2018. Vol. 28. Issue 2

MSC2010: 16D50, 16D10, 16S90

© A.R. Mehdi

ON *L*-INJECTIVE MODULES

Let $\mathcal{M} = \{(M, N, f, Q) \mid M, N, Q \in R$ -Mod, $N \leq M, f \in \operatorname{Hom}_R(N, Q)\}$ and let \mathcal{L} be a nonempty subclass of \mathcal{M} . Jirásko introduced the concept of \mathcal{L} -injective module as a generalization of injective module as follows: a module Q is said to be \mathcal{L} -injective if for each $(B, A, f, Q) \in \mathcal{L}$ there exists a homomorphism $g: B \to Q$ such that g(a) = f(a), for all $a \in A$. The aim of this paper is to study \mathcal{L} -injective modules and some related concepts. Some characterizations of \mathcal{L} -injective modules are given. We present a version of Baer's criterion for \mathcal{L} -injectivity. The concepts of \mathcal{L} - \mathcal{M} -injective module and s- \mathcal{L} - \mathcal{M} -injective module are introduced as generalizations of \mathcal{M} -injective modules and give some results about them. Our version of the generalized Fuchs criterion is given. We obtain conditions under which the class of \mathcal{L} -injective modules is closed under direct sums. Finally, we introduce and study the concept of \sum - \mathcal{L} -injectivity as a generalization of \sum -injectivity.

Keywords: injective module, generalized Fuchs criterion, hereditary torsion theory, *t*-dense, preradical, natural class.

DOI: 10.20537/vm180204

Introduction

Throughout this article, unless otherwise specified, R will denote an associative ring with nonzero identity, and all modules are left unital R-modules. By a class of modules we mean a non-empty class of modules. The class of all left R-modules is denoted by R-Mod and by \Re we mean the set $\{(M, N) \mid N \leq M, M \in R$ -Mod}, where $N \leq M$ is a notation which means that N is a submodule of M. Given a family of modules $\{M_i\}_{i \in I}$, for each $j \in I$, $\pi_j : \bigoplus_{i \in I} M_i \to M_j$ denotes the canonical projection homomorphism. Let M be a module and let Y be a subset of M. The left annihilator of Y in R will be denoted by $l_R(Y)$, i.e., $l_R(Y) = \{r \in R \mid ry = 0, \forall y \in Y\}$. Given $a \in M$, let (Y : a) denote the set $\{r \in R \mid ra \in Y\}$, and let $ann_R(a) := (0 : a)$. The right annihilator of a subset I of R in M will be denoted by $r_M(I)$, i.e., $r_M(I) = \{m \in M \mid rm = 0, \forall r \in I\}$. The class $\{I \mid I$ is a left ideal of R such that $ann_R(m) \subseteq I$, for some $m \in M\}$ will be denoted by $\Omega(M)$.

An *R*-module *M* is said to be injective if, for any module *B*, every homomorphism $f: A \to M$, where *A* is any submodule of *B*, extends to a homomorphism $g: B \to M$ [3]. The notation $g \upharpoonright A = f$ means that *g* is an extension of *f*. Let *M* and *N* be modules. Recall that *N* is said to be *M*-injective if every homomorphism from a submodule of *M* to *N* extends to a homomorphism from *M* to *N* [2]. A module *M* is said to be quasi-injective if *M* is *M*-injective. The injective envelope of a module *M* will be denoted by E(M).

Let $\tau = (\mathcal{T}, \mathcal{F})$ be a torsion theory. A submodule B of a module A is said to be τ -dense in A if A/B is τ -torsion (i. e., $A/B \in \mathcal{T}$). A submodule A of a module B is said to be τ -essential in B if it is τ -dense and essential in B. A torsion theory τ is said to be Noetherian if for every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R with $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ a τ -dense left ideal in R, there exists a positive integer n such that I_n is τ -dense in R. A module M is said to be τ -injective if every homomorphism from a τ -dense submodule of B to M extends to a homomorphism from B to M, where B is any module [8]. Let M be an R-module. A τ -injective envelope (or τ -injective hull) of M is a τ -injective module E which is a τ -essential extension of M [6]. Every R-module M has a τ -injective envelope and it is unique up to isomorphism [8]. We use the notation $E_{\tau}(M)$ to denote an τ -injective envelope of M. A τ -injective module E is said to be $\sum \tau$ -injective if $E^{(A)}$ is τ -injective for any index set A; E is said to be countably $\sum \tau$ -injective if $E^{(C)}$ is τ -injective for

any countable index set C. Let E and M be modules. Then E is said to be τ -M-injective if any homomorphism from a τ -dense submodule of M to E extends to a homomorphism from M to E. A module E is said to be τ -quasi-injective if E is τ -E-injective.

Let $\mathcal{M} = \{(M, N, f, Q) \mid M, N, Q \in R$ -Mod, $N \leq M, f \in \text{Hom}_R(N, Q)\}$ and consider the following conditions on \mathcal{L} that will be useful later, where \mathcal{L} always denotes a nonempty subclass of \mathcal{M} :

(α) $(M, N, f, Q) \in \mathcal{L}$, $(M, N', f', Q) \in \mathcal{M}$ and $(M, N, f, Q) \preceq (M, N', f', Q)$ implies inclusion $(M, N', f', Q) \in \mathcal{L}$, where \preceq is a partial order on \mathcal{M} defined by:

$$(M,N,f,Q) \preceq (M',N',f',Q') \Longleftrightarrow M = M', \ N \subseteq N', \ Q = Q', \ f' \upharpoonright N = f;$$

 (β) $(M, N, f, A) \in \mathcal{L}, i : A \to B$ implies $(M, N, if, B) \in \mathcal{L}$, where i is an inclusion homomorphism;

 (γ) $(M, N, f, A) \in \mathcal{L}, g : A \to B$ an isomorphism, implies $(M, N, gf, B) \in \mathcal{L};$

(δ) $(M, N, f, A) \in \mathcal{L}, g : A \to B$ a homomorphism, implies $(M, N, gf, B) \in \mathcal{L};$

 (λ) $(M, N, f, A) \in \mathcal{L}, g : A \to B$ a split epimorphism, implies $(M, N, gf, B) \in \mathcal{L};$

 $(\mu)(M, N, f, Q) \in \mathcal{L}$, implies $(R, (N : x), f_x, Q) \in \mathcal{L} \forall x \in M$, where $f_x : (N : x) \to Q$ is a homomorphism defined by $f_x(r) = f(rx) \ \forall r \in (N : x)$.

Jirásko in [14] introduced the concepts of \mathcal{L} -injective module as a generalization of injective module as follows: a module Q is said to be \mathcal{L} -injective if for each $(B, A, f, Q) \in \mathcal{L}$, there exists a homomorphism $g: B \to Q$ such that $(g \upharpoonright A) = f$. An \mathcal{L} -injective module E is said to be an \mathcal{L} injective envelope (or \mathcal{L} -injective hull) of a module M if there is no proper \mathcal{L} -injective submodule of E containing M [14]. If a module M has an \mathcal{L} -injective envelope and it is unique up to isomorphic then we will use the notation $E_{\mathcal{L}}(M)$ to denote an \mathcal{L} -injective envelope of M. Clearly, injective module and all its generalizations are special cases of \mathcal{L} -injectivity.

The aim of this article is to study \mathcal{L} -injectivity and some related concepts.

In Section 1, we give some characterizations of \mathcal{L} -injective modules. For example, in Theorem 1 we give a version of Baer's criterion for \mathcal{L} -injectivity. Also, in Theorem 2 we extend a characterization due to [20, Theorem 2, p. 8] of \mathcal{L} -injective modules over commutative Noetherian rings.

In Section 2, we introduce the concepts of \mathcal{L} -M-injective module and s- \mathcal{L} -M-injective module as generalizations of M-injective modules and give some results on them. For examples, in Theorem 3 we prove that if \mathcal{L} is a nonempty subclass of \mathcal{M} satisfying conditions (α) , (β) , and (γ) and $M, Q \in$ R-Mod such that M satisfies condition $(E_{\mathcal{L}})$, then Q is \mathcal{L} -M-injective if and only if $f(M) \leq Q$, for all $f \in \operatorname{Hom}_R(E_{\mathcal{L}}(M), E_{\mathcal{L}}(Q))$ with $(M, L, f \upharpoonright L, Q) \in \mathcal{L}$ where $L = \{m \in M \mid f(m) \in Q\} =$ $M \cap f^{-1}(Q)$. Also, in Proposition 2 we generalize [6, Proposition 14.12, p. 66], [5, Proposition 1, p. 1954] and Fuchs's result in [12]. Moreover, our version of the generalized Fuchs criterion is given in Proposition 3 in which we prove that if \mathcal{L} is a nonempty subclass of \mathcal{M} satisfying conditions (α) and (μ) and $M, Q \in R$ -Mod such that M satisfies condition (\mathcal{L}) , then a module Q is s- \mathcal{L} -M-injective if and only if for each $(R, I, f, Q) \in \mathcal{L}$ with ker $(f) \in \Omega(M)$, there exists an element $x \in Q$ such that $f(a) = ax \ \forall a \in I$.

