution T of inclusion (14) defined on some compact interval
I and having the graph in int D, meaning {(t,Z(t)),t € I} C int D, can be continued («on both sides»)
up to the boundary of D.

P roof Denote by X the set of solutions x to inclusion (14) that are defined on compact
intervals, have graphes inside D, are continuations of the given on [ solution Z, and satisfy the
inequality

[2(8)] < M(2) (26)

for a.e. t ¢ I. This set is not empty since T € X. We introduce on X the order = in the following
way: given two solutions u,v € X defined on compact intervals I, and I, respectively, we assume
u = vif I, D I, and u(t) = v(t) for ¢t € I,,. According to the Hausdorff theorem (see, e.g., [13]), in X
there exists a maximal chain S containing Z. Each element of this chain is some solution z defined
on I, = [cz,d,]. Obviously, there exist ¢ = inf,cg{c, } and d = sup,cg{d,}. For any ¢y € (¢,d), find
a solution x € S such that ty € I, (such a solution does exist). Next, on the interval (c, d ) define
the function Z by the equality Z(t) = z(t), where x € S is a solution defined on the compact interval
I, containing ¢ (this definition if well-posed, choosing any other element in S we get the same value
x(t)). Since every x € S satisfies inequality (26), the function Z can be continued on the compact
interval [c, d ], and this continuation will be an element of X.

Now, we show that «the ends» of the solution found, the points (E, E(’c\)), (c/l\, f(j)), belong to

the boundary of D. Suppose this is not true, and, for example, (c/l\, :/E\(C/Z\)) € int D. Then, according

~

to Theorem 2, there exists a solution of the Cauchy problem with the initial condition x(d) = 5:\((3\)

defined on [c/l\, d+ 7] and satisfying inequality (26). This means that one can find a continuation of

the solution T which is an element of X and is greater than any element of the maximal chain S.

This contradiction completes the proof. O
We give an example which illustrates the importance of condition (25) in Theorem 3.
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Example 3. Let D = {(t,2): ¢t €[0,1], z €[0,2]} and
FO =) te ((+1)7 i), i=1,2,. ...

For t € (0,1], € [0,2], define the map F : R x R — R by F(t,z) = { f(t)}, and consider inclusion
(14). The conditions of Theorem 2 are fulfilled for any initial point (¢, ) € int D. In order to prove
this, one can choose T, 0 > 0 so that [tg — T, to + 1] X By, (g, 0) C int D (obviously, such T" and o
do exist) and set 0(t) = 0, k(t) = 0, Ro(t) = 2(to — T) "2 for t € [to — T,to + T]. At the same time,
condition (25) does not hold. Indeed, from estimate (18) it follows that, for any choice of # and Ry,
one gets

0(t)] + Ro(t) > [0(t)] + | (t) = 0()| > |f()| =72, t € (0,1],

and the function ¢ + ¢~2 in not integrable on [0, 1].

The violation of condition (25) makes it impossible to continue a solution of inclusion (14)
passing, for example, through the point (1/2,0), to the left up to the boundary of D. In fact, any
solution z defined on I, C [0,1] and satisfying the condition x(1/2) = 0, is a restriction of the
function

[t 20 te (i+D)7h (207,
u(t)—{ % — 71, teg(m)—l’(gi_l)—l% i=1,2,...

(it is the only solution of the differential equation #(t) = f(¢) with initial condition z(1/2) = 0),
and this function has essential discontinuity at the point ¢ = 0.

In conclusion, we consider an example of differential inclusion (14) with the map F' satisfying all
the assumptions of Theorem 3; so, for this inclusion the Cauchy problem with any initial condition
has a solution, and every solution can be continued. It is interesting to note that the mentioned map
F is obtained by changing «a little> the map studied in Example 2, for which the condition (18)
does not hold and a solution of the corresponding Cauchy problem does not exist.

Example 4. Take any » € (0,1) and let the map F : R x R — clos(R) be given by

(1t 2z +3— )}, for t £ 0, = € (—00,0),
Flray =4 73— D i 2@ +3 -5}, fort#£0, 20,5,
{jt| 2(z—1)}, for t #£ 0, z € [»,00),
{0}, fort=0, xR

(see Figure 3). Show that for any initial point (¢g, ag), problem (14), (15) has a solution on the whole
real line. We verify the conditions of Theorem 2; it is enough to consider the initial values (¢, 0)
and (to, »), to € R (for any other point the conditions are, obviously, satisfied).

Let ap = 0. We restrict ourselves to the case of ¢ = 0, for tg # 0 ‘Ehe calculations will be very

much the same. Put T = 1652, o € (0,1], (t) = |t| *, Ro(t) = 2|t| *. Then

1 1
—21t|%, te[-T,0), {2+t *3-3)},  te[-T,0),

l‘*(t): 1 F(tv$*(t)): 1 _1
2t%,  t€[0,T); {2—t % 2+t *(3—3)}, te€(0,7T).

