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Introdution

Throughout this artile, unless otherwise spei�ed, R will denote an assoiative ring with non-

zero identity, and all modules are left unital R-modules. By a lass of modules we mean a non-empty

lass of modules. The lass of all left R-modules is denoted by R-Mod and by ℜ we mean the set

{(M,N) | N ≤M, M ∈ R-Mod}, where N ≤ M is a notation whih means that N is a submodule

ofM . Given a family of modules {Mi}i∈I , for eah j ∈ I, πj :
⊕

i∈I Mi →Mj denotes the anonial

projetion homomorphism. Let M be a module and let Y be a subset of M . The left annihilator

of Y in R will be denoted by lR(Y ), i. e., lR(Y ) = {r ∈ R | ry = 0, ∀y ∈ Y }. Given a ∈ M, let
(Y : a) denote the set {r ∈ R | ra ∈ Y }, and let annR(a) := (0 : a). The right annihilator of

a subset I of R in M will be denoted by rM (I), i. e., rM (I) = {m ∈M | rm = 0, ∀r ∈ I}. The lass
{I | I is a left ideal of R suh that annR(m) ⊆ I, for some m ∈M} will be denoted by Ω(M).

An R-module M is said to be injetive if, for any module B, every homomorphism f : A → M ,

where A is any submodule of B, extends to a homomorphism g : B →M [3℄. The notation g ↾ A = f
means that g is an extension of f . LetM and N be modules. Reall that N is said to beM -injetive

if every homomorphism from a submodule ofM to N extends to a homomorphism fromM to N [2℄.

A module M is said to be quasi-injetive if M is M -injetive. The injetive envelope of a module

M will be denoted by E(M).

Let τ = (T ,F) be a torsion theory. A submodule B of a module A is said to be τ -dense in

A if A/B is τ -torsion (i. e., A/B ∈ T ). A submodule A of a module B is said to be τ -essential
in B if it is τ -dense and essential in B. A torsion theory τ is said to be Noetherian if for every

asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R with I∞ =
⋃

∞

j=1 Ij a τ -dense left ideal in R, there
exists a positive integer n suh that In is τ -dense in R. A module M is said to be τ -injetive if

every homomorphism from a τ -dense submodule of B to M extends to a homomorphism from B
to M , where B is any module [8℄. Let M be an R-module. A τ -injetive envelope (or τ -injetive
hull) of M is a τ -injetive module E whih is a τ -essential extension of M [6℄. Every R-module M
has a τ -injetive envelope and it is unique up to isomorphism [8℄. We use the notation Eτ (M) to
denote an τ -injetive envelope of M . A τ -injetive module E is said to be

∑

-τ -injetive if E(A)
is

τ -injetive for any index set A; E is said to be ountably

∑

-τ -injetive if E(C)
is τ -injetive for
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any ountable index set C. Let E and M be modules. Then E is said to be τ -M -injetive if any

homomorphism from a τ -dense submodule of M to E extends to a homomorphism from M to E.
A module E is said to be τ -quasi-injetive if E is τ -E-injetive.

Let M = {(M,N, f,Q) | M,N,Q ∈ R-Mod, N ≤ M, f ∈ HomR(N,Q)} and onsider the

following onditions on L that will be useful later, where L always denotes a nonempty sublass

of M:

(α) (M,N, f,Q) ∈ L, (M,N ′, f ′, Q) ∈ M and (M,N, f,Q) � (M,N ′, f ′, Q) implies inlusion

(M,N ′, f ′, Q) ∈ L, where � is a partial order on M de�ned by:

(M,N, f,Q) � (M ′, N ′, f ′, Q′) ⇐⇒M =M ′, N ⊆ N ′, Q = Q′, f ′ ↾ N = f ;

(β) (M,N, f,A) ∈ L, i : A → B implies (M,N, if,B) ∈ L, where i is an inlusion homomor-

phism;

(γ) (M,N, f,A) ∈ L, g : A→ B an isomorphism, implies (M,N, gf,B) ∈ L;
(δ) (M,N, f,A) ∈ L, g : A→ B a homomorphism, implies (M,N, gf,B) ∈ L;
(λ) (M,N, f,A) ∈ L, g : A→ B a split epimorphism, implies (M,N, gf,B) ∈ L;
(µ) (M,N, f,Q) ∈ L, implies (R, (N : x), fx, Q) ∈ L∀x ∈ M, where fx : (N : x) → Q is

a homomorphism de�ned by fx(r) = f(rx) ∀r ∈ (N : x).

Jir�asko in [14℄ introdued the onepts of L-injetive module as a generalization of injetive

module as follows: a module Q is said to be L-injetive if for eah (B,A, f,Q) ∈ L, there exists a

homomorphism g : B → Q suh that (g ↾ A) = f . An L-injetive module E is said to be an L-
injetive envelope (or L-injetive hull) of a module M if there is no proper L-injetive submodule of

E ontaining M [14℄. If a module M has an L-injetive envelope and it is unique up to isomorphi

then we will use the notation EL(M) to denote an L-injetive envelope of M . Clearly, injetive

module and all its generalizations are speial ases of L-injetivity.
The aim of this artile is to study L-injetivity and some related onepts.

In Setion 1, we give some haraterizations of L-injetive modules. For example, in Theorem 1

we give a version of Baer's riterion for L-injetivity. Also, in Theorem 2 we extend a haraterization

due to [20, Theorem 2, p. 8℄ of L-injetive modules over ommutative Noetherian rings.

In Setion 2, we introdue the onepts of L-M -injetive module and s-L-M -injetive module as

generalizations of M -injetive modules and give some results on them. For examples, in Theorem 3

we prove that if L is a nonempty sublass of M satisfying onditions (α), (β), and (γ) and M,Q ∈
R-Mod suh that M satis�es ondition (EL), then Q is L-M -injetive if and only if f(M) ≤ Q,
for all f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L where L = {m ∈ M | f(m) ∈ Q} =
M

⋂

f−1(Q). Also, in Proposition 2 we generalize [6, Proposition 14.12, p. 66℄, [5, Proposition 1,

p. 1954℄ and Fuhs's result in [12℄. Moreover, our version of the generalized Fuhs riterion is given

in Proposition 3 in whih we prove that if L is a nonempty sublass of M satisfying onditions (α)
and (µ) andM,Q ∈ R-Mod suh thatM satis�es ondition (L), then a module Q is s-L-M -injetive

if and only if for eah (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), there exists an element x ∈ Q suh

that f(a) = ax ∀a ∈ I.

In Setion 3, we study diret sums of L-injetive modules. In Proposition 4 we prove that for

any family {Eα}α∈A of L-injetive modules, where A is an in�nite index set, if L satis�es onditions

(α), (µ), and (δ) and

⊕

α∈C Eα is an L-injetive module for any ountable subset C of A, then
⊕

α∈AEα is an L-injetive module. In Theorem 4, we prove that for any nonempty sublass L of

M whih satis�es onditions (α) and (δ) and for any nonempty lass K of modules losed under

isomorphi opies and L-injetive hulls, if the diret sum of any family {Ei}i∈N of L-injetive R-
modules in K is L-injetive, then every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R)
with I∞ =

⋃∞

j=1 Ij being s-L-dense in R terminates. Also, in Theorem 5 we generalize results

in [17, p. 643℄ and [8, Proposition 5.3.5, p. 165℄ in whih we prove that for any nonempty sublass

L of M whih satis�es onditions (α), (µ), (δ), and (I) and for any nonempty lass K of modules

losed under isomorphi opies and submodules, if every asending hain J1 ⊆ J2 ⊆ . . . of left ideals
of R, where (Ji+1/Ji) ∈ K ∀i ∈ N and J∞ =

⋃∞

i=1 Ji is s-L-dense in R, terminates, then every diret

sum of L-injetive modules in K is L-injetive.
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Finally, in Setion 4, we introdue the onept of

∑

-L-injetivity as a generalization of

∑

-injeti-

vity and

∑

-τ -injetivity and prove Theorem 6 in whih we generalize Faith's result [11, Proposition 3,

p. 184℄ and [6, Theorem 16.16, p. 98℄.

� 1. Some Charaterizations of L-Injetive Modules

One well-known result onerning injetive modules states that an R-module M is injetive if

and only if every homomorphism from a left ideal of R to M extends to a homomorphism from R to

M if and only if for eah left ideal I of R and every f ∈ HomR(I,M) there is an m ∈M suh that

f(r) = rm ∀r ∈ I. This is known as Baer's ondition [3℄. Baer's result shows that the left ideals of

R form a test set for injetivity.