In Section 3, we study direct sums of \mathcal{L} -injective modules. In Proposition 4 we prove that for any family $\{E_{\alpha}\}_{\alpha \in A}$ of \mathcal{L} -injective modules, where A is an infinite index set, if \mathcal{L} satisfies conditions (α) , (μ) , and (δ) and $\bigoplus_{\alpha \in C} E_{\alpha}$ is an \mathcal{L} -injective module for any countable subset C of A, then $\bigoplus_{\alpha \in A} E_{\alpha}$ is an \mathcal{L} -injective module. In Theorem 4, we prove that for any nonempty subclass \mathcal{L} of \mathcal{M} which satisfies conditions (α) and (δ) and for any nonempty class \mathcal{K} of modules closed under isomorphic copies and \mathcal{L} -injective hulls, if the direct sum of any family $\{E_i\}_{i\in N}$ of \mathcal{L} -injective Rmodules in \mathcal{K} is \mathcal{L} -injective, then every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R in $H_{\mathcal{K}}(R)$ with $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ being s- \mathcal{L} -dense in R terminates. Also, in Theorem 5 we generalize results in [17, p. 643] and [8, Proposition 5.3.5, p. 165] in which we prove that for any nonempty subclass \mathcal{L} of \mathcal{M} which satisfies conditions (α) , (μ) , (δ) , and (I) and for any nonempty class \mathcal{K} of modules closed under isomorphic copies and submodules, if every ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of left ideals of R, where $(J_{i+1}/J_i) \in \mathcal{K} \ensuremath{\mathcellower}$ and $J_{\infty} = \bigcup_{i=1}^{\infty} J_i$ is s- \mathcal{L} -dense in R, terminates, then every direct sum of \mathcal{L} -injective modules in \mathcal{K} is \mathcal{L} -injective.

Finally, in Section 4, we introduce the concept of $\sum -\mathcal{L}$ -injectivity as a generalization of \sum -injectivity and $\sum -\tau$ -injectivity and prove Theorem 6 in which we generalize Faith's result [11, Proposition 3, p. 184] and [6, Theorem 16.16, p. 98].

§1. Some Characterizations of *L*-Injective Modules

One well-known result concerning injective modules states that an R-module M is injective if and only if every homomorphism from a left ideal of R to M extends to a homomorphism from R to M if and only if for each left ideal I of R and every $f \in \text{Hom}_R(I, M)$ there is an $m \in M$ such that $f(r) = rm \ \forall r \in I$. This is known as Baer's condition [3]. Baer's result shows that the left ideals of R form a test set for injectivity.

The following theorem gives a version of Baer's criterion for \mathcal{L} -injectivity.

Theorem 1 (Generalized Baer's Criterion). Consider the following three conditions for an R-module M:

(1) M is \mathcal{L} -injective;

(2) for every $(R, I, f, M) \in \mathcal{L}$, there exists an R-homomorphism $g \in \operatorname{Hom}_R(R, M)$ such that g(a) = f(a), for all $a \in I$;

(3) for each $(R, I, f, M) \in \mathcal{L}$, there exists an element $m \in M$ such that $f(r) = rm, \forall r \in I$.

Then (2) and (3) are equivalent and (1) implies (2). Moreover, if \mathcal{L} satisfies conditions (α) and (μ), then all the three conditions are equivalent.

P r o o f. $(1) \Rightarrow (2)$ and $(2) \Leftrightarrow (3)$ are obvious.

 $(2) \Rightarrow (1)$. Let \mathcal{L} satisfy conditions (α) and (μ) and let $(B, A, f, M) \in \mathcal{L}$. Let $S = \{(C, \varphi) \mid A \leq C \leq B, \varphi \in \operatorname{Hom}_R(C, M) \text{ such that } (\varphi \upharpoonright A) = f \}$. Define on S a partial order \preceq by

 $(C_1, \varphi_1) \preceq (C_2, \varphi_2) \iff C_1 \leq C_2 \text{ and } (\varphi_2 \upharpoonright C_1) = \varphi_1.$

Clearly, $S \neq \emptyset$ since $(A, f) \in S$. Furthermore, one can show that S is inductive in the following manner. Let $F = \{(A_i, f_i) \mid i \in I\}$ be an ascending chain in S. Let $A_{\infty} = \bigcup_{i \in I} A_i$. Then for any $a \in A_{\infty}$ there is a $j \in I$ such that $a \in A_j$, and so we can define $f_{\infty} : A_{\infty} \to M$, by $f_{\infty}(a) = f_j(a)$. It is straightforward to check that f_{∞} is well defined and (A_{∞}, f_{∞}) is an upper bound for F in S. Then by Zorn's Lemma, S has a maximal element, say (B', g'). We will prove that B' = B.

Suppose that there exists $x \in B \setminus B'$. It is clear that $(B, A, f, M) \preceq (B, B', g', M)$. Since $(B, A, f, M) \in \mathcal{L}$ and \mathcal{L} satisfies condition (α) , it follows that $(B, B', g', M) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (μ) , we have $(R, (B' : x), g'_x, M) \in \mathcal{L}$. By hypothesis, there exists a homomorphism $g : R \to M$ such that $g(r) = g'_x(r) = g'(rx)$, $\forall r \in (B' : x)$. Define $\psi : B' + Rx \to M$ by $\psi(b + rx) = g'(b) + g(r), \forall b \in B', \forall r \in R$. It is clear that ψ is a well-defined homomorphism and $(B', g') \preceq (B' + Rx, \psi)$. Since $(B' + Rx, \psi) \in S$ and $B' \subsetneq B' + Rx$, we have a contradiction to maximality of (B', g') in S. Hence B' = B and this means that there exists a homomorphism $g' : B \to M$ such that $(g' \upharpoonright A) = f$. Thus M is \mathcal{L} -injective.

Now we will introduce the concept of P-filter as follows.

Definition 1. Let $\Re = \{(M, N) \mid N \leq M, M \in R\text{-Mod}\}$ and let ρ be a nonempty subclass of \Re . We say that ρ is a *P*-filter if ρ satisfies the following conditions:

(i) if $(M, N) \in \rho$ and $N \leq K \leq M$, then $(M, K) \in \rho$;

(*ii*) for all $M \in R$ -Mod, $(M, M) \in \rho$;

(*iii*) if $(M, N) \in \rho$, then $(R, (N : x)) \in \rho$, $\forall x \in M$.

Example 1. All of the following subclasses of \Re are *P*-filters.

(1) $\rho_{\mathcal{T}} = \{(M, N) \in \Re \mid N \leq M \text{ such that } M/N \in \mathcal{T}, M \in R\text{-Mod}\}, \text{ where } \mathcal{T} \text{ is a nonempty class of modules closed under submodules and homomorphic images.}$

(2) $\rho_{\infty} = \Re = \{(M, N) \mid N \le M, M \in R \text{-Mod}\}.$

(3) $\rho_{\tau} = \{(M, N) \in \Re \mid N \text{ is } \tau\text{-dense in } M, M \in R\text{-Mod}\}, \text{ where } \tau \text{ is a hereditary torsion theory.}$

(4) $\rho_r = \{(M, N) \in \Re \mid N \leq M \text{ such that } r(M/N) = M/N, M \in R\text{-Mod}\}, \text{ where } r \text{ is a left exact preradical.}$

(5) $\rho_{max} = \{(M, N) \in \Re \mid N \text{ is a maximal submodule in } M \text{ or } N = M, M \in R\text{-Mod}\}.$

(6) $\rho_e = \{(M, N) \in \Re \mid N \leq_e M, M \in R\text{-Mod}\}.$

It is clear that the *P*-filters from (2) to (5) are special cases of *P*-filter in (1). Also, if ρ is a *P*-filter then the subclass $\rho_R = \{(R, I) \in \rho \mid I \text{ is a left ideal of } R\}$ of \Re is also *P*-filter.

Notations 1. We will fix the following notations.

- For any two *P*-filters ρ_1 and ρ_2 , we will denote by $\mathcal{L}_{(\rho_1,\rho_2)}$ the subclass $\mathcal{L}_{(\rho_1,\rho_2)} = \{(M, N, f, Q) \in \mathcal{M} \mid M, N, Q \in R$ -Mod, $(M, N) \in \rho_1$ and $f \in \operatorname{Hom}_R(N, Q)$ such that $(M, \ker(f)) \in \rho_2\}$.

- For any two nonempty classes of modules \mathcal{T} and \mathcal{F} , we will denote by $\mathcal{L}_{(\mathcal{T},\mathcal{F})}$ the subclass $\mathcal{L}_{(\mathcal{T},\mathcal{F})} = \{(M, N, f, Q) \in \mathcal{M} \mid M, N, Q \in R\text{-Mod}, N \leq M \text{ such that } M/N \in \mathcal{T} \text{ and } f \in \text{Hom}_R(N, Q) \text{ with } M/\text{ker}(f) \in \mathcal{F}\}$. It is clear that $\mathcal{L}_{(\mathcal{T},\mathcal{F})} = \mathcal{L}_{(\rho_{\mathcal{T}},\rho_{\mathcal{F}})}$, if \mathcal{T} and \mathcal{F} are closed under submodules and homomorphic images.

- For any two preradicals r and s, we will denote by $\mathcal{L}_{(r,s)}$ the subclass $\mathcal{L}_{(r,s)} = \{(M, N, f, Q) \in \mathcal{M} \mid M, N, Q \in R\text{-}Mod, N \leq M \text{ such that } r(M/N) = M/N \text{ and } f \in \text{Hom}_R(N, Q) \text{ with } s(M/\text{ker}(f)) = M/\text{ker}(f)\}$. It is clear that $\mathcal{L}_{(r,s)} = \mathcal{L}_{(\rho_r,\rho_s)}$, if r and s are left exact preradicals.

- For any torsion theory τ , we will denote by \mathcal{L}_{τ} the subclass $\mathcal{L}_{\tau} = \{(M, N, f, Q) \in \mathcal{M} \mid M, N, Q \in R$ -Mod, N is a τ -dense in M and $f \in \operatorname{Hom}_R(N, Q)\}$. It is clear that $\mathcal{L}_{\tau} = \mathcal{L}_{(\rho_{\tau}, \rho_{\infty})}$, if τ is a hereditary torsion theory.

Lemma 1. Let ρ_1 and ρ_2 be two P-filters. Then $\mathcal{L}_{(\rho_1,\rho_2)}$ satisfies conditions (α) , (δ) , and (μ) .

P r o o f. It is obvious.

The following corollary is a generalization of Baer's result in [3], [19, Proposition 2.1, p. 201], [14, Baer's Lemma 2.2, p. 628] and [4, Theorem 2.4, p. 319].

Corollary 1. Let ρ_1 and ρ_2 be two *P*-filters. Then the following conditions are equivalent for *R*-module *M*:

(1) M is $\mathcal{L}_{(\rho_1,\rho_2)}$ -injective;

(2) for every $(R, I, f, M) \in \mathcal{L}_{(\rho_1, \rho_2)}$ there exists an R-homomorphism $g \in \operatorname{Hom}_R(R, M)$ such that g(a) = f(a), for all $a \in I$;

(3) for each $(R, I, f, M) \in \mathcal{L}_{(\rho_1, \rho_2)}$ there exists an element $m \in M$ such that $f(r) = rm, \forall r \in I$.

Proof. By Lemma 1 and Theorem 1.

The following characterization of \mathcal{L} -injectivity is a generalization of [18, Proposition 1.4, p. 3] and [8, Proposition 2.1.3, p. 53].

Proposition 1. Consider the following three conditions for *R*-module *M*:

(1) Q is \mathcal{L} -injective;

(2) for every $(M, N, f, Q) \in \mathcal{L}$ with $N \leq_e M$, the homomorphism f extends to a homomorphism from M to Q;

(3) for every $(R, I, f, Q) \in \mathcal{L}$ with $I \leq_e R$, the homomorphism f extends to a homomorphism from R to Q.

Then (1) implies (2), (2) implies (3) and, if \mathcal{L} satisfies conditions (α) and (μ), then (3) implies (1).

P r o o f. $(1) \Rightarrow (2)$ and $(2) \Leftrightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$. Let \mathcal{L} satisfy (α) and (μ) and let $(R, I, f, Q) \in \mathcal{L}$. Let I^c be a complement left ideal of I in R and let $C = I \oplus I^c$. Thus, by [1, Proposition 5.21, p. 75], $C \leq_e R$. Define $g: C = I \oplus I^c \to Q$ by g(a + b) = f(a), $\forall a \in I$ and $\forall b \in I^c$. It is clear that g is a well-defined homomorphism and $(R, I, f, Q) \preceq (R, C, g, Q)$. Since \mathcal{L} satisfies condition $(\alpha), (R, C, g, Q) \in \mathcal{L}$. By hypothesis, there exists a homomorphism $h: R \to Q$ such that $(h \upharpoonright C) = g$. Thus $(h \upharpoonright I) = (g \upharpoonright I) = f$ and this implies that Q is \mathcal{L} -injective, by Theorem 1.

In the following theorem we extend a characterization due to [20, Theorem 2, p. 8] of \mathcal{L} -injective modules over commutative Noetherian rings.

Theorem 2. Let R be a commutative Noetherian ring, let M be an R-module and suppose that \mathcal{L} satisfies conditions (α) and (μ). Then M is \mathcal{L} -injective if and only if for every $(R, I, f, M) \in \mathcal{L}$, where I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M.

P r o o f. (\Longrightarrow) This is obvious.

(⇐) Let $(B, A, f, M) \in \mathcal{L}$ and let $S = \{(C, \varphi) \mid A \leq C \leq B, \varphi \in \operatorname{Hom}_R(C, M) \text{ such that} (\varphi \upharpoonright A) = f \}$. Define on S a partial order \preceq by

$$(C_1, \varphi_1) \preceq (C_2, \varphi_2) \iff C_1 \leq C_2 \text{ and } (\varphi_2 \upharpoonright C_1) = \varphi_1.$$

As in the proof of Theorem 1, we can prove that S has a maximal element, say (B', g'). We will prove that B' = B. Suppose that there exists an $x \in B \setminus B'$. By [20, Theorem 1, p. 8], there exists an element $r_0 \in R$ such that $(B': r_0 x)$ is a prime ideal in R and $r_0 x \notin B'$. It is clear that $(B, A, f, M) \preceq (B, B', g', M)$. Since $(B, A, f, M) \in \mathcal{L}$ and \mathcal{L} satisfies condition (α) , it follows that $(B, B', g', M) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (μ) , it follows that $(R, (B': b), g'_b, M) \in \mathcal{L}, \forall b \in B$. Put $y = r_0 x$, thus $y \in B \setminus B'$ and hence $(R, (B': y), g'_y, M) \in \mathcal{L}$. By hypothesis, there exists a homomorphism $g: R \to M$ such that $g(r) = g'_y(r) = g'(ry), \forall r \in (B': y)$. Define $\psi: B' + Ry \to M$ by $\psi(b + ry) = g'(b) + g(r), \forall b \in B', \forall r \in R$. As in the proof of Theorem 1, we can prove that ψ is a well-defined homomorphism and $(B', g') \preceq (B' + Ry, \psi)$. Since $(B' + Ry, \psi) \in S$ and $B' \subseteq B' + Ry$, we have a contradiction to maximality of (B', g') in S. Hence B' = B and this mean that there exists a homomorphism $g': B \to M$ such that $(g' \upharpoonright A) = f$. Thus M is \mathcal{L} -injective.

Corollary 2. Let ρ_1 and ρ_2 be two *P*-filters, let *R* be a commutative Noetherian ring and let *M* be an *R*-module. Then *M* is $\mathcal{L}_{(\rho_1,\rho_2)}$ -injective if and only if for every $(R, I, f, M) \in \mathcal{L}_{(\rho_1,\rho_2)}$, where *I* is a prime ideal of *R*, the homomorphism *f* extends to a homomorphism from *R* to *M*.

Proof. By Lemma 1 and Theorem 2.

Corollary 3 (see [20, Theorem 2, p. 8]). Let R be a commutative Noetherian ring, let M be an R-module. Then M is injective if and only if every homomorphism $f : I \to M$, where I is a prime ideal of R, can be extended to a homomorphism from R to M.

P r o o f. By taking the two P-filters $\rho_1 = \rho_2 = \Re$ and applying Corollary 2.

§ 2. \mathcal{L} -*M*-Injectivity and *s*- \mathcal{L} -*M*-Injectivity

In this section, we introduce the concepts of \mathcal{L} -*M*-injective modules and *s*- \mathcal{L} -*M*-injective modules as generalizations of *M*-injective modules and give some results about them.

Definition 2. Let $M, Q \in R$ -Mod. A module Q is said to be \mathcal{L} -M-injective if for every $(M, N, f, Q) \in \mathcal{L}$ the homomorphism f extends to a homomorphism from M to Q. A module Q is said to be \mathcal{L} -quasi-injective if Q is \mathcal{L} -Q-injective.

Let $M, Q \in R$ -Mod, it is well-known that a module Q is M-injective if and only if $f(M) \leq Q$, for every homomorphism $f: E(M) \to E(Q)$ [16, Lemma 1.13, p. 7].

For an analogous result for \mathcal{L} -*M*-injectivity we first fix the following condition.

 $(E_{\mathcal{L}})$: Let \mathcal{L} be a subclass of \mathcal{M} . Then a module M satisfies condition $(E_{\mathcal{L}})$ if M has an \mathcal{L} -injective envelope which is unique up to M-isomorphism and $(E_{\mathcal{L}}(M), N, f, Q) \in \mathcal{L}$ whenever $(M, N, f, Q) \in \mathcal{L}$.

The next theorem is the first main result of this section in which we give a generalization of [16, Lemma 1.13, p. 7] and [7, Theorem 2.1, p. 34].

Theorem 3. Let $M, Q \in R$ -Mod and let \mathcal{L} satisfy conditions (α) , (β) , and (γ) . Consider the following two conditions.

(1) Q is \mathcal{L} -M-injective.

(2) $f(M) \leq Q$, for all $f \in \operatorname{Hom}_R(E_{\mathcal{L}}(M), E_{\mathcal{L}}(Q))$ with $(M, L, f \upharpoonright L, Q) \in \mathcal{L}$, where $L = \{m \in M \mid f(m) \in Q\} = M \bigcap f^{-1}(Q)$.

Then (1) implies (2) and, if M satisfies condition $(E_{\mathcal{L}})$, then (2) implies (1).

Proof. (1) \Rightarrow (2). Let $f \in \operatorname{Hom}_R(E_{\mathcal{L}}(M), E_{\mathcal{L}}(Q))$ with $(M, L, f \upharpoonright L, Q) \in \mathcal{L}$, where $L = \{m \in M \mid f(m) \in Q\} = M \bigcap f^{-1}(Q)$. Define $g: L \to Q$ by $g(a) = f(a), \forall a \in L$ (i.e., $g = f \upharpoonright L$). It is clear that g is a homomorphism and $(M, L, g, Q) \in \mathcal{L}$. By \mathcal{L} -*M*-injectivity of Q, there exists a homomorphism $h: M \to Q$ such that $(h \upharpoonright L) = g$. Since $Q \bigcap (f \cdot h)(M) = 0$ and Q is an essential submodule of $E_{\mathcal{L}}(Q)$ (by [14, Theorem 1.19, p. 627]), it follows that (f - h)(M) = 0 and this implies that $f(M) = h(M) \leq Q$.

 $(2) \Rightarrow (1)$. Let M satisfy condition $(E_{\mathcal{L}})$ and let $(M, N, f, Q) \in \mathcal{L}$, thus $(E_{\mathcal{L}}(M), N, f, Q) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (β) , it follows that $(E_{\mathcal{L}}(M), N, if, E_{\mathcal{L}}(Q)) \in \mathcal{L}$, where i is the inclusion mapping from Q into $E_{\mathcal{L}}(Q)$. By \mathcal{L} -injectivity of $E_{\mathcal{L}}(Q)$, there exists a homomorphism $h: E_{\mathcal{L}}(M) \to E_{\mathcal{L}}(Q)$ such that $h(n) = f(n) \forall n \in N$. Let $L = \{m \in M \mid h(m) \in Q\}$. We will prove that $(M, L, g, Q) \in \mathcal{L}$, where $g = h \upharpoonright L$. Let $x \in N$, thus $h(x) = f(x) \in Q$ and hence $x \in L$. Thus $N \leq L$ and $(g \upharpoonright N) = f$. Thus $(M, N, f, Q) \preceq (M, L, g, Q)$. Since \mathcal{L} satisfies condition (α) , it follows that $(M, L, g, Q) \in \mathcal{L}$. By hypothesis, we have $h(M) \leq Q$ and hence $h' = h \upharpoonright M : M \to Q$ is such that $(h' \upharpoonright N) = f$. Thus Q is an \mathcal{L} -M-injective module.

Corollary 4. Let $M, Q \in R$ -Mod and let ρ_1 and ρ_2 be two *P*-filters. If *M* satisfies condition $(E_{\mathcal{L}_{(\rho_1,\rho_2)}})$, then the following two conditions are equivalent:

(1) Q is $\mathcal{L}_{(\rho_1,\rho_2)}$ -M-injective;

(2) $f(M) \leq Q$, for all $f \in \operatorname{Hom}_R(E_{\mathcal{L}(\rho_1,\rho_2)}(M), E_{\mathcal{L}(\rho_1,\rho_2)}(Q))$ with $(M, L, f \upharpoonright L, Q) \in \mathcal{L}$, where $L = \{m \in M \mid f(m) \in Q\} = M \bigcap f^{-1}(Q).$

Proof. By Lemma 1 and Theorem 3.

Let $M, Q \in R$ -Mod and let τ be any hereditary torsion theory. A module Q is $s - \tau - M$ -injective if for any $N \leq M$ every homomorphism from a τ -dense submodule of N to Q extends to a homomorphism from N to Q [6, Definition 14.6, p. 65].

As a generalization of $s \cdot \tau \cdot M$ -injectivity and hence of M-injectivity we introduce the concept of $s \cdot \mathcal{L} \cdot M$ -injectivity as follows.

Definition 3. Let $M, Q \in R$ -Mod. A module Q is said to be s- \mathcal{L} -M-injective if Q is \mathcal{L} -N-injective, for all $N \leq M$. A module Q is said to be s- \mathcal{L} -quasi-injective if Q is s- \mathcal{L} -Q-injective.

Fuchs in [12] has obtained a condition similar to Baer's Criterion that characterizes quasi-injective modules, Bland in [5] has generalized that to s- τ -quasi-injective modules, and Charalambides in [6] has generalized that to s- τ -M-injective modules.

Our next aim is to generalize Fuchs's condition once again in order to characterize $s-\mathcal{L}-M$ -injective modules. We begin with the following condition.

 (\mathcal{L}) : Let \mathcal{L} be a subclass of \mathcal{M} and let M be a module. Then M satisfies condition (\mathcal{L}) if for every $(B, A, f, Q) \in \mathcal{L}$ we have $(Rm, (A : x)m, f_{(x,m)}, Q) \in \mathcal{L}$, for all $m \in M$ and $x \in B$ with $ann_R(m) \subseteq (\ker(f) : x)$, where $f_{(x,m)} : (A : x)m \to Q$ is a well-defined homomorphism defined by $f_{(x,m)}(rm) = f(rx)$, for all $r \in (A : x)$.

A subclass \mathcal{L} of \mathcal{M} is said to be full subclass if every *R*-module satisfies condition (\mathcal{L}).

Example 2. All of the following subclasses of \mathcal{M} are full subclasses.

(1) $\mathcal{L}_{(T,F)}$, where T and F are nonempty classes of modules closed under submodules and homomorphic images.

(2) $\mathcal{L} = \mathcal{M}$.

(3) \mathcal{L}_{τ} , where τ is a hereditary torsion theory.

(4) $\mathcal{L}_{(\rho,\sigma)}$, where ρ and σ are left exact preradicals.

In following proposition, we generalize [6, Proposition 14.12, p. 66], [5, Proposition 1, p. 1954] and Fuchs's result in [12], and it is necessary for our version of the Generalized Fuchs criterion.

Proposition 2. Consider the following statements, where $M, Q \in R$ -Mod:

(1) Q is s- \mathcal{L} -M-injective;

(2) if $m \in M$ with $(Rm, K, f, Q) \in \mathcal{L}$, then the homomorphism f extends to a homomorphism from Rm to Q;

(3) if $K \leq N$ are modules, not necessarily submodules of M such that $(N, K, f, Q) \in \mathcal{L}$ and $\Omega(N) \subseteq \Omega(M)$, then the homomorphism f extends to a homomorphism from N to Q.

Then (1) implies (2) and (3) implies (1). Moreover, if \mathcal{L} satisfies condition (α) and M satisfies condition (\mathcal{L}), then all above statements are equivalent.

P r o o f. (1) \Rightarrow (2). Let $m \in M$ with $(Rm, K, f, Q) \in \mathcal{L}$. Thus Q is \mathcal{L} -Rm-injective, since Q is s- \mathcal{L} -M-injective and hence there exists a homomorphism $g: Rm \to Q$ such that $(g \upharpoonright K) = f$.

 $(2) \Rightarrow (3)$. Let \mathcal{L} satisfy condition (α) and M satisfy condition (\mathcal{L}) . Let $K \leq N$ be modules, not necessarily submodules of M with $(N, K, f, Q) \in \mathcal{L}$ and $\Omega(N) \subseteq \Omega(M)$. Let $S = \{(C, \varphi) \mid K \leq C \leq N, \varphi \in \operatorname{Hom}_R(C, M) \text{ such that } (\varphi \upharpoonright K) = f\}$. Define on S a partial order \preceq by

$$(C_1, \varphi_1) \preceq (C_2, \varphi_2) \iff C_1 \leq C_2 \text{ and } (\varphi_2 \upharpoonright C_1) = \varphi_1.$$

As in the proof of Theorem 1, we can prove that S has a maximal element, say (X, h). It suffices to show that X = N. Suppose that there exists an $n \in N \setminus X$. It is clear that $(N, K, f, Q) \preceq (N, X, h, Q)$. Since $(N, K, f, Q) \in \mathcal{L}$ and \mathcal{L} satisfies condition (α) , it follows that $(N, X, h, Q) \in \mathcal{L}$. Since $ann_R(n) \in \Omega(N)$ and $\Omega(N) \subseteq \Omega(M)$ (by assumption), we have $ann_R(n) \in \Omega(M)$ and this implies that there exists an $m \in M$ such that $ann_R(m) \subseteq ann_R(n)$. Since $ann_R(n) \subseteq (\ker(h) : n)$, we obtain $ann_R(m) \subseteq (\ker(h) : n)$. Since $m \in M$ and $n \in N \setminus X$ such that $ann_R(m) \subseteq (\ker(h) : n)$ and since M satisfies condition (\mathcal{L}) , we get $(Rm, (X : n)m, h_{(n,m)}, Q) \in \mathcal{L}$. By hypothesis, there exists a homomorphism $\varphi^* : Rm \to Q$ such that $\varphi^*(am) = h_{(n,m)}(am)$ for all $am \in (X : n)m$. Define $h^* : X + Rn \to Q$ by $h^*(x+rn) = = h(x) + \varphi^*(rm)$, $\forall x \in X$ and $\forall r \in R$. Clearly, h^* is a well-defined homomorphism. For all $a \in K$ we have $h^*(a) = h^*(a + 0.n) = h(a) + \varphi^*(0.m) = h(a) = f(a)$ and hence $(h^* \upharpoonright K) = f$. Since $K \leq X + Rn \leq N$, it follows that $(X + Rn, h^*) \in S$. Since $(h^* \upharpoonright X) = h$ and $X \leq X + Rn \leq N$, we have $(X, h) \preceq (X + Rn, h^*)$. Since $n \in X + Rn$ and $n \notin X$, it follows

2018. Vol. 28. Issue 2

that $X \subsetneq X + Rn$ and this contradicts the maximality of (X, h) in S. Thus X = N and this implies that there exists a homomorphism $h: N \to Q$ such that $(h \upharpoonright K) = f$.

 $(3) \Rightarrow (1)$. Let $N \leq M$ with $(N, K, f, Q) \in \mathcal{L}$. Let $I \in \Omega(N)$, thus there exists an element $n \in N$ such that $ann_R(n) \subseteq I$ and hence there exists an element $n \in M$ such that $ann_R(n) \subseteq I$ and this implies that $I \in \Omega(M)$ and so $\Omega(N) \subseteq \Omega(M)$. By hypothesis, there exists a homomorphism $g: N \to Q$ such that $(g \upharpoonright K) = f$. Thus Q is \mathcal{L} -N-injective module, for all $N \leq M$ and this implies that Q is s- \mathcal{L} -M-injective.

There follows the last main result of this section in which we generalize [6, Proposition 14.13, p. 68], [5, Proposition 2, p. 1955] and [12, Lemma 2, p. 542]. It is our version of generalized Fuchs criterion.

Proposition 3 (Generalized Fuchs criterion). Consider the following conditions, where M, $Q \in R$ -Mod:

(1) Q is s- \mathcal{L} -M-injective;

(2) for each $(R, I, f, Q) \in \mathcal{L}$ with ker $(f) \in \Omega(M)$, the homomorphism f extends to a homomorphism from R to Q;

(3) for each $(R, I, f, Q) \in \mathcal{L}$ with ker $(f) \in \Omega(M)$, there exists an element $x \in Q$ such that $f(a) = ax \ \forall a \in I$.

Then (2) \Leftrightarrow (3) and if M satisfies condition (\mathcal{L}) then (1) implies (2). Moreover, if \mathcal{L} satisfies conditions (α) and (μ), then (2) implies (1).

P r o o f. $(2) \Leftrightarrow (3)$. This is obvious.

(1) \Rightarrow (2). Let M satisfy condition (\mathcal{L}) and let $(R, I, f, Q) \in \mathcal{L}$ with ker $(f) \in \Omega(M)$. Thus there exists an element $m \in M$ such that $ann_R(m) \subseteq ker(f)$. Since ker(f) = (ker(f) : 1), where 1 is the identity element of R, we have $ann_R(m) \subseteq (ker(f) : 1)$. Since M satisfies condition (\mathcal{L}) , we get $(Rm, (I:1)m, f_{(1,m)}, Q) \in \mathcal{L}$ and hence $(Rm, Im, f_{(1,m)}, Q) \in \mathcal{L}$. Since Q is s- \mathcal{L} -M-injective, it follows from Proposition 2 that there exists a homomorphism $h: Rm \to Q$ such that $h \circ i_2 = f_{(1,m)}$, where i_2 is the inclusion mapping from Im into Rm. Define $v_1: I \to Im$ by $v_1(a) = am$, $\forall a \in I$, and define $v_2: R \to Rm$ by $v_2(r) = rm$, $\forall r \in R$. It is clear that v_1 and v_2 are homomorphisms and for all $a \in I$ we have $(v_2 \circ i_1)(a) = (i_2 \circ v_1)(a)$, where i_1 is the inclusion mapping from I into R. Define $g: R \to Q$ by $g(r) = (h \circ v_2)(r)$, $\forall r \in R$. It is clear that g is a homomorphism and for all $a \in I$ we have that $(g \circ i_1)(a) = f_{(1,m)}(v_1(a)) = f_{(1,m)}(am) = f(a.1) = f(a)$. Thus there exists a homomorphism $g: R \to Q$ such that (g|I) = f.

 $(2) \Rightarrow (1)$. Let \mathcal{L} satisfy conditions (α) and (μ) . Let $K \leq N \leq M$ such that $(N, K, f, Q) \in \mathcal{L}$ and let $S = \{(C, \varphi) \mid K \leq C \leq N, \varphi \in \operatorname{Hom}_R(C, M) \text{ such that } (\varphi \upharpoonright K) = f\}$. Define on S a partial order \preceq by

$$(C_1, \varphi_1) \preceq (C_2, \varphi_2) \iff C_1 \leq C_2 \text{ and } (\varphi_2 \upharpoonright C_1) = \varphi_1.$$

As in the proof of Theorem 1, we can prove that S has a maximal element, say (X, h). It suffices to show that X = N. Suppose that there exists an $n \in N \setminus X$. It is clear that $(N, K, f, Q) \preceq$ (N, X, h, Q). Since $(N, K, f, Q) \in \mathcal{L}$ and \mathcal{L} satisfies condition (α) , we have $(N, X, h, Q) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (μ) and $n \in N \setminus X$, we get $(R, (X : n), h_n, Q) \in \mathcal{L}$. Since $(0 : n) \subseteq \ker(h_n)$ and $n \in M$, it follows that $\ker(h_n) \in \Omega(M)$. By hypothesis, there exists a homomorphism $\varphi^* : R \to Q$ such that $(\varphi^* \upharpoonright (X : n)) = h_n$. Define $h^* : X + Rn \to Q$ by $h^*(x + rn) = h(x) + \varphi^*(r), \forall x \in X, \forall r \in R$. We can prove that h^* is a well-defined homomorphism, $(X, h) \preceq (X + Rn, h^*)$ and $(X + Rn, h^*) \in S$. Since $n \in X + Rn$ and $n \notin X$, it follows that $X \subsetneq X + Rn$ and this contradicts the maximality of (X, h) in S. Thus X = N and this implies that there exists a homomorphism $h : N \to Q$ such that $(h \upharpoonright K) = f$. Thus Q is \mathcal{L} -N-injective module for all $N \leq M$ and hence Q is s- \mathcal{L} -M-injective R-module.

§3. Direct Sums of *L*-Injective Modules

The direct sums of \mathcal{L} -injective modules is not \mathcal{L} -injective, in general. For example: let $\{T_i\}_{i \in I}$ be a family of rings with unit and let $R = \prod_{i \in I} T_i$ be the ring product of the family $\{T_i\}_{i \in I}$,

where addition and multiplication are defined componentwise. Let $A = \bigsqcup_{i \in I} T_i$ be the direct sum of $T_i, \forall i \in I$. If each $T_i T_i$ is injective, $\forall i \in I$ and I is infinite, then RA is a direct sum of injective modules, but RA is not itself injective, by [15, p. 140]. Hence we have that RA is a direct sum of \mathcal{L} -injective modules, but RA is not itself \mathcal{L} -injective where $\mathcal{L} = \mathcal{M}$.

Further we study conditions under which the class of \mathcal{L} -injective modules is closed under direct sums.

Let $\{E_{\alpha}\}_{\alpha \in A}$ be a family of modules and let $E = \bigoplus_{\alpha \in A} E_{\alpha}$. For any $x = (x_{\alpha})_{\alpha \in A} \in E$, we define the support of x as the set $\{\alpha \in A \mid x_{\alpha} \neq 0\}$ and denote it by $\operatorname{supp}(x)$. For any $X \subseteq E$, we define $\operatorname{supp}(X)$ as the set $\bigcup_{x \in Y} \operatorname{supp}(x) = \{\alpha \in A \mid (\exists x \in X) x_{\alpha} \neq 0\}.$

The following condition will be useful later.

(F): Let $\{E_{\alpha}\}_{\alpha \in A}$ be a family of modules, where A is an infinite index set and let \mathcal{L} be a subclass of \mathcal{M} . We say that \mathcal{L} satisfies condition (F) for a family $\{E_{\alpha}\}_{\alpha \in A}$, if for any $(R, I, f, \bigoplus_{\alpha \in A} E_{\alpha}) \in \mathcal{L}$ the set supp(im(f)) is finite.

Lemma 2. Suppose that A is any index set, C is any countable subset of A, and $\{E_{\alpha}\}_{\alpha\in A}$ is any family of modules. Define $\pi_{C}: \bigoplus_{\alpha\in A} E_{\alpha} \to \bigoplus_{\alpha\in C} E_{\alpha}$ by $\pi_{C}(x) = x_{C}$, for all $x \in \bigoplus_{\alpha\in A} E_{\alpha}$ where $\pi_{\alpha}(x_{C}) = \pi_{\alpha}(\pi_{C}(x)) = \begin{cases} \pi_{\alpha}(x), & \text{if } \alpha \in C, \\ 0, & \text{if } \alpha \notin C, \end{cases} \quad \forall \alpha \in A, \text{ where } \pi_{\alpha} \text{ is the } \alpha \text{th projection} \\ noncompliant. Then \pi_{C} \text{ is a well-defined homomorphism and if } x \in \bigoplus_{\alpha\in C} E_{\alpha}, \text{ then } \pi_{C}(x) = x. \end{cases}$

Proof. An easy check.

Lemma 3. Let $\{M_i\}_{i \in I}$ be any family of modules. If M_i is \mathcal{L} -injective, $\forall i \in I$ and \mathcal{L} satisfies condition (λ) , then $\prod_{i \in I} M_i$ is \mathcal{L} -injective.

P r o o f. This is obvious.

The next corollary immediately follows from Lemma 3.

Corollary 5. Let \mathcal{L} satisfy condition (λ) and let $\{M_i\}_{i \in I}$ be any family of \mathcal{L} -injective modules. If I is a finite set, then $\bigoplus_{i \in I} M_i$ is \mathcal{L} -injective.

Lemma 4. Let \mathcal{L} satisfy conditions (α) , (μ) , and (δ) and let $\{E_{\alpha}\}_{\alpha \in A}$ be any family of \mathcal{L} -injective modules, where A is an infinite index set. If \mathcal{L} satisfies condition (F) for a family $\{E_{\alpha}\}_{\alpha \in A}$, then $\bigoplus_{\alpha \in A} E_{\alpha}$ is an \mathcal{L} -injective module.

P r o o f. Suppose that \mathcal{L} satisfies condition (F) for the family $\{E_{\alpha}\}_{\alpha \in A}$ and let $(R, I, f, \bigoplus_{\alpha \in A} E_{\alpha}) \in \mathcal{L}$. Thus $\operatorname{supp}(\operatorname{im}(f))$ is finite and this implies that $f(I) \subseteq \bigoplus_{\alpha \in F} E_{\alpha}$, where F is a finite subset of A. Since E_{α} is \mathcal{L} -injective, $\forall \alpha \in F$, it follows from Corollary 5 that $\bigoplus_{\alpha \in F} E_{\alpha}$ is \mathcal{L} -injective. Define $\pi_{F} : \bigoplus_{\alpha \in A} E_{\alpha} \to \bigoplus_{\alpha \in F} E_{\alpha}$ by $\pi_{F}(x) = x_{F}$, for all $x \in \bigoplus_{\alpha \in A} E_{\alpha}$, where $\pi_{\alpha}(x_{F}) = \pi_{\alpha}(\pi_{F}(x)) = \begin{cases} \pi_{\alpha}(x), & \text{if } \alpha \in F, \\ 0, & \text{if } \alpha \notin F, \end{cases} \quad \forall \alpha \in A, \text{ where } \pi_{\alpha} \text{ is the } \alpha \text{ th projection homomorphism.} \end{cases}$

By Lemma 2, it follows that π_F is a well-defined homomorphism. Since $(R, I, f, \bigoplus_{\alpha \in A} E_\alpha) \in \mathcal{L}$ and \mathcal{L} satisfies condition (δ) , we have $(R, I, \pi_F \circ f, \bigoplus_{\alpha \in F} E_\alpha) \in \mathcal{L}$. By \mathcal{L} -injectivity of $\bigoplus_{\alpha \in F} E_\alpha$, there exists a homomorphism $g: R \to \bigoplus_{\alpha \in F} E_\alpha$ such that $g(a) = (\pi_F \circ f)(a), \forall a \in I$. Put $g' = i_1 \circ g: R \to \bigoplus_{\alpha \in A} E_\alpha$, where $i_1: \bigoplus_{\alpha \in F} E_\alpha \to \bigoplus_{\alpha \in A} E_\alpha$ is the inclusion homomorphism. Then for each $a \in I$ we have $g'(a) = \pi_F(f(a))$. Since $f(I) \subseteq \bigoplus_{\alpha \in F} E_\alpha$, we have $f(a) \in \bigoplus_{\alpha \in F} E_\alpha, \forall a \in I$. Thus, by Lemma 2, it follows that $\pi_F(f(a)) = f(a), \forall a \in I$ and hence $g'(a) = f(a), \forall a \in I$. Since \mathcal{L} satisfies conditions (α) and (μ) , it follows from Theorem 1 that $\bigoplus_{\alpha \in A} E_\alpha$ is \mathcal{L} -injective.

The following proposition generalizes Proposition 8.13 in [13, p. 83].

Proposition 4. Let \mathcal{L} satisfy conditions (α) , (μ) , and (δ) and let $\{E_{\alpha}\}_{\alpha \in A}$ be any family of \mathcal{L} -injective modules, where A is an infinite index set. If $\bigoplus_{\alpha \in C} E_{\alpha}$ is an \mathcal{L} -injective module for any countable subset C of A, then $\bigoplus_{\alpha \in A} E_{\alpha}$ is an \mathcal{L} -injective module.

Proof. Let $\pi_{\beta} : \bigoplus_{\alpha \in A} E_{\alpha} \to E_{\beta}$ be the natural projection homomorphism. Assume that $\bigoplus_{\alpha \in A} E_{\alpha}$ is not \mathcal{L} -injective, thus by Lemma 4 there exists $(R, I, f, \bigoplus_{\alpha \in A} E_{\alpha}) \in \mathcal{L}$ such that $\operatorname{supp}(\operatorname{im}(f))$ is infinite. Since $\operatorname{supp}(\operatorname{im}(f))$ is an infinite set, it follows that $\operatorname{supp}(\operatorname{im}(f))$ contains a countable infinite subset, say C. For any $\alpha \in C$, we have $\alpha \in \operatorname{supp}(\operatorname{im}(f))$ and this implies that there exists an $x \in \operatorname{im}(f)$ such that $x_{\alpha} \neq 0$. Thus for any $\alpha \in C$ we have $\pi_{\alpha}(\operatorname{im}(f)) \neq 0$. Define $\pi_{C} : \bigoplus_{\alpha \in A} E_{\alpha} \to \bigoplus_{\alpha \in C} E_{\alpha}$ as in Lemma 2. Note that $C = \operatorname{supp}(\operatorname{im}(\pi_{C} \circ f))$. Since $(R, I, f, \bigoplus_{\alpha \in A} E_{\alpha}) \in \mathcal{L}$ and \mathcal{L} satisfies condition (γ) , it follows that $(R, I, \pi_{C} \circ f, \bigoplus_{\alpha \in C} E_{\alpha}) \in \mathcal{L}$. Since C is a countable subset of A, it follows from the hypothesis that $\bigoplus_{\alpha \in C} E_{\alpha}$ is \mathcal{L} -injective. By Theorem 1, there exists an element $y \in \bigoplus_{\alpha \in C} E_{\alpha}$ such that $(\pi_{C} \circ f)(a) = ay, \forall a \in I$. Let $\alpha \in \operatorname{supp}(\operatorname{im}(\pi_{C} \circ f))$, thus there is an $r \in I$ such that $\pi_{\alpha}((\pi_{C} \circ f)(r)) \neq 0$. Hence $\pi_{\alpha}(ry) \neq 0$ and this implies that $\pi_{\alpha}(y) \neq 0$. Thus $\alpha \in \operatorname{supp}(y)$ and hence $\operatorname{supp}(\operatorname{im}(\pi_{C} \circ f)) \subseteq \operatorname{supp}(y)$. Since $C = \operatorname{supp}(\operatorname{im}(\pi_{C} \circ f))$, we have $C \subseteq \operatorname{supp}(y)$ and this is a contradiction, since $\operatorname{supp}(y)$ is finite (because $y \in \bigoplus_{\alpha \in C} E_{\alpha})$ and C is infinite. Thus $\bigoplus_{\alpha \in A} E_{\alpha}$ is an \mathcal{L} -injective module.

By Proposition 4 and Lemma 1 we can prove the following corollary.

Corollary 6. Let ρ_1 and ρ_2 be two P-filters and let $\{E_\alpha\}_{\alpha \in A}$ be any family of modules, where A is an infinite index set. If $\bigoplus_{\alpha \in C} E_\alpha$ is an $\mathcal{L}_{(\rho_1,\rho_2)}$ -injective module for any countable subset C of A, then $\bigoplus_{\alpha \in A} E_\alpha$ is an $\mathcal{L}_{(\rho_1,\rho_2)}$ -injective module.

Now we can state the following result, found in [13, Proposition 8.13, p. 83] as a corollary.

Corollary 7. Let $\{E_{\alpha}\}_{\alpha \in A}$ be any family of τ -injective modules, where A is an infinite index set. If $\bigoplus_{\alpha \in C} E_{\alpha}$ is a τ -injective module for any countable subset C of A, then $\bigoplus_{\alpha \in A} E_{\alpha}$ is a τ -injective module.

P r o o f. By taking the two P-filters $\rho_1 = \rho_{\tau}$ and $\rho_2 = \Re$ and applying Corollary 6.

Since the class of \mathcal{L} -injective modules is closed under isomorphism, when \mathcal{L} satisfies (γ), it follows from Proposition 4 that we have the next corollary.

Corollary 8. Consider the following three conditions, where \mathcal{K} is a nonempty class of *R*-modules.

(1) Every direct sum of \mathcal{L} -injective R-modules in \mathcal{K} is \mathcal{L} -injective.

(2) Every countable direct sum of \mathcal{L} -injective R-modules in \mathcal{K} is \mathcal{L} -injective.

(3) For any family $\{E_i\}_{i \in \mathbb{N}}$ of \mathcal{L} -injective R-modules in \mathcal{K} , $\bigoplus_{i \in \mathbb{N}} E_i$ is \mathcal{L} -injective.

Then (1) implies (2) and (2) implies (3), and if \mathcal{L} satisfies conditions (α), (μ), and (δ), then (2) implies (1). Moreover, if \mathcal{L} satisfies condition (γ), then (3) implies (2).

Definition 4. A submodule N of a module M is said to be *strongly* \mathcal{L} -dense in M (shortly, s- \mathcal{L} -dense) if $(M, N, I_N, N) \in \mathcal{L}$, where I_N is the identity homomorphism from N into N.

The following lemmas are clear.

Lemma 5. If $N \leq K \leq M$ are modules such that N is s- \mathcal{L} -dense in M and \mathcal{L} satisfies conditions (α) and (β), then K is s- \mathcal{L} -dense in M.

Lemma 6. Let ρ be any *P*-filter. Then $(M, N) \in \rho$ if and only if N is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense in M.

Following [10, p. 21], for any module M, denote by $H_{\mathcal{K}}(M)$ the set of left submodules N of M such that $(M/N) \in \mathcal{K}$, where \mathcal{K} is any nonempty class of modules (i. e., $H_{\mathcal{K}}(M) = \{N \leq M \mid (M/N) \in \mathcal{K}\}$). In particular, $H_{\mathcal{K}}(R) = \{I \leq R \mid (R/I) \in \mathcal{K}\}$.

The following theorem is the first main result of this section.

Theorem 4. Let \mathcal{L} satisfy conditions (α) and (δ) and let \mathcal{K} be any nonempty class of modules closed under isomorphic copies and \mathcal{L} -injective hulls. If the direct sum of any family $\{E_i\}_{i\in\mathbb{N}}$ of \mathcal{L} -injective R-modules in \mathcal{K} is \mathcal{L} -injective, then every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R in $H_{\mathcal{K}}(R)$ with $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ s- \mathcal{L} -dense in R, terminates.

