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ABOUT ONE TYPE OF SEQUENCES THAT ARE NOT A SHAUDER BASIS
IN HILBERT SPACES

Let H be a Hilbert space and a (not necessarily bounded) sequence of its elements {en}∞n=1 has a bounded
subsequence {enk

}∞k=1 such that |(enk
, enm)| � α > 0 for all sufficiently large k,m ∈ N, k �= m. It is proved

that such a sequence {en}∞n=1 is not a basic sequence and thus is not a Schauder basis in H . Note that the
results of this paper generalize and offer a short and more simple proof of some recent results obtained in
this direction.
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Introduction

We begin by recalling some notions.

Definition 1 (see [1, 2, 3]). A sequence of vectors {xn}∞n=1 in an infinite-dimensional Banach
space X is said to be a Schauder basis for X if to each vector x in the space there corresponds
a unique sequence of scalars {αn}∞n=1 such that

x = α1 · x1 + . . . + αn · xn + . . . .

Definition 2 (see [3]). A sequence of vectors {xn}∞n=1 in a Banach space X is said to be a basic
sequence if it is a Schauder basis for the closure of its linear span.

It is well known that every separable Hilbert space possesses an orthonormal Schauder bases,
i. e. a Schauder basis {en}∞n=1 for which ‖en‖ = 1 and (en, em) = 0 for every n,m ∈ N,n �= m.
Besides it, it can easily be shown that every sequence {en}∞n=1 of elements in any Hilbert space with
the properties ‖en‖ = 1 and (en, em) = 0 for every n,m ∈ N,n �= m, is a basic sequence in this
space. It is easy to see that the number 1 in this formulation can easily be replaced by the other
number by retaining the mentioned property. Therefore, it is natural to ask what would happen if
the number 0 is replaced by the another number. First result in this direction (that is known to us)
is obtained in [4].

Theorem 1 (see [4]). Let H be a Hilbert space and {xn}∞n=1 be a sequence of elements in H with
the following properties:
1) ‖xn‖ = 1 for all n ∈ N ; 2) (xn, xm) = a, 0 < |a| < 1; n,m ∈ N , n �= m.
Then {xn}∞n=1 is not a basic sequence in H.

The next result in this direction is the following.

Theorem 2 (see [5]). Let H be a Hilbert space and {xn}∞n=1 be a complete sequence of elements
in H with the following properties:
1) ‖xn‖ = 1 for all n ∈ N ; 2) (xn, xm) � a > 0, n,m ∈ N , n �= m.
Then {xn}∞n=1 is not a Schauder basis in H.

Some time later Sadybekov and Sarsenby [6], investigating the unconditional basicity of se-
quences, obtained the following result, where they require from the sequence to be almost normalized
instead of being normalized.
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Theorem 3 (see [6]). Let H be a Hilbert space and {xn}∞n=1 be a complete, minimal and an
almost normalized sequence of elements in H with the property |(xn, xm)| � a > 0 for all sufficiently
large numbers n and m. Then {xn}∞n=1 is not an unconditional basis in H.

In this note we state a result that generalizes all the mentioned results and, besides it, offers
a short and simpler proof of these results.

§ 1. Main result and its proof

Theorem 4. Let H be a Hilbert space and a bounded sequence of its elements {en}∞n=1 satisfies
|(en, em)| � α > 0 for n,m ∈ N,n �= m. Then {en}∞n=1 is not a basic sequence (and thus a Schauder
basis) in H.

P r o o f. Assume the contrary: the sequence {en}∞n=1 satisfies the conditions of the theorem
and is a basic sequence.

Since {en}∞n=1 is assumed to be bounded, it has a weakly convergent subsequence {enk
}∞k=1 (see,

for example, [7, p. 81]); let x0 be its weak limit. It is known that every subsequence of a basic
sequence is also a basic sequence (it follows, for example, from [3, Theorem 1.1’]). Therefore, the
subsequence {enk

}∞k=1 is also a basic sequence. Hence, it has a biorthogonal system, i. e. a sequence
of elements {bk}∞k=1 such that

(bk, enm) = δkm, (1)

where δkm is a Kronecker symbol. Here, passing to the limit as m → ∞ and taking into account
that x0 is a weak limit of {enm}∞m=1, we obtain that

(bk, x0) = 0 ∀k ∈ N. (2)

By the condition of the theorem we have |(enk
, enm)| � a > 0 for all k,m ∈ N,n �= m. Therefore,

taking into account that x0 is a weak limit of {enm}∞m=1, by passing to the limit at first as k → ∞
and then passing to the limit as m → ∞, we obtain that |(x0, x0)| > 0. This relation implies that
x0 �= θ.

Now, since the weak limit of a sequence of elements lies in the closure of its linear span (see, for
example, [7, p. 81] or [1, p. 216]), x0 must have a representation

x0 = α1 · en1 + α2 · en2 + . . . + αk · enk
+ . . . . (3)

We find from here that

(bk, x0) = α1 · (bk, en1) + α2 · (bk, en2) + . . . + αk · (bk, enk
) + . . .

for all k ∈ N . From here, by using (1) and (2), we obtain that

αk = 0 ∀k ∈ N.

These relations and (3) imply that x0 = θ. But this contradicts to the fact that x0 �= θ. The
obtained contradiction shows that our assumption is false. The theorem is proved. �

§ 2. Concluding remarks

As was already mentioned, if a sequence is a basic sequence then every subsequence of this
original sequence is also a basic sequence (it follows, for example, from [3, Theorem 1.1’]). This
observation and the proof of the theorem from the previous section imply that the following more
general result holds true.

Theorem 5. Let H be a Hilbert space and a (not necessarily bounded) sequence of its elements
{en}∞n=1 has a bounded subsequence {enk

}∞k=1 such that |(enk
, enm)| � α > 0 for all sufficiently large

k,m ∈ N, k �= m. Then {en}∞n=1 is not a basic sequence (and thus a Schauder basis) in H.
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