The following theorem gives a version of Baer's riterion for L-injetivity.
Theorem 1 (Generalized Baer's Criterion). Consider the following three onditions for an

R-module M :

(1) M is L-injetive;
(2) for every (R, I, f,M) ∈ L, there exists an R-homomorphism g ∈ HomR(R,M) suh that

g(a) = f(a), for all a ∈ I;
(3) for eah (R, I, f,M) ∈ L, there exists an element m ∈M suh that f(r) = rm, ∀r ∈ I.
Then (2) and (3) are equivalent and (1) implies (2). Moreover, if L satis�es onditions (α) and

(µ), then all the three onditions are equivalent.

P r o o f. (1) ⇒ (2) and (2) ⇔ (3) are obvious.

(2) ⇒ (1). Let L satisfy onditions (α) and (µ) and let (B,A, f,M) ∈ L. Let S = {(C,ϕ) | A ≤
C ≤ B , ϕ ∈ HomR(C,M) suh that (ϕ↾A) = f }. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

Clearly, S 6= ∅ sine (A, f) ∈ S. Furthermore, one an show that S is indutive in the following

manner. Let F = {(Ai, fi) | i ∈ I} be an asending hain in S. Let A∞ = ∪i∈IAi. Then for any

a ∈ A∞ there is a j ∈ I suh that a ∈ Aj , and so we an de�ne f∞ : A∞ → M , by f∞(a) = fj(a).
It is straightforward to hek that f∞ is well de�ned and (A∞, f∞) is an upper bound for F in S.
Then by Zorn's Lemma, S has a maximal element, say (B′, g′). We will prove that B′ = B.

Suppose that there exists x ∈ B \ B′
. It is lear that (B,A, f,M) � (B,B′, g′,M). Sine

(B,A, f,M) ∈ L and L satis�es ondition (α), it follows that (B,B′, g′,M) ∈ L. Sine L satis�es

ondition (µ), we have (R, (B′ : x), g′x,M) ∈ L. By hypothesis, there exists a homomorphism

g : R → M suh that g(r) = g′x(r) = g′(rx), ∀r ∈ (B′ : x). De�ne ψ : B′ + Rx → M by

ψ(b + rx) = g′(b) + g(r), ∀b ∈ B′
, ∀r ∈ R. It is lear that ψ is a well-de�ned homomorphism

and (B′, g′) � (B′ + Rx,ψ). Sine (B′ + Rx,ψ) ∈ S and B′ $ B′ + Rx, we have a ontradition

to maximality of (B′, g′) in S. Hene B′ = B and this means that there exists a homomorphism

g′ : B →M suh that (g′↾A) = f . Thus M is L-injetive.

Now we will introdue the onept of P -�lter as follows.

De�nition 1. Let ℜ = {(M,N) | N ≤M, M ∈ R-Mod} and let ρ be a nonempty sublass of ℜ.
We say that ρ is a P -�lter if ρ satis�es the following onditions:

(i) if (M,N) ∈ ρ and N ≤ K ≤M , then (M,K) ∈ ρ;

(ii) for all M ∈ R-Mod, (M,M) ∈ ρ;

(iii) if (M,N) ∈ ρ, then (R, (N : x)) ∈ ρ, ∀x ∈M.

Example 1. All of the following sublasses of ℜ are P -�lters.
(1) ρT = {(M,N) ∈ ℜ | N ≤ M suh that M/N ∈ T , M ∈ R-Mod}, where T is a nonempty

lass of modules losed under submodules and homomorphi images.

(2) ρ∞ = ℜ = {(M,N) | N ≤M, M ∈ R-Mod}.
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(3) ρτ = {(M,N) ∈ ℜ | N is τ -dense in M, M ∈ R-Mod}, where τ is a hereditary torsion

theory.

(4) ρr = {(M,N) ∈ ℜ | N ≤ M suh that r(M/N) = M/N, M ∈ R-Mod}, where r is a left

exat preradial.

(5) ρmax = {(M,N) ∈ ℜ | N is a maximal submodule in M or N =M, M ∈ R-Mod}.
(6) ρe = {(M,N) ∈ ℜ | N ≤e M, M ∈ R-Mod}.

It is lear that the P -�lters from (2) to (5) are speial ases of P -�lter in (1). Also, if ρ is a

P -�lter then the sublass ρR = {(R, I) ∈ ρ | I is a left ideal of R} of ℜ is also P -�lter.

Notations 1. We will �x the following notations.

� For any two P -�lters ρ1 and ρ2, we will denote by L(ρ1,ρ2) the sublass L(ρ1,ρ2) = {(M,N, f,Q) ∈
M |M,N,Q ∈ R-Mod, (M,N) ∈ ρ1 and f ∈ HomR(N,Q) suh that (M, ker(f)) ∈ ρ2}.

� For any two nonempty lasses of modules T and F , we will denote by L(T ,F) the sub-

lass L(T ,F) = {(M,N, f,Q) ∈ M | M,N,Q ∈ R-Mod, N ≤ M suh that M/N ∈ T and

f ∈ HomR(N,Q) with M/ker(f) ∈ F}. It is lear that L(T ,F) = L(ρT ,ρF ), if T and F are losed

under submodules and homomorphi images.

� For any two preradials r and s, we will denote by L(r,s) the sublass L(r,s) = {(M,N, f,Q) ∈
M | M,N,Q ∈ R-Mod, N ≤ M suh that r(M/N) = M/N and f ∈ HomR(N,Q) with

s(M/ker(f)) =M/ker(f)}. It is lear that L(r,s) = L(ρr ,ρs), if r and s are left exat preradials.

� For any torsion theory τ , we will denote by Lτ the sublass Lτ = {(M,N, f,Q) ∈ M |
M,N,Q ∈ R-Mod, N is a τ -dense in M and f ∈ HomR(N,Q)}. It is lear that Lτ = L(ρτ ,ρ∞), if
τ is a hereditary torsion theory.

Lemma 1. Let ρ1 and ρ2 be two P -�lters. Then L(ρ1,ρ2) satis�es onditions (α), (δ), and (µ).

P r o o f. It is obvious.

The following orollary is a generalization of Baer's result in [3℄, [19, Proposition 2.1, p. 201℄, [14,

Baer's Lemma 2.2, p. 628℄ and [4, Theorem 2.4, p. 319℄.

Corollary 1. Let ρ1 and ρ2 be two P -�lters. Then the following onditions are equivalent for

R-module M :

(1) M is L(ρ1,ρ2)-injetive;

(2) for every (R, I, f,M) ∈ L(ρ1,ρ2) there exists an R-homomorphism g ∈ HomR(R,M) suh that

g(a) = f(a), for all a ∈ I;

(3) for eah (R, I, f,M) ∈ L(ρ1,ρ2) there exists an element m ∈M suh that f(r) = rm, ∀r ∈ I.

P r o o f. By Lemma 1 and Theorem 1.

The following haraterization of L-injetivity is a generalization of [18, Proposition 1.4, p. 3℄

and [8, Proposition 2.1.3, p. 53℄.

Proposition 1. Consider the following three onditions for R-module M :

(1) Q is L-injetive;
(2) for every (M,N, f,Q) ∈ L with N ≤e M , the homomorphism f extends to a homomorphism

from M to Q;

(3) for every (R, I, f,Q) ∈ L with I ≤e R, the homomorphism f extends to a homomorphism

from R to Q.

Then (1) implies (2), (2) implies (3) and, if L satis�es onditions (α) and (µ), then (3) im-

plies (1).
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P r o o f. (1) ⇒ (2) and (2) ⇔ (3) are obvious.

(3) ⇒ (1). Let L satisfy (α) and (µ) and let (R, I, f,Q) ∈ L. Let Ic be a omplement left ideal of

I in R and let C = I⊕ Ic. Thus, by [1, Proposition 5.21, p. 75℄, C ≤e R. De�ne g : C = I⊕ Ic → Q
by g(a + b) = f(a) , ∀a ∈ I and ∀b ∈ Ic. It is lear that g is a well-de�ned homomorphism and

(R, I, f,Q) � (R,C, g,Q). Sine L satis�es ondition (α), (R,C, g,Q) ∈ L. By hypothesis, there

exists a homomorphism h : R → Q suh that (h ↾ C) = g. Thus (h ↾ I) = (g ↾ I) = f and this

implies that Q is L-injetive, by Theorem 1.

In the following theorem we extend a haraterization due to [20, Theorem 2, p. 8℄ of L-injetive
modules over ommutative Noetherian rings.

Theorem 2. Let R be a ommutative Noetherian ring, let M be an R-module and suppose that

L satis�es onditions (α) and (µ). Then M is L-injetive if and only if for every (R, I, f,M) ∈ L,
where I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M .

P r o o f. (=⇒) This is obvious.

(⇐=) Let (B,A, f,M) ∈ L and let S = {(C,ϕ) | A ≤ C ≤ B, ϕ ∈ HomR(C,M) suh that

(ϕ ↾ A) = f }. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we an prove that S has a maximal element, say (B′, g′). We

will prove that B′ = B. Suppose that there exists an x ∈ B \ B′
. By [20, Theorem 1, p. 8℄, there

exists an element r0 ∈ R suh that (B′ : r0x) is a prime ideal in R and r0x /∈ B′
. It is lear that

(B,A, f,M) � (B,B′, g′,M). Sine (B,A, f,M) ∈ L and L satis�es ondition (α), it follows that
(B,B′, g′,M) ∈ L. Sine L satis�es ondition (µ), it follows that (R, (B′ : b), g′b,M) ∈ L, ∀b ∈ B.
Put y = r0x, thus y ∈ B \ B′

and hene (R, (B′ : y), g′y,M) ∈ L. By hypothesis, there exists a

homomorphism g : R→M suh that g(r) = g′y(r) = g′(ry), ∀r ∈ (B′ : y). De�ne ψ : B′ +Ry →M
by ψ(b+ ry) = g′(b) + g(r), ∀b ∈ B′, ∀r ∈ R. As in the proof of Theorem 1, we an prove that ψ is

a well-de�ned homomorphism and (B′, g′) � (B′+Ry,ψ). Sine (B′+Ry,ψ) ∈ S and B′ $ B′+Ry,
we have a ontradition to maximality of (B′, g′) in S. Hene B′ = B and this mean that there

exists a homomorphism g′ : B →M suh that (g′↾A) = f . Thus M is L-injetive.

Corollary 2. Let ρ1 and ρ2 be two P -�lters, let R be a ommutative Noetherian ring and let M
be an R-module. Then M is L(ρ1,ρ2)-injetive if and only if for every (R, I, f,M) ∈ L(ρ1,ρ2), where

I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M .

P r o o f. By Lemma 1 and Theorem 2.

Corollary 3 (see [20, Theorem 2, p. 8℄). Let R be a ommutative Noetherian ring, let M be

an R-module. Then M is injetive if and only if every homomorphism f : I → M , where I is a

prime ideal of R, an be extended to a homomorphism from R to M .

P r o o f. By taking the two P -�lters ρ1 = ρ2= ℜ and applying Corollary 2.

� 2. L-M-Injetivity and s-L-M-Injetivity

In this setion, we introdue the onepts of L-M -injetive modules and s-L-M -injetive

modules as generalizations of M -injetive modules and give some results about them.

De�nition 2. Let M,Q ∈ R-Mod. A module Q is said to be L-M -injetive if for every

(M,N, f,Q) ∈ L the homomorphism f extends to a homomorphism from M to Q. A module Q is

said to be L-quasi-injetive if Q is L-Q-injetive.
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Let M,Q ∈ R-Mod, it is well-known that a module Q is M -injetive if and only if f(M) ≤ Q,
for every homomorphism f : E(M) → E(Q) [16, Lemma 1.13, p. 7℄.

For an analogous result for L-M -injetivity we �rst �x the following ondition.

(EL): Let L be a sublass of M. Then a module M satis�es ondition (EL) if M has an

L-injetive envelope whih is unique up to M -isomorphism and (EL(M), N, f,Q) ∈ L whenever

(M,N, f,Q) ∈ L.

The next theorem is the �rst main result of this setion in whih we give a generalization of [16,

Lemma 1.13, p. 7℄ and [7, Theorem 2.1, p. 34℄.

Theorem 3. Let M,Q ∈ R-Mod and let L satisfy onditions (α), (β), and (γ). Consider the

following two onditions.

(1) Q is L-M -injetive.

(2) f(M) ≤ Q, for all f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L, where L = {m ∈
M | f(m) ∈ Q} =M

⋂

f−1(Q).

Then (1) implies (2) and, if M satis�es ondition (EL), then (2) implies (1).

P r o o f. (1) ⇒ (2). Let f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L, where L = {m ∈M |
f(m) ∈ Q} = M

⋂

f−1(Q). De�ne g : L → Q by g(a) = f(a), ∀a ∈ L (i. e., g = f↾L). It is

lear that g is a homomorphism and (M,L, g,Q) ∈ L. By L-M -injetivity of Q, there exists a

homomorphism h : M → Q suh that (h↾L) = g. Sine Q
⋂

(f -h)(M) = 0 and Q is an essential

submodule of EL(Q) (by [14, Theorem 1.19, p. 627℄), it follows that (f −h)(M) = 0 and this implies

that f(M) = h(M) ≤ Q.

(2) ⇒ (1). Let M satisfy ondition (EL) and let (M,N, f,Q) ∈ L, thus (EL(M), N, f,Q) ∈ L.
Sine L satis�es ondition (β), it follows that (EL(M), N, if,EL(Q)) ∈ L, where i is the in-

lusion mapping from Q into EL(Q). By L-injetivity of EL(Q), there exists a homomorphism

h : EL(M) → EL(Q) suh that h(n) = f(n) ∀n ∈ N . Let L = {m ∈ M | h(m) ∈ Q}. We will

prove that (M,L, g,Q) ∈ L, where g = h ↾ L. Let x ∈ N , thus h(x) = f(x) ∈ Q and hene x ∈ L.
Thus N ≤ L and (g ↾ N) = f . Thus (M,N, f,Q) � (M,L, g,Q). Sine L satis�es ondition (α), it
follows that (M,L, g,Q) ∈ L. By hypothesis, we have h(M) ≤ Q and hene h′ = h↾ M :M → Q is

suh that (h′ ↿ N) = f . Thus Q is an L-M -injetive module.

Corollary 4. Let M,Q ∈ R-Mod and let ρ1 and ρ2 be two P -�lters. If M satis�es ondition

(EL(ρ1,ρ2)
), then the following two onditions are equivalent:

(1) Q is L(ρ1,ρ2)-M -injetive;

(2) f(M) ≤ Q, for all f ∈ HomR(EL(ρ1,ρ2)
(M), EL(ρ1,ρ2)

(Q)) with (M,L, f↾L,Q) ∈ L, where

L = {m ∈M | f(m) ∈ Q} =M
⋂

f−1(Q).

P r o o f. By Lemma 1 and Theorem 3.

Let M,Q ∈ R-Mod and let τ be any hereditary torsion theory. A module Q is s-τ -M -injetive

if for any N ≤ M every homomorphism from a τ -dense submodule of N to Q extends to a homo-

morphism from N to Q [6, De�nition 14.6, p. 65℄.

As a generalization of s-τ -M -injetivity and hene of M -injetivity we introdue the onept of

s-L-M -injetivity as follows.

De�nition 3. Let M,Q ∈ R-Mod. A module Q is said to be s-L-M -injetive if Q is L-N -

injetive, for all N ≤M . A module Q is said to be s-L-quasi-injetive if Q is s-L-Q-injetive.
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Fuhs in [12℄ has obtained a ondition similar to Baer's Criterion that haraterizes quasi-injetive

modules, Bland in [5℄ has generalized that to s-τ -quasi-injetive modules, and Charalambides in [6℄

has generalized that to s-τ -M -injetive modules.

Our next aim is to generalize Fuhs's ondition one again in order to haraterize s-L-M -injetive

modules. We begin with the following ondition.

(L): Let L be a sublass of M and let M be a module. Then M satis�es ondition (L) if for
every (B,A, f,Q) ∈ L we have (Rm, (A : x)m, f(x,m), Q) ∈ L, for all m ∈ M and x ∈ B with

annR(m) ⊆ (ker(f) : x), where f(x,m) : (A : x)m → Q is a well-de�ned homomorphism de�ned by

f(x,m)(rm) = f(rx), for all r ∈ (A : x).

A sublass L of M is said to be full sublass if every R-module satis�es ondition (L).

Example 2. All of the following sublasses of M are full sublasses.

(1) L(T,F ), where T and F are nonempty lasses of modules losed under submodules and ho-

momorphi images.

(2) L = M.

(3) Lτ , where τ is a hereditary torsion theory.

(4) L(ρ,σ), where ρ and σ are left exat preradials.

In following proposition, we generalize [6, Proposition 14.12, p. 66℄, [5, Proposition 1, p. 1954℄

and Fuhs's result in [12℄, and it is neessary for our version of the Generalized Fuhs riterion.

Proposition 2. Consider the following statements, where M,Q ∈ R-Mod:

(1) Q is s-L-M -injetive;

(2) if m ∈ M with (Rm,K, f,Q) ∈ L, then the homomorphism f extends to a homomorphism

from Rm to Q;

(3) if K ≤ N are modules, not neessarily submodules of M suh that (N,K, f,Q) ∈ L and

Ω(N) ⊆ Ω(M), then the homomorphism f extends to a homomorphism from N to Q.
Then (1) implies (2) and (3) implies (1). Moreover, if L satis�es ondition (α) and M satis�es

ondition (L), then all above statements are equivalent.

P r o o f. (1) ⇒ (2). Let m ∈ M with (Rm,K, f,Q) ∈ L. Thus Q is L-Rm-injetive, sine Q is

s-L-M -injetive and hene there exists a homomorphism g : Rm→ Q suh that (g↾K) = f .

(2) ⇒ (3). Let L satisfy ondition (α) and M satisfy ondition (L). Let K ≤ N be modules,

not neessarily submodules of M with (N,K, f,Q) ∈ L and Ω(N) ⊆ Ω(M). Let S = {(C,ϕ) |
K ≤ C ≤ N, ϕ ∈ HomR(C,M) suh that (ϕ ↾ K) = f}. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we an prove that S has a maximal element, say (X,h). It su�es

to show that X = N . Suppose that there exists an n ∈ N \ X. It is lear that (N,K, f,Q) �
(N,X, h,Q). Sine (N,K, f,Q) ∈ L and L satis�es ondition (α), it follows that (N,X, h,Q) ∈ L.
Sine annR(n) ∈ Ω(N) and Ω(N) ⊆ Ω(M) (by assumption), we have annR(n) ∈ Ω(M) and this

implies that there exists an m ∈ M suh that annR(m) ⊆ annR(n). Sine annR(n) ⊆ (ker(h) : n),
we obtain annR(m) ⊆ (ker(h) : n). Sine m ∈M and n ∈ N \X suh that annR(m) ⊆ (ker(h) : n)
and sine M satis�es ondition (L), we get (Rm, (X : n)m,h(n,m), Q) ∈ L. By hypothesis, there

exists a homomorphism ϕ∗ : Rm→ Q suh that ϕ∗(am) = h(n,m)(am) for all am ∈ (X : n)m. De�ne

h∗ : X+Rn→ Q by h∗(x+rn) = = h(x)+ϕ∗(rm), ∀x ∈ X and ∀r ∈ R. Clearly, h∗ is a well-de�ned
homomorphism. For all a ∈ K we have h∗(a) = h∗(a + 0.n) = h(a) + ϕ∗(0.m) = h(a) = f(a) and
hene (h∗↾K) = f . Sine K ≤ X + Rn ≤ N , it follows that (X + Rn, h∗) ∈ S. Sine (h∗ ↾ X) = h
and X ≤ X + Rn ≤ N , we have (X,h) � (X + Rn, h∗). Sine n ∈ X + Rn and n /∈ X, it follows



On L-injetive modules 183

MATHEMATICS 2018. Vol. 28. Issue 2

that X $ X +Rn and this ontradits the maximality of (X,h) in S. Thus X = N and this implies

that there exists a homomorphism h : N → Q suh that (h↾K) = f .
(3) ⇒ (1). Let N ≤ M with (N,K, f,Q) ∈ L. Let I ∈ Ω(N), thus there exists an element

n ∈ N suh that annR(n) ⊆ I and hene there exists an element n ∈M suh that annR(n) ⊆ I and
this implies that I ∈ Ω(M) and so Ω(N) ⊆ Ω(M). By hypothesis, there exists a homomorphism

g : N → Q suh that (g↾K) = f . Thus Q is L-N -injetive module, for all N ≤ M and this implies

that Q is s-L-M -injetive.

There follows the last main result of this setion in whih we generalize [6, Proposition 14.13,

p. 68℄, [5, Proposition 2, p. 1955℄ and [12, Lemma 2, p. 542℄. It is our version of generalized Fuhs

riterion.

Proposition 3 (Generalized Fuhs riterion). Consider the following onditions, where M ,

Q ∈ R-Mod:

(1) Q is s-L-M -injetive;

(2) for eah (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), the homomorphism f extends to a homomor-

phism from R to Q;
(3) for eah (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), there exists an element x ∈ Q suh that

f(a) = ax ∀a ∈ I.
Then (2) ⇔ (3) and if M satis�es ondition (L) then (1) implies (2). Moreover, if L satis�es

onditions (α) and (µ), then (2) implies (1).

P r o o f. (2) ⇔ (3). This is obvious.
(1) ⇒ (2). Let M satisfy ondition (L) and let (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M). Thus

there exists an element m ∈ M suh that annR(m) ⊆ ker(f). Sine ker(f) = (ker(f) : 1), where 1

is the identity element of R, we have annR(m) ⊆ (ker(f) : 1). Sine M satis�es ondition (L), we
get (Rm, (I : 1)m, f(1,m), Q) ∈ L and hene (Rm, Im, f(1,m), Q) ∈ L. Sine Q is s-L-M -injetive, it

follows from Proposition 2 that there exists a homomorphism h : Rm→ Q suh that h ◦ i2 = f(1,m),

where i2 is the inlusion mapping from Im into Rm. De�ne v1 : I → Im by v1(a) = am, ∀a ∈ I,
and de�ne v2 : R→ Rm by v2(r) = rm, ∀r ∈ R. It is lear that v1 and v2 are homomorphisms and

for all a ∈ I we have (v2 ◦ i1)(a) = (i2 ◦ v1)(a), where i1 is the inlusion mapping from I into R.
De�ne g : R → Q by g(r) = (h ◦ v2)(r), ∀r ∈ R. It is lear that g is a homomorphism and for

all a ∈ I we have that (g ◦ i1)(a) = f(1,m)(v1(a)) = f(1,m)(am) = f(a.1) = f(a). Thus there exists

a homomorphism g : R→ Q suh that (g↾I) = f .
(2) ⇒ (1). Let L satisfy onditions (α) and (µ). Let K ≤ N ≤ M suh that (N,K, f,Q) ∈ L

and let S = {(C,ϕ) | K ≤ C ≤ N, ϕ ∈ HomR(C,M) suh that (ϕ↾K) = f}. De�ne on S a partial

order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we an prove that S has a maximal element, say (X,h). It su�es

to show that X = N . Suppose that there exists an n ∈ N \ X. It is lear that (N,K, f,Q) �
(N,X, h,Q). Sine (N,K, f,Q) ∈ L and L satis�es ondition (α), we have (N,X, h,Q) ∈ L. Sine
L satis�es ondition (µ) and n ∈ N \X, we get (R, (X : n), hn, Q) ∈ L. Sine (0 : n) ⊆ ker(hn) and
n ∈ M , it follows that ker(hn) ∈ Ω(M). By hypothesis, there exists a homomorphism ϕ∗ : R → Q
suh that (ϕ∗↾(X : n)) = hn. De�ne h

∗ : X+Rn→ Q by h∗(x+rn) = h(x)+ϕ∗(r), ∀x ∈ X, ∀r ∈ R.
We an prove that h∗ is a well-de�ned homomorphism, (X,h) � (X+Rn, h∗) and (X+Rn, h∗) ∈ S.
Sine n ∈ X + Rn and n /∈ X, it follows that X $ X + Rn and this ontradits the maximality

of (X,h) in S. Thus X = N and this implies that there exists a homomorphism h : N → Q suh

that (h↾K) = f . Thus Q is L-N -injetive module for all N ≤ M and hene Q is s-L-M -injetive

R-module.

� 3. Diret Sums of L-Injetive Modules

The diret sums of L-injetive modules is not L-injetive, in general. For example: let {Ti}i∈I
be a family of rings with unit and let R =

∏

i∈I Ti be the ring produt of the family {Ti}i∈I ,
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where addition and multipliation are de�ned omponentwise. Let A = ⊔i∈ITi be the diret sum

of Ti, ∀i ∈ I. If eah Ti
Ti is injetive, ∀ i ∈ I and I is in�nite, then RA is a diret sum of injetive

modules, but RA is not itself injetive, by [15, p. 140℄. Hene we have that RA is a diret sum of

L-injetive modules, but RA is not itself L-injetive where L = M.

Further we study onditions under whih the lass of L-injetive modules is losed under diret

sums.

Let {Eα}α∈A be a family of modules and let E =
⊕

α∈A Eα. For any x = (xα)α∈A ∈ E, we de�ne
the support of x as the set {α ∈ A| xα 6= 0} and denote it by supp(x). For any X ⊆ E, we de�ne

supp(X) as the set
⋃

x∈X

supp(x) = {α ∈ A | (∃x ∈ X)xα 6= 0}.

The following ondition will be useful later.

(F ): Let {Eα}α∈A be a family of modules, where A is an in�nite index set and let L be a sublass

of M.We say that L satis�es ondition (F ) for a family {Eα}α∈A, if for any (R, I, f,
⊕

α∈A Eα) ∈ L
the set supp(im(f)) is �nite.

Lemma 2. Suppose that A is any index set, C is any ountable subset of A, and {Eα}α∈A is

any family of modules. De�ne πC :
⊕

α∈AEα →
⊕

α∈C Eα by πC(x) = xC , for all x ∈
⊕

α∈AEα

where πα(xC) = πα(πC(x)) =

{

πα(x), if α ∈ C,

0, if α /∈ C,
∀α ∈ A, where πα is the αth projetion

homomorphism. Then πC is a well-de�ned homomorphism and if x ∈
⊕

α∈C Eα, then πC(x) = x.

P r o o f. An easy hek.

Lemma 3. Let {Mi}i∈I be any family of modules. If Mi is L-injetive, ∀ i ∈ I and L satis�es

ondition (λ), then
∏

i∈I Mi is L-injetive.

P r o o f. This is obvious.

The next orollary immediately follows from Lemma 3.

Corollary 5. Let L satisfy ondition (λ) and let {Mi}i∈I be any family of L-injetive modules.

If I is a �nite set, then

⊕

i∈I Mi is L-injetive.

Lemma 4. Let L satisfy onditions (α) , (µ), and (δ) and let {Eα}α∈A be any family of L-injetive
modules, where A is an in�nite index set. If L satis�es ondition (F ) for a family {Eα}α∈A, then
⊕

α∈AEα is an L-injetive module.

P r o o f. Suppose that L satis�es ondition (F ) for the family {Eα}α∈A and let (R, I, f,
⊕

α∈A Eα) ∈
∈ L. Thus supp(im(f)) is �nite and this implies that f(I) ⊆

⊕

α∈F Eα, where F is a �nite subset

of A. Sine Eα is L-injetive, ∀α ∈ F, it follows from Corollary 5 that

⊕

α∈F Eα is L-injetive.
De�ne πF :

⊕

α∈AEα →
⊕

α∈F Eα by πF (x) = xF , for all x ∈
⊕

α∈A Eα, where πα(xF ) =

= πα(πF (x)) =

{

πα(x), if α ∈ F,

0, if α /∈ F,
∀α ∈ A, where πα is the αth projetion homomorphism.

By Lemma 2, it follows that πF is a well-de�ned homomorphism. Sine (R, I, f,
⊕

α∈A Eα) ∈ L
and L satis�es ondition (δ), we have (R, I, πF ◦ f,

⊕

α∈F Eα) ∈ L. By L-injetivity of

⊕

α∈F Eα,
there exists a homomorphism g : R →

⊕

α∈F Eα suh that g(a) = (πF ◦ f)(a), ∀a ∈ I. Put
g′ = i1 ◦ g : R→

⊕

α∈AEα, where i1 :
⊕

α∈F Eα →
⊕

α∈AEα is the inlusion homomorphism. Then

for eah a ∈ I we have g′(a) = πF (f(a)). Sine f(I) ⊆
⊕

α∈F Eα, we have f(a) ∈
⊕

α∈F Eα, ∀a ∈ I.
Thus, by Lemma 2, it follows that πF (f(a)) = f(a), ∀a ∈ I and hene g′(a) = f(a), ∀a ∈ I. Sine
L satis�es onditions (α) and (µ), it follows from Theorem 1 that

⊕

α∈A Eα is L-injetive.



On L-injetive modules 185

MATHEMATICS 2018. Vol. 28. Issue 2

The following proposition generalizes Proposition 8.13 in [13, p. 83℄.

Proposition 4. Let L satisfy onditions (α), (µ), and (δ) and let {Eα}α∈A be any family of

L-injetive modules, where A is an in�nite index set. If

⊕

α∈C Eα is an L-injetive module for any

ountable subset C of A, then
⊕

α∈A Eα is an L-injetive module.

P r o o f. Let πβ :
⊕

α∈A Eα → Eβ be the natural projetion homomorphism. Assume that

⊕

α∈AEα is not L-injetive, thus by Lemma 4 there exists (R, I, f,
⊕

α∈A Eα) ∈ L suh that

supp(im(f)) is in�nite. Sine supp(im(f)) is an in�nite set, it follows that supp(im(f)) ontains

a ountable in�nite subset, say C. For any α ∈ C, we have α ∈ supp(im(f)) and this implies

that there exists an x ∈ im(f) suh that xα 6= 0. Thus for any α ∈ C we have πα(im(f)) 6= 0.
De�ne πC :

⊕

α∈A Eα →
⊕

α∈C Eα as in Lemma 2. Note that C = supp(im(πC ◦ f)). Sine
(R, I, f,

⊕

α∈A Eα) ∈ L and L satis�es ondition (γ), it follows that (R, I, πC ◦ f,
⊕

α∈C Eα) ∈ L.
Sine C is a ountable subset of A, it follows from the hypothesis that

⊕

α∈C Eα is L-injetive.
By Theorem 1, there exists an element y ∈

⊕

α∈C Eα suh that (πC ◦ f)(a) = ay, ∀a ∈ I. Let
α ∈ supp(im(πC ◦ f)), thus there is an r ∈ I suh that πα((πC ◦ f)(r)) 6= 0. Hene πα(ry) 6= 0
and this implies that πα(y) 6= 0. Thus α ∈ supp(y) and hene supp(im(πC ◦ f)) ⊆ supp(y). Sine
C = supp(im(πC ◦ f)), we have C ⊆ supp(y) and this is a ontradition, sine supp(y) is �nite

(beause y ∈
⊕

α∈C Eα) and C is in�nite. Thus

⊕

α∈AEα is an L-injetive module.

By Proposition 4 and Lemma 1 we an prove the following orollary.

Corollary 6. Let ρ1 and ρ2 be two P -�lters and let {Eα}α∈A be any family of modules, where A
is an in�nite index set. If

⊕

α∈C Eα is an L(ρ1,ρ2)-injetive module for any ountable subset C of A,
then

⊕

α∈A Eα is an L(ρ1,ρ2)-injetive module.

Now we an state the following result, found in [13, Proposition 8.13, p. 83℄ as a orollary.

Corollary 7. Let {Eα}α∈A be any family of τ -injetive modules, where A is an in�nite index set.

If

⊕

α∈C Eα is a τ -injetive module for any ountable subset C of A, then
⊕

α∈AEα is a τ -injetive
module.

P r o o f. By taking the two P -�lters ρ1 = ρτ and ρ2 = ℜ and applying Corollary 6.

Sine the lass of L-injetive modules is losed under isomorphism, when L satis�es (γ), it follows
from Proposition 4 that we have the next orollary.

Corollary 8. Consider the following three onditions, where K is a nonempty lass of R-modules.

(1) Every diret sum of L-injetive R-modules in K is L-injetive.
(2) Every ountable diret sum of L-injetive R-modules in K is L-injetive.
(3) For any family {Ei}i∈N of L-injetive R-modules in K,

⊕

i∈N Ei is L-injetive.
Then (1) implies (2) and (2) implies (3), and if L satis�es onditions (α), (µ), and (δ), then (2)

implies (1). Moreover, if L satis�es ondition (γ), then (3) implies (2).

De�nition 4. A submodule N of a module M is said to be strongly L-dense in M (shortly,

s-L-dense) if (M,N, IN , N) ∈ L, where IN is the identity homomorphism from N into N.

The following lemmas are lear.

Lemma 5. If N ≤ K ≤M are modules suh that N is s-L-dense in M and L satis�es onditions

(α) and (β), then K is s-L-dense in M.

Lemma 6. Let ρ be any P -�lter. Then (M,N) ∈ ρ if and only if N is s-L(ρ,∞)-dense in M.
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Following [10, p. 21℄, for any module M, denote by HK(M) the set of left submodules N of

M suh that (M/N) ∈ K, where K is any nonempty lass of modules (i. e., HK(M) = {N ≤ M |
(M/N) ∈ K}). In partiular, HK(R) = {I ≤ R | (R/I) ∈ K}.

The following theorem is the �rst main result of this setion.

Theorem 4. Let L satisfy onditions (α) and (δ) and let K be any nonempty lass of modules

losed under isomorphi opies and L-injetive hulls. If the diret sum of any family {Ei}i∈N of

L-injetive R-modules in K is L-injetive, then every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of

R in HK(R) with I∞ =
⋃

∞

j=1 Ij s-L-dense in R, terminates.

P r o o f. Let I1 ⊆ I2 ⊆ . . . be any asending hain of left ideals of R in HK(R) with I∞ =
⋃∞

j=1 Ij
being a s-L-dense left ideal in R. Thus (R/Ij) ∈ K ∀j ∈ N. Sine L satis�es onditions (α),
(β), and (γ), it follows from [14, Theorem 1.12, p. 625℄ that every R-module M has an L-
injetive hull whih is unique up to M -isomorphism. Let EL(R/Ij) be the L-injetive hull of

R/Ij , ∀j ∈ N. Sine K is losed under L-injetive hulls, it follows that EL(R/Ij) ∈ K, ∀j ∈ N.
De�ne f : I∞ =

⋃∞

j=1 Ij →
⊕∞

j=1EL(R/Ij) by f(r) = (r + Ij)j∈N, for r ∈ I∞. Note that

f is a well-de�ned mapping: for any r ∈ I∞, let n be the smallest positive integer suh that

r ∈ In. Sine In ⊆ In+k, ∀k ∈ N, we have r ∈ In+k ∀k ∈ N and so r + In+k = 0, ∀k ∈ N. Thus
(r + Ij)j∈N = (r + I1, r + I2, . . . , r + In−1, 0, 0, . . .) ∈

⊕

∞

j=1EL(R/Ij). Thus f(I) ⊆
⊕

∞

j=1EL(R/Ij)
and hene f is a well-de�ned mapping. It is lear that f is a homomorphism. Sine I∞
is a s-L-dense left ideal in R, it follows that (R, I∞, II∞ , I∞) ∈ L. Sine L satis�es ondi-

tion (δ), we have (R, I∞, f,
⊕∞

j=1EL(R/Ij)) ∈ L. Sine EL(R/Ij) is an L-injetive R-module

in K, ∀j ∈ N, it follows from the hypothesis that

⊕∞

j=1EL(R/Ij) is an L-injetive R-module.

Thus, by Theorem 1, there exists an element x ∈
⊕∞

j=1EL(R/Ij) suh that f(r) = rx ∀r ∈ I∞.

Sine x ∈
⊕∞

j=1EL(R/Ij), we have x = (x1, x2, . . . , xn, 0, 0, . . .), for some n ∈ N, and hene

(r + Ij)j∈N = (rx1, rx2, . . . , rxn, 0, 0, . . .) and this implies that r + In+k = 0, ∀k ≥ 1 and ∀r ∈ I∞,
Thus, r ∈ In+k, ∀k ≥ 1 and ∀r ∈ I∞, and so I∞ =

⋃∞

j=1 Ij ⊆ In+k, ∀k ≥ 1. Sine In+k ⊆ I∞,

it follows that I∞ = In+k,∀k ≥ 1, It = It+j, ∀j ∈ N. Therefore the asending hain I1 ⊆ I2 ⊆ . . .
terminates.

Now we will state the ondition (I) on L as follows:

(I) : (R, J, f,Q) ∈ L implies that J is s-L-dense in R. That is, (R, J, f,Q) ∈ L implies

(R, J, IJ , J) ∈ L.

Proposition 5. Consider the following two onditions, where K is a nonempty lass of R-
modules.

(1) Every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R) with I∞ =
⋃∞

j=1 Ij s-L-dense
in R, terminates.

(2) The following onditions hold:

(a) HK(R) has ACC on s-L-dense left ideals in R;
(b) for every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R), where I∞ =

⋃∞

j=1 Ij
is s-L-dense in R, there exists a positive integer n suh that In is s-L-dense in R.

If L satis�es onditions (α) and (β), then (1) and (2) are equivalent.

P r o o f. This is obvious.

Now we will give the seond main result of this setion.

Theorem 5. Let L satisfy onditions (α), (µ), (δ), and (I) and let K be any nonempty lass of

modules losed under isomorphi opies and submodules. If every asending hain J1 ⊆ J2 ⊆ . . . of
left ideals of R, where (Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =

⋃∞

i=1 Ji is s-L-dense in R, terminates, then

every diret sum of L-injetive modules in K is L-injetive.
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P r o o f. Let {Ei}i∈N be any family of L-injetive modules in K and let (R, J, f,
⊕

i∈NEi) ∈ L. For
any n ∈ N, put Jn = {x ∈ J | f(x) ∈

⊕n
i=1Ei} = f−1(

⊕n
i=1Ei). It is lear that J1 ⊆ J2 ⊆ . . .. Also,

we have J∞ =
⋃

n∈N Jn =
⋃

n∈N(f
−1(

⊕n
i=1Ei)) = f−1(

⋃

n∈N(
⊕n

i=1Ei) = f−1(
⊕

∞

i=1Ei). Sine
(R, J, f,

⊕

i∈NEi) ∈ L and L satis�es ondition (I), it follows that J =
⋃

i∈N Ji is s-L-dense in R. For

all n ∈ N, de�ne αn : Jn+1/Jn →
⊕n+1

i=1 Ei/
⊕n

i=1Ei by αn(x+ Jn) = f(x) + (
⊕n

i=1Ei), ∀x ∈ In+1.
Then αn is a well-de�ned monomorphism, sine Jn = f−1(

⊕n
i=1Ei). Sine (

⊕n+1
i=1 Ei/

⊕n
i=1Ei) ≃

En+1 ∈ K and K is losed under isomorphi opies, we have (
⊕n+1

i=1 Ei/
⊕n

i=1Ei) ∈ K. Sine
im(αn) ≤ (

⊕n+1
i=1 Ei/

⊕n
i=1Ei) ∈ K, and K is losed under submodules, it follows that im(αn) ∈ K.

Sine (Jn+1/Jn) ≃ im(αn) and K is losed under isomorphi opies, we obtain (Jn+1/Jn) ∈ K.
Thus we have the following asending hain J1 ⊆ J2 ⊆ . . . of left ideals of R suh that

(Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =
⋃∞

i=1 Ji is s-L-dense in R. By hypothesis, there exists a pos-

itive integer n suh that Jn = Jn+i, ∀i ∈ N. Thus J = J∞ =
⋃∞

i=1 Ji = Jn. This implies that

f(J) ⊆
⊕n

i=1Ei. Thus supp(im(f)) is �nite and hene L satis�es ondition (F ) for a family {Ei}i∈N.
Thus by Lemma 4 we see that

⊕

i∈NEi is an L-injetive module. Thus for any family {Ei}i∈N of

L-injetive R-modules in K, we have

⊕

i∈N Ei is L-injetive. Sine L satis�es onditions (α), (µ),
and (δ), it follows from Corollary 8, that every diret sum of L-injetive modules in K is L-injetive.

A nonempty lass K of modules is said to be a natural lass if it is losed under submodules, arbi-

trary diret sums and injetive hulls [9℄. Examples of natural lasses inlude R-Mod, any hereditary

torsionfree lasses, and stable hereditary torsion lasses.

Now we an state the following result, found in [17, p. 643℄ as a orollary.

Corollary 9. Let K be a natural lass of modules losed under isomorphi opies. Then the

following statements are equivalent:

(1) every diret sum of injetive modules in K is injetive;

(2) HK(R) has ACC.

P r o o f. (1) ⇒ (2). By taking L = M and applying Lemma 1, Lemma 6 and Theorem 4.

(2) ⇒ (1). By taking L = M and applying [17, Lemma 7, p. 637℄ and Theorem 5.

Corollary 10. Let ρ be any P -�lter and let K be any nonempty lass of modules losed under

isomorphi opies and submodules. If every asending hain J1 ⊆ J2 ⊆ . . . of left ideals of R suh

that (Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =
⋃

∞

i=1 Ji is s-L(ρ,∞)-dense in R terminates, then every diret

sum of L(ρ,∞)-injetive modules in K is L(ρ,∞)-injetive.

P r o o f. By Lemma 1, Lemma 6 and Theorem 5.

Let τ be a hereditary torsion theory. A nonempty lass K of modules is said to be τ -natural
lass if K is losed under submodules, isomorphi opies, arbitrary diret sums and τ -injetive
hulls [8, p. 163℄.

Corollary 11 (see [8, Proposition 5.3.5, p. 165℄). Let K be a τ -natural and suppose that ev-

ery asending hain J1 ⊆ J2 ⊆ . . . of left ideals of R suh that (Ji+1/Ji) ∈ K, ∀i ∈ N and

J∞ =
⋃∞

i=1 Ji is τ -dense in R terminates. Then every diret sum of τ -injetive modules in K is

τ -injetive.

P r o o f. Take ρ = ρτ and apply Corollary 10.

The following orollary, in whih we give onditions under whih the lass of L-injetive modules

is losed under diret sums, is one of the main aims of this setion.

Corollary 12. Consider the following three onditions:

(1) the lass of L-injetive R-modules is losed under diret sums;
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(2) every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-L-dense in

R, terminates;

(3) the following onditions hold:

(a) every asending hain I1 ⊆ I2 ⊆ . . . of s-L-dense left ideals of R terminates;

(b) for every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-L-dense
in R, there exists a positive integer n suh that In is s-L-dense in R.

If L satis�es onditions (α) and (δ), then (1) implies (2) . Also, (2) implies (3b) and if L satis�es

onditions (α) and (β), then (2) implies (3a). Moreover, if L satis�es onditions (α), (µ), (δ), and
(I), then all above three onditions are equivalent.

P r o o f. By taking K = R-Mod and applying Theorem 4 and Proposition 5.

Corollary 13. Let ρ be any P -�lter. Then the following statements are equivalent.

(1) The lass of L(ρ,ρ∞)-injetive R-modules is losed under diret sums.

(2) Every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃

∞

j=1 Ij is s-L(ρ,ρ∞)-dense

in R, terminates.

(3) The following onditions hold.

(a) Every asending hain I1 ⊆ I2 ⊆ . . . of s-L(ρ,ρ∞)-dense left ideals of R terminates.

(b) For every asending hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-
L(ρ,ρ∞)-dense in R, there exists a positive integer n suh that In is s-L(ρ,ρ∞)-dense in R.

(4) For any family {Ei}i∈N of L(ρ,ρ∞)-injetive R-modules,

⊕

i∈N Ei is L(ρ,ρ∞)-injetive.

P r o o f. By Lemma 1 and Lemma 6, it follows that L(ρ,ρ∞) satis�es onditions (α), (µ), (δ), and
(I). Thus, by Corollary 12 and Corollary 8, we have the equivalene of above four statements.

Corollary 14 (see [8, Theorem 2.3.8, p. 73℄). The following statements are equivalent:

(1) R has ACC on τ -dense left ideals and τ is Noetherian;

(2) the lass of τ -injetive R-modules is losed under diret sums;

(3) the lass of τ -injetive R-modules is losed under ountable diret sums.

P r o o f. Take ρ = ρτ and apply Corollary 13.

� 4.

∑

-L-injetive modules

Carl Faith in [11℄ introdued the onepts of

∑

-injetivity and ountably

∑

-injetivity as follows.

An injetive module E is said to be

∑

-injetive if E(A)
is injetive for any index set A; E is said to

be ountably

∑

-injetive in ase E(C)
is injetive for any ountable index set C. Faith in [11℄ proved

that an injetive R-module E is

∑

-injetive if and only if R satis�es ACC on the E-annihilator
left ideals if and only if E is ountably

∑

-injetive. Charalambides in [6℄ introdued the onept of

∑

-τ -injetivity and generalized Faith's result.

In this setion, we introdue the onept of

∑

-L-injetivity as a general ase of

∑

-injetivity

and

∑

-τ -injetivity and prove the result (Theorem 6) in whih we generalize Faith's result [11,

Proposition 3, p. 184℄ and [6, Theorem 16.16, p. 98℄.

We start this setion with the following de�nition of a

∑

-L-injetive module.

De�nition 5. Let E be an L-injetive module. We say that E is

∑

-L-injetive if E(A)
is L-

injetive for any index set A. On the other hand, if E(C)
is L-injetive for any ountable index set

C, we say that E is ountably

∑

-L-injetive.

The following orollary is a speial ase of Corollary 8, by taking K = {E}.
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Corollary 15. Consider the following onditions.

(1) E is

∑

-L-injetive.
(2) E is ountably

∑

-L-injetive.
(3) E(N)

is L-injetive.
Then: (1) implies (2) and (2) implies (3). If L satis�es onditions (α), (µ), and (δ), then (2)

implies (1). Moreover, if L satis�es ondition (γ), then (3) implies (2).

The next orollary is immediately follows from Lemma 1 and Corollary 15.

Corollary 16. Let ρ1 and ρ2 be any two P -�lters. Then the following onditions are equivalent

for a module E.
(1) E is

∑

-L(ρ1,ρ2)-injetive.

(2) E is ountably

∑

-L(ρ1,ρ2)-injetive.

(3) E(N)
is L(ρ1,ρ2)-injetive.

Let E be a module. A left ideal I of R is said to be an E-annihilator if there is N ⊆ E suh

that I = (0 : N) = {r ∈ R | rN = 0} (i. e., I is the annihilator of a subset of E).
The following theorem is the main result of this setion in whih we generalize [6, Theorem 16.16,

p. 98℄ and [11, Proposition 3, p. 184℄.

Theorem 6. Consider the following three onditions for an L-injetive module E:
(1) E is ountably

∑

-L-injetive;
(2) every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =

⋃

∞

j=1 Ij is s-L-dense
in R, terminates;

(3) The following onditions hold.

(a) Every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is s-L-dense in R
∀j ∈ N, terminates.

(b) For every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is

s-L-dense in R, there exists a positive integer n suh that In is s-L-dense in R.
Then: if L satis�es ondition (δ), then (1) implies (2). Also, (2) implies (3b) and if L satis�es

onditions (α) and (β), then (2) implies (3a). Moreover, if L satis�es onditions (α), (µ), (β),
and (I), then (3) implies (1).

P r o o f. (1) ⇒ (2). Let L satisfy ondition (δ). Assume that (2) does not hold. Then there

exist E-annihilators I1, I2, . . . in R suh that I1 $ I2 $ . . . and I∞ =
⋃

∞

j=1 Ij is s-L-dense in R.
Hene we have the following desending hain rE(I1) % rE(I2) % . . .. For every n ∈ N, hoose
xn ∈ rE(In) − rE(In+1), thus x = (xn)n∈N ∈ EN. De�ne f : I∞ → EN

by f(a) = ax, ∀a ∈ I∞. It is
lear that f is a homomorphism. For a �xed a ∈ I∞ let n be the smallest positive integer suh that

a ∈ In. Then, for every k ≥ 0, a ∈ In ⊆ In+k. Sine xn+k ∈ rE(In+k), we have axn+k = 0, ∀k ≥ 0.
Hene ax ∈ E(N). Thus f is a homomorphism from I∞ into E(N). Sine I∞ is s-L-dense in R, it
follows that (R, I∞, II∞ , I∞) ∈ L. Sine L satis�es ondition (δ), we get (R, I∞, f, E

(N)) ∈ L. Sine
E(N)

is L-injetive, it follows from Theorem 1 that there exists an element y ∈ E(N)
suh that

f(a) = ay, ∀a ∈ I∞. Sine y ∈ E(N), we have y = (y1, y2, . . . , yt, 0, 0, . . .), for some t ∈ N. Sine
ax = f(a) = ay, ∀a ∈ I∞, it follows that (ax1, ax2, . . .) = (ay1, ay2, . . . , ayt, 0, 0, . . .) and this implies

that axt+1 = 0, ∀a ∈ I∞ and hene xt+1 ∈ rE(I∞). Sine It+2 $ I∞, we have rE(I∞) ⊆ rE(It+2)
and so xt+1 ∈ rE(It+2). This ontradits the fat that xt+1 ∈ rE(It+1)− rE(It+2).

(2) ⇒ (3b). Let I1 ⊆ I2 ⊆ . . . be any asending hain of E-annihilators in R, where I∞ =
⋃

∞

j=1 Ij
is s-L-dense in R. By hypothesis, there exists a positive integer n suh that In = In+k, ∀k ∈ N and

so In = I∞. Hene In is s-L-dense in R.
(2) ⇒ (3a). Let L satisfy onditions (α) and (β) and let I1 ⊆ I2 ⊆ . . . be any asending hain

of E-annihilators in R suh that Ij are s-L-dense left ideals of R. Sine I1 ⊆ I∞ and L satis�es

onditions (α) and (β), we have from Lemma 5 that I∞ is a s-L-dense left ideal of R. By hypothesis,

the hain I1 ⊆ I2 ⊆ . . . terminates.
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(3) ⇒ (1). Let L satisfy onditions (α), (µ), (β), and (I) and let (R, J, f,E(N)) ∈ L. Sine E is L-
injetive, we have from Lemma 3 that EN

is L-injetive. Sine E(N)
is a submodule of EN, it follows

that g = i ◦ f : J → EN
is a homomorphism, where i : E(N) → EN

is the inlusion homomorphism.

Sine L satis�es ondition (β), we have (R, J, i ◦ f,EN) ∈ L. Thus, by Theorem 1, there is an

element x = (x1, x2, . . .) ∈ EN
suh that g(a) = ax, ∀a ∈ J. Thus f(a) = g(a) = ax, ∀a ∈ J. Let

X = {x1, x2, . . .} and Xk = = X \ {x1, x2, . . . , xk} = {xk+1, xk+2, . . .} for all k ≥ 1. Thus we have

the following desending hain of subsets of X : X ⊇ X1 ⊇ X2 ⊇ . . .; this yields an asending

hain of E-annihilators in R: lR(X) ⊆ lR(X1) ⊆ lR(X2) ⊆ . . .. Let Jk+1 = lR(Xk), for all

k ≥ 0, where X0 = X and J∞ =
⋃∞

i=1 Ji. Sine f(J) ⊆ E(N), it follows that, for any a ∈ J,
either axk = 0, ∀k ∈ N, or there is a largest integer n ∈ N suh that axn 6= 0. If there is a largest

integer n ∈ N suh that axn 6= 0, then axn+k = 0, ∀k ≥ 1. Therefore, a ∈ lR(Xn) = Jn+1 ⊆ J∞.
Thus for any a ∈ J, we have a ∈ J∞, and this implies that J ⊆ J∞. Sine (R, J, f,E(N)) ∈ L
and L satis�es ondition (I), it follows that J is s-L-dense left ideal in R. Sine J ⊆ J∞ and L
satis�es onditions (α) and (β), we have from Lemma 5 that J∞ is s-L-dense left ideal in R. Thus
we have the following asending hain J1 ⊆ J2 ⊆ . . . of E-annihilators in R suh that J∞ is s-
L-dense left ideal in R. By applying ondition (3b), there is an s ∈ N suh that Js is s-L-dense
left ideal in R. Sine Js ⊆ Js+k, ∀k ∈ N and L satis�es onditions (α) and (β), it follows from

Lemma 5 that Js+k is s-L-dense left ideal in R, ∀k ∈ N. Thus we have the following asending

hain Js ⊆ Js+1 ⊆ . . . of E-annihilators in R suh that Js+k is s-L-dense left ideal in R ∀k ∈ N.
By applying ondition (3a), the hain Js ⊆ Js+1 ⊆ . . . beomes stationary at a left ideal of R,
say Jt = lR(Xt−1) and so Jt = J∞. Thus for any a ∈ J, we have axt+k = 0, ∀k ≥ 0 and then

a(0, 0, . . . , 0, xt, xt+1, . . .) = 0. Take y = (x1, x2, . . . , xt−1, 0, 0, . . .). It is lear that y ∈ E(N)
and for

any a ∈ J, then f(a) = ax = ax− a(0, 0, . . . , 0, xt, xt+1, 0, 0, . . .) = a(x1, x2, . . . , xt−1, 0, 0, . . .) = ay.
Thus for every (R, J, f,E(N)) ∈ L there exists an element y ∈ E(N)

suh that f(a) = ay, ∀a ∈ J.
Sine L satis�es onditions (α) and (µ), it follows from Theorem 1 that E(N)

is L-injetive. Sine L
satis�es ondition (γ), it follows from Corollary 15 that E is ountably

∑

-L-injetive.

Corollary 17. Let ρ be any P -�lter. Then the following onditions are equivalent.

(1) E is ountably

∑

-L(ρ,∞)-injetive.

(2) Every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is s-L(ρ,∞)-

dense left ideal in R, terminates.

(3) The following onditions hold.

(a) Every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is s-L(ρ,∞)-dense

left ideals of R ∀j ∈ N, terminates.

(b) For every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃

∞

j=1 Ij is

s-L(ρ,∞)-dense left ideal in R, there exists a positive integer n suh that In is s-L(ρ,∞)-dense in R.

(4) E is

∑

-L(ρ,∞)-injetive.

P r o o f. By Lemma 1, Lemma 6 and Theorem 6, we have the equivalene of (1), (2), and (3).

(1) ⇔ (4). By Corollary 15.

Corollary 18 (see [6, Theorem 16.16, p. 98℄). Let τ be any hereditary torsion theory and let

E be τ -injetive module. Then the following onditions are equivalent.

(1) E is ountably

∑

-τ -injetive.

(2) Every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is τ -dense
left ideal in R, terminates.

(3) The following onditions hold.

(a) Every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is τ -dense left ideals

of R ∀j ∈ N, terminates.

(b) For every asending hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is

τ -dense left ideal in R, there exists a positive integer n suh that In is τ -dense in R.

(4) E is

∑

-τ -injetive.
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P r o o f. By taking a P -�lter ρ = ρτ and applying Corollary 17.

Corollary 19 (see [11, Proposition 3, p. 184℄). The following onditions on an injetive mod-

ule E are equivalent.

(1) E is ountably

∑

-injetive.

(2) R satis�es the ACC on the E-annihilators left ideals.

(3) E is

∑

-injetive.

P r o o f. By taking ρ = ℜ and applying Corollary 17.

Corollary 20. Let L satisfy onditions (α), (µ), and (δ), and let {Ei | 1 ≤ i ≤ n} be a family of

modules. If Ei is
∑

-L-injetive ∀i = 1, 2, . . . , n, then
⊕n

i=1Ei is
∑

-L-injetive.

P r o o f. By Corollary 5 and Corollary 15.

Corollary 21. Let ρ1 and ρ2 be any two P -�lters and let {Ei | 1 ≤ i ≤ n} be a family of modules.

If Ei is
∑

-L(ρ1,ρ2)-injetive ∀i = 1, 2, . . . , n, then
⊕n

i=1Ei is
∑

-L(ρ1,ρ2)-injetive.

P r o o f. By Lemma 1 and Corollary 20.
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t-ïëîòíûé, ïðåðàäèêàë, åñòåñòâåííûé êëàññ.
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Ïóñòü M = {(M,N, f,Q) | M,N,Q ∈ R-Mod, N ≤ M, f ∈ HomR(N,Q)} è ïóñòü L � íåïóñòîé ïîä-

êëàññ M. Jir�asko ââåë ïîíÿòèå L-èíúåêòèâíîãî ìîäóëÿ êàê îáîáùåíèå èíúåêòèâíîãî ìîäóëÿ: ìîäóëü

Q íàçûâàåòñÿ L-èíúåêòèâíûì, åñëè äëÿ êàæäîãî (B,A, f,Q) ∈ L ñóùåñòâóåò ãîìîìîð�èçì g : B → Q
òàêîé, ÷òî g(a) = f(a) äëÿ âñåõ a ∈ A. Öåëüþ äàííîé ðàáîòû ÿâëÿåòñÿ èçó÷åíèå L-èíúåêòèâíûõ ìîäó-
ëåé è íåêîòîðûõ ñâÿçàííûõ ñ íèìè ïîíÿòèé. Äàíû íåêîòîðûå õàðàêòåðèñòèêè L-èíúåêòèâíûõ ìîäóëåé.
Ïðèâîäèòñÿ âåðñèÿ êðèòåðèÿ Áýðà äëÿ L-èíúåêòèâíîñòè. Â êà÷åñòâå îáîáùåíèé M -èíúåêòèâíûõ ìî-

äóëåé ââîäÿòñÿ ïîíÿòèÿ L-M -èíúåêòèâíîãî ìîäóëÿ è s-L-M -èíúåêòèâíîãî ìîäóëÿ è äàþòñÿ íåêîòîðûå

ðåçóëüòàòû î íèõ. Äàíà íàøà âåðñèÿ îáîáùåííîãî êðèòåðèÿ Ôóêñà. Ïîëó÷åíû óñëîâèÿ, ïðè êîòîðûõ

êëàññ L-èíúåêòèâíûõ ìîäóëåé çàìêíóò îòíîñèòåëüíî ïðÿìûõ ñóìì. Íàêîíåö, ìû ââîäèì è èçó÷àåì

ïîíÿòèå

∑

-L-èíúåêòèâíîñòè êàê îáîáùåíèå

∑

-èíúåêòèâíîñòè è

∑

-τ -èíúåêòèâíîñòè.

Ïîñòóïèëà â ðåäàêöèþ 03.02.2018

Ìåõäè Àêèëü �àìàäàí, äîêòîð ìàòåìàòèêè, äîöåíò, ìàòåìàòè÷åñêîå îòäåëåíèå, Îáðàçîâàòåëüíûé êîë-

ëåäæ, Óíèâåðñèòåò Àëü-Êàäèñèÿ, Àëü-Êàäèñèÿ, Èðàê.

E-mail: akeel.mehdi�qu.edu.iq

mailto:akeel.mehdi@qu.edu.iq
http://dx.doi.org/10.20537/vm180204
mailto:akeel.mehdi@qu.edu.iq

	Some Characterizations of L-Injective Modules 
	L-M-Injectivity and s-L-M-Injectivity
	Direct Sums of L-Injective Modules
	$\sum$-L-injective modules 