P r o o f. Let $I_1 \subseteq I_2 \subseteq \ldots$ be any ascending chain of left ideals of R in $H_{\mathcal{K}}(R)$ with $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ being a *s*- \mathcal{L} -dense left ideal in R. Thus $(R/I_j) \in \mathcal{K} \; \forall j \in \mathbb{N}$. Since \mathcal{L} satisfies conditions (α) , (β) , and (γ) , it follows from [14, Theorem 1.12, p. 625] that every R-module M has an \mathcal{L} injective hull which is unique up to M-isomorphism. Let $E_{\mathcal{L}}(R/I_j)$ be the \mathcal{L} -injective hull of $R/I_j, \; \forall j \in \mathbb{N}$. Since \mathcal{K} is closed under \mathcal{L} -injective hulls, it follows that $E_{\mathcal{L}}(R/I_j) \in \mathcal{K}, \; \forall j \in \mathbb{N}$. Define $f : I_{\infty} = \bigcup_{j=1}^{\infty} I_j \to \bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)$ by $f(r) = (r + I_j)_{j \in \mathbb{N}}$, for $r \in I_{\infty}$. Note that f is a well-defined mapping: for any $r \in I_{\infty}$, let n be the smallest positive integer such that $r \in I_n$. Since $I_n \subseteq I_{n+k}, \; \forall k \in \mathbb{N}$, we have $r \in I_{n+k} \; \forall k \in \mathbb{N}$ and so $r + I_{n+k} = 0, \; \forall k \in \mathbb{N}$. Thus $(r + I_j)_{j \in \mathbb{N}} = (r + I_1, r + I_2, \ldots, r + I_{n-1}, 0, 0, \ldots) \in \bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)$. Thus $f(I) \subseteq \bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)$ and hence f is a well-defined mapping. It is clear that f is a homomorphism. Since I_{∞} is a s- \mathcal{L} -dense left ideal in R, it follows that $(R, I_{\infty}, I_{I_{\infty}}, I_{\infty}) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (δ) , we have $(R, I_{\infty}, f, \bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)) \in \mathcal{L}$. Since $E_{\mathcal{L}}(R/I_j)$ is an \mathcal{L} -injective R-module in $\mathcal{K}, \; \forall j \in \mathbb{N}$, it follows from the hypothesis that $\bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)$ such that $f(r) = rx \; \forall r \in I_{\infty}$. Since $x \in \bigoplus_{j=1}^{\infty} E_{\mathcal{L}}(R/I_j)$, we have $x = (x_1, x_2, \ldots, x_n, 0, 0, \ldots)$, for some $n \in \mathbb{N}$, and hence $(r + I_j)_{j \in \mathbb{N}} = (rx_1, rx_2, \ldots, rx_n, 0, 0, \ldots)$ and this implies that $r + I_{n+k} = 0, \; \forall k \geq 1$ and $\forall r \in I_{\infty}$, Thus, $r \in I_{n+k}, \; \forall k \geq 1$ and $\forall r \in I_{\infty}$, and so $I_{\infty} = \bigcup_{j=1}^{\infty} I_j \subseteq I_{n+k}, \; \forall k \geq 1$. Since $I_{n+k} \subseteq I_{\infty}$, it follows that $I_{\infty} = I_{n+k}, \; \forall k \geq 1, \; I_t = I_{t+j}, \; \forall j \in \mathbb{N}$. Therefore the ascending chain

Now we will state the condition (I) on \mathcal{L} as follows:

(I): $(R, J, f, Q) \in \mathcal{L}$ implies that J is s- \mathcal{L} -dense in R. That is, $(R, J, f, Q) \in \mathcal{L}$ implies $(R, J, I_J, J) \in \mathcal{L}$.

Proposition 5. Consider the following two conditions, where \mathcal{K} is a nonempty class of R-modules.

(1) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R in $H_{\mathcal{K}}(R)$ with $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ s- \mathcal{L} -dense in R, terminates.

(2) The following conditions hold:

(a) $H_{\mathcal{K}}(R)$ has ACC on s- \mathcal{L} -dense left ideals in R;

(b) for every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R in $H_{\mathcal{K}}(R)$, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is s- \mathcal{L} -dense in R, there exists a positive integer n such that I_n is s- \mathcal{L} -dense in R.

If \mathcal{L} satisfies conditions (α) and (β), then (1) and (2) are equivalent.

Proof. This is obvious.

Now we will give the second main result of this section.

Theorem 5. Let \mathcal{L} satisfy conditions (α) , (μ) , (δ) , and (I) and let \mathcal{K} be any nonempty class of modules closed under isomorphic copies and submodules. If every ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of left ideals of R, where $(J_{i+1}/J_i) \in \mathcal{K}$, $\forall i \in \mathbb{N}$ and $J_{\infty} = \bigcup_{i=1}^{\infty} J_i$ is s- \mathcal{L} -dense in R, terminates, then every direct sum of \mathcal{L} -injective modules in \mathcal{K} is \mathcal{L} -injective.

2018. Vol. 28. Issue 2

P r o o f. Let $\{E_i\}_{i\in\mathbb{N}}$ be any family of \mathcal{L} -injective modules in \mathcal{K} and let $(R, J, f, \bigoplus_{i\in\mathbb{N}} E_i) \in \mathcal{L}$. For any $n \in \mathbb{N}$, put $J_n = \{x \in J \mid f(x) \in \bigoplus_{i=1}^n E_i\} = f^{-1}(\bigoplus_{i=1}^n E_i)$. It is clear that $J_1 \subseteq J_2 \subseteq \ldots$. Also, we have $J_{\infty} = \bigcup_{n\in\mathbb{N}} J_n = \bigcup_{n\in\mathbb{N}} (f^{-1}(\bigoplus_{i=1}^n E_i)) = f^{-1}(\bigcup_{n\in\mathbb{N}} (\bigoplus_{i=1}^n E_i)) = f^{-1}(\bigoplus_{i=1}^n E_i)$. Since $(R, J, f, \bigoplus_{i\in\mathbb{N}} E_i) \in \mathcal{L}$ and \mathcal{L} satisfies condition (I), it follows that $J = \bigcup_{i\in\mathbb{N}} J_i$ is s- \mathcal{L} -dense in R. For all $n \in \mathbb{N}$, define $\alpha_n : J_{n+1}/J_n \to \bigoplus_{i=1}^{n+1} E_i / \bigoplus_{i=1}^n E_i$ by $\alpha_n(x + J_n) = f(x) + (\bigoplus_{i=1}^n E_i), \forall x \in I_{n+1}$. Then α_n is a well-defined monomorphism, since $J_n = f^{-1}(\bigoplus_{i=1}^n E_i)$. Since $(\bigoplus_{i=1}^{n+1} E_i / \bigoplus_{i=1}^n E_i) \cong \mathcal{K}$. Since im $(\alpha_n) \leq (\bigoplus_{i=1}^{n+1} E_i / \bigoplus_{i=1}^n E_i) \in \mathcal{K}$, and \mathcal{K} is closed under submodules, it follows that $\operatorname{im}(\alpha_n) \in \mathcal{K}$. Since $(J_{n+1}/J_n) \simeq \operatorname{im}(\alpha_n)$ and \mathcal{K} is closed under isomorphic copies, we obtain $(J_{n+1}/J_n) \in \mathcal{K}$. Thus we have the following ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of left ideals of R such that $(J_{i+1}/J_i) \in \mathcal{K}, \forall i \in \mathbb{N} \text{ and } J_\infty = \bigcup_{i=1}^{\infty} J_i$ is s- \mathcal{L} -dense in R. By hypothesis, there exists a positive integer n such that $J_n = J_{n+i}, \forall i \in \mathbb{N}$. Thus $J = J_\infty = \bigcup_{i=1}^{\infty} J_i = J_n$. This implies that $f(J) \subseteq \bigoplus_{i=1}^n E_i$. Thus supp(im(f)) is finite and hence \mathcal{L} satisfies condition (F) for a family $\{E_i\}_{i\in\mathbb{N}}$. Thus by Lemma 4 we see that $\bigoplus_{i\in\mathbb{N}} E_i$ is an \mathcal{L} -injective module. Thus for any family $\{E_i\}_{i\in\mathbb{N}}$ of \mathcal{L} -injective R-modules in \mathcal{K} , we have $\bigoplus_{i\in\mathbb{N}} E_i$ is \mathcal{L} -injective. Since \mathcal{L} satisfies conditions $(\alpha), (\mu)$, and (δ) , it follows from Corollary 8, that every direct sum of \mathcal{L} -injective modules in \mathcal{K} is \mathcal{L} -injective.

A nonempty class \mathcal{K} of modules is said to be a natural class if it is closed under submodules, arbitrary direct sums and injective hulls [9]. Examples of natural classes include *R*-Mod, any hereditary torsionfree classes, and stable hereditary torsion classes.

Now we can state the following result, found in [17, p. 643] as a corollary.

Corollary 9. Let \mathcal{K} be a natural class of modules closed under isomorphic copies. Then the following statements are equivalent:

(1) every direct sum of injective modules in \mathcal{K} is injective;

(2) $H_{\mathcal{K}}(R)$ has ACC.

P r o o f. (1) \Rightarrow (2). By taking $\mathcal{L} = \mathcal{M}$ and applying Lemma 1, Lemma 6 and Theorem 4. (2) \Rightarrow (1). By taking $\mathcal{L} = \mathcal{M}$ and applying [17, Lemma 7, p. 637] and Theorem 5.

Corollary 10. Let ρ be any *P*-filter and let \mathcal{K} be any nonempty class of modules closed under isomorphic copies and submodules. If every ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of left ideals of R such that $(J_{i+1}/J_i) \in \mathcal{K}, \forall i \in \mathbb{N}$ and $J_{\infty} = \bigcup_{i=1}^{\infty} J_i$ is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense in R terminates, then every direct sum of $\mathcal{L}_{(\rho,\infty)}$ -injective modules in \mathcal{K} is $\mathcal{L}_{(\rho,\infty)}$ -injective.

Proof. By Lemma 1, Lemma 6 and Theorem 5.

Let τ be a hereditary torsion theory. A nonempty class \mathcal{K} of modules is said to be τ -natural class if \mathcal{K} is closed under submodules, isomorphic copies, arbitrary direct sums and τ -injective hulls [8, p. 163].

Corollary 11 (see [8, Proposition 5.3.5, p. 165]). Let \mathcal{K} be a τ -natural and suppose that every ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of left ideals of R such that $(J_{i+1}/J_i) \in \mathcal{K}, \forall i \in \mathbb{N}$ and $J_{\infty} = \bigcup_{i=1}^{\infty} J_i$ is τ -dense in R terminates. Then every direct sum of τ -injective modules in \mathcal{K} is τ -injective.

P r o o f. Take $\rho = \rho_{\tau}$ and apply Corollary 10.

The following corollary, in which we give conditions under which the class of \mathcal{L} -injective modules is closed under direct sums, is one of the main aims of this section.

Corollary 12. Consider the following three conditions: (1) the class of \mathcal{L} -injective R-modules is closed under direct sums;

A.R. Mehdi

MATHEMATICS

2018. Vol. 28. Issue 2

(2) every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is s- \mathcal{L} -dense in R, terminates;

(3) the following conditions hold:

(a) every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of s- \mathcal{L} -dense left ideals of R terminates;

(b) for every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R, where $I_{\infty} = \bigcup_{i=1}^{\infty} I_i$ is s- \mathcal{L} -dense in R, there exists a positive integer n such that I_n is s- \mathcal{L} -dense in R.

If \mathcal{L} satisfies conditions (α) and (δ), then (1) implies (2). Also, (2) implies (3b) and if \mathcal{L} satisfies conditions (α) and (β), then (2) implies (3a). Moreover, if \mathcal{L} satisfies conditions (α), (μ), (δ), and (I), then all above three conditions are equivalent.

P r o o f. By taking $\mathcal{K} = R$ -Mod and applying Theorem 4 and Proposition 5.

Corollary 13. Let ρ be any *P*-filter. Then the following statements are equivalent.

(1) The class of $\mathcal{L}_{(\rho,\rho_{\infty})}$ -injective R-modules is closed under direct sums.

(2) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R, where $I_{\infty} = \bigcup_{i=1}^{\infty} I_i$ is $s - \mathcal{L}_{(\rho,\rho_{\infty})}$ -dense in R, terminates.

(3) The following conditions hold.

(a) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of $s \cdot \mathcal{L}_{(\rho, \rho_{\infty})}$ -dense left ideals of R terminates.

(b) For every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of left ideals of R, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is s- $\mathcal{L}_{(\rho,\rho_{\infty})}$ -dense in R, there exists a positive integer n such that I_n is s- $\mathcal{L}_{(\rho,\rho_{\infty})}$ -dense in R.

(4) For any family $\{E_i\}_{i\in\mathbb{N}}$ of $\mathcal{L}_{(\rho,\rho_{\infty})}$ -injective *R*-modules, $\bigoplus_{i\in\mathbb{N}} E_i$ is $\mathcal{L}_{(\rho,\rho_{\infty})}$ -injective.

P r o o f. By Lemma 1 and Lemma 6, it follows that $\mathcal{L}_{(\rho,\rho_{\infty})}$ satisfies conditions $(\alpha), (\mu), (\delta)$, and (I). Thus, by Corollary 12 and Corollary 8, we have the equivalence of above four statements.

Corollary 14 (see [8, Theorem 2.3.8, p. 73]). The following statements are equivalent:

- (1) R has ACC on τ -dense left ideals and τ is Noetherian;
- (2) the class of τ -injective R-modules is closed under direct sums;
- (3) the class of τ -injective R-modules is closed under countable direct sums.

P r o o f. Take $\rho = \rho_{\tau}$ and apply Corollary 13.

§4. \sum - \mathcal{L} -injective modules

Carl Faith in [11] introduced the concepts of \sum -injectivity and countably \sum -injectivity as follows. An injective module E is said to be \sum -injective if $E^{(A)}$ is injective for any index set A; E is said to be countably \sum -injective in case $E^{(C)}$ is injective for any countable index set C. Faith in [11] proved that an injective R-module E is \sum -injective if and only if R satisfies ACC on the E-annihilator left ideals if and only if E is countably \sum -injective. Charalambides in [6] introduced the concept of $\sum -\tau$ -injectivity and generalized Faith's result.

In this section, we introduce the concept of $\sum -\mathcal{L}$ -injectivity as a general case of \sum -injectivity and $\sum -\tau$ -injectivity and prove the result (Theorem 6) in which we generalize Faith's result [11, Proposition 3, p. 184] and [6, Theorem 16.16, p. 98].

We start this section with the following definition of a $\sum \mathcal{L}$ -injective module.

Definition 5. Let E be an \mathcal{L} -injective module. We say that E is $\sum \mathcal{L}$ -injective if $E^{(A)}$ is \mathcal{L} injective for any index set A. On the other hand, if $E^{(C)}$ is \mathcal{L} -injective for any countable index set C, we say that E is countably $\sum \mathcal{L}$ -injective.

The following corollary is a special case of Corollary 8, by taking $\mathcal{K} = \{E\}$.

2018. Vol. 28. Issue 2

Corollary 15. Consider the following conditions.

(1) E is $\sum \mathcal{L}$ -injective.

(2) E is countably $\sum \mathcal{L}$ -injective.

(3) $E^{(\mathbb{N})}$ is \mathcal{L} -injective.

Then: (1) implies (2) and (2) implies (3). If \mathcal{L} satisfies conditions (α), (μ), and (δ), then (2) implies (1). Moreover, if \mathcal{L} satisfies condition (γ), then (3) implies (2).

The next corollary is immediately follows from Lemma 1 and Corollary 15.

Corollary 16. Let ρ_1 and ρ_2 be any two P-filters. Then the following conditions are equivalent for a module E.

(1) E is $\sum \mathcal{L}_{(\rho_1,\rho_2)}$ -injective. (2) E is countably $\sum \mathcal{L}_{(\rho_1,\rho_2)}$ -injective.

(3) $E^{(\mathbb{N})}$ is $\mathcal{L}_{(\rho_1,\rho_2)}$ -injective.

Let E be a module. A left ideal I of R is said to be an E-annihilator if there is $N \subseteq E$ such that $I = (0:N) = \{r \in R \mid rN = 0\}$ (i.e., I is the annihilator of a subset of E).

The following theorem is the main result of this section in which we generalize [6, Theorem 16.16,]p. 98] and [11, Proposition 3, p. 184].

Theorem 6. Consider the following three conditions for an \mathcal{L} -injective module E:

(1) E is countably $\sum \mathcal{L}$ -injective;

(2) every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where $I_{\infty} = \bigcup_{i=1}^{\infty} I_i$ is s-*L*-dense in R, terminates;

(3) The following conditions hold.

(a) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of E-annihilators in R, where I_j is s- \mathcal{L} -dense in R $\forall j \in \mathbb{N}, terminates.$

(b) For every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of E-annihilators in R, where $I_{\infty} = \bigcup_{i=1}^{\infty} I_i$ is s- \mathcal{L} -dense in R, there exists a positive integer n such that I_n is s- \mathcal{L} -dense in R.

Then: if \mathcal{L} satisfies condition (δ), then (1) implies (2). Also, (2) implies (3b) and if \mathcal{L} satisfies conditions (α) and (β), then (2) implies (3a). Moreover, if \mathcal{L} satisfies conditions (α), (μ), (β), and (I), then (3) implies (1).

P r o o f. (1) \Rightarrow (2). Let \mathcal{L} satisfy condition (δ). Assume that (2) does not hold. Then there exist *E*-annihilators I_1, I_2, \ldots in *R* such that $I_1 \subsetneq I_2 \subsetneq \ldots$ and $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is *s*- \mathcal{L} -dense in *R*. Hence we have the following descending chain $r_E(I_1) \supsetneq r_E(I_2) \supsetneq \ldots$ For every $n \in \mathbb{N}$, choose $x_n \in r_E(I_n) - r_E(I_{n+1})$, thus $x = (x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$. Define $f: I_{\infty} \to E^{\mathbb{N}}$ by f(a) = ax, $\forall a \in I_{\infty}$. It is clear that f is a homomorphism. For a fixed $a \in I_{\infty}$ let n be the smallest positive integer such that $a \in I_n$. Then, for every $k \ge 0$, $a \in I_n \subseteq I_{n+k}$. Since $x_{n+k} \in r_E(I_{n+k})$, we have $ax_{n+k} = 0$, $\forall k \ge 0$. Hence $ax \in E^{(\mathbb{N})}$. Thus f is a homomorphism from I_{∞} into $E^{(\mathbb{N})}$. Since I_{∞} is s- \mathcal{L} -dense in R, it follows that $(R, I_{\infty}, I_{I_{\infty}}, I_{\infty}) \in \mathcal{L}$. Since \mathcal{L} satisfies condition (δ) , we get $(R, I_{\infty}, f, E^{(\mathbb{N})}) \in \mathcal{L}$. Since $E^{(\mathbb{N})}$ is \mathcal{L} -injective, it follows from Theorem 1 that there exists an element $y \in E^{(\mathbb{N})}$ such that $f(a) = ay, \forall a \in I_{\infty}$. Since $y \in E^{(\mathbb{N})}$, we have $y = (y_1, y_2, \ldots, y_t, 0, 0, \ldots)$, for some $t \in \mathbb{N}$. Since $ax = f(a) = ay, \forall a \in I_{\infty}$, it follows that $(ax_1, ax_2, \ldots) = (ay_1, ay_2, \ldots, ay_t, 0, 0, \ldots)$ and this implies that $ax_{t+1} = 0, \forall a \in I_{\infty}$ and hence $x_{t+1} \in r_E(I_{\infty})$. Since $I_{t+2} \subseteq I_{\infty}$, we have $r_E(I_{\infty}) \subseteq r_E(I_{t+2})$ and so $x_{t+1} \in r_E(I_{t+2})$. This contradicts the fact that $x_{t+1} \in r_E(I_{t+1}) - r_E(I_{t+2})$.

 $(2) \Rightarrow (3b)$. Let $I_1 \subseteq I_2 \subseteq