Show that estimate (18) takes place. Find o(t) = o, (6(t), F(t,z.(t))). For t € [-T,0),

_1 _1
ot) = =24 t] T(B—s) = [t 2 = =2+t *(2— ).

For t € (0,77, one gets o(t) = min{p;(t), 02(t)}, where

NI
=

1 _ _
01(t) =2+t *(B—3)—t > =2+t *(2— x);
1 1

o)=t *—(2-t %)= IS
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Fig 3. The graphs of the functions x — F(t,x) and z — Fv(t, x) for t > 0 in Example 4

1

Since T = 167152, it follows that o(t) =2+t *(2 — »), t € (0,7]. Thus,

_1 1
o(t) { 2+t 2(2- ) 2+t2(2—%)}
€SS sup = Supy €esssup 7 , €sssup e =
te[-T,T) Ro(t) te[-T,0) 2]t]7§ t€[0,T 2 2

1
:sup{ esssup <—|t|? —|—1—z>, esssup (tg _|_1_f>} :sup{l—z,l—z} —1-Z<1
te[~T,0) 2 t€[0,T] 2 2 4 4

Next, for a.e. t € [-T,T], the map x — ﬁ(t,aj) is, obviously, Lipschitz for |z| < o; the other
conditions of Theorem 2 are also fulfilled.
Now, let ap = ». Here again we consider only the case of ¢y = 0 (for non—zero values of %, the

reasoning will be analogous). As before, choose T' = 167152, o € (0,1], 0(t) = |t| *, Ro(t) =2t *
and define on [T, T] the function

1
t x—=20t]°, tel-T,0],
:L'*(t):%-i—/ 0(s)ds = )
0 x+2t%, te(0,T).

Let us verify estimate (18); the other assumptions of Theorem 2 take place.
According to the definition of the map F, we get

{—2+m%(%—1) —2+3yt15} te[-T,0),
F(tv$*(t)) = 1
{2+t2(%—1)}, t € (0,7).

Then

1

24 t| (2 — %), te[-T,0),
1

-2+t (2—»), te(0,T],

from which it follows that

t 1 1
ess sup olt) = sup < esssup <|t|7+1—z>,esssup <—t7+1—z> —1-Z<1.
te[-7,1) Fo(?) te[~T,0) 2) " tepo,1] 2 4
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1
Finally, to check condition (25) of Theorem 3 it suffices to set M (t) = 3[¢t| * for all ¢ # 0. So,
according to Theorem 3, any solution Z defined on a compact interval can be continued up to the
boundary of any domain D. It is only left to note that, since every solution of the given inclusion

1
should satisfy the estimate |z(t)| < |z(to)| + 6t|”, the solution Z is the restriction of a solution
defined on the whole of R.
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B pabore npemioxkeno obobmenne Teopembr Hajjrepa 0 HEMOABUAKHBIX TOYKAX JJI MHOTO3HAIHBIX OTOOPa-
JKEHUIl JIefCTBYIONNX B METPUYECKUX IPOCTpaHCTBaX. [losiyueHHBIH pe3ysibTaT MO3BOJIAET U3y4aTh CyIIle-
CTBOBAHME HEIIOJIBI2KHBIX TOYEK y MHOT'O3HAYHBIX OTOODaKeHUil, KOTOPbIe He 00A3aTEIbHO SABJISIOTCS CXKU-
MaIOIINMHU, U JIa2Ke HeIIPEPbIBHBIMHI, OTHOCUTEIBHO MeTPUKH Xaycaopda, 1 0dpa3aMu KOTOPBIX MOI'YT OBITH
[IPOU3BOJILHBIE MHO2KECTBA COOTBETCTBYIOIIET0 METPUIECKOTO TPOCTPAHCTBA. ¥ TOMSHYTHII pe3y/IbTaT MOXKHO
HCITOJIb30BATH JJIsi UCCIIEIOBAHNS MUMPEPEHITUATBHBIX 1 (DYHKITNOHAIBHO- (M DEPEHITNATBHBIX Y PABHEHIH
C pa3pblBaMU, a TaKzKe BKJIIOYEHHUIl, IpaBble YaCTU KOTOPBIX IIOPOXKJIEHBI MHOIO3HAYHBIMHU OTOODaKEHMSI-
MU C IIPOU3BOJIBHBIMU OOpa3amu. Bo BTOpOil dacTu pabOTHI, B Ka4ecTBe IPHUJIOXKEHHS, MOJIYIEHbI YCJIOBUSI
CYIIIECTBOBAHUS U IIPOJIOJI2KAeMOCTH perrenuit 3aga4du Ko s nuddepeHnaabsHoro BKIIOYEHUs ¢ HEKOM-
IMAKTHOU MPaBOil YacThio B mpocTpaHcTBe R™.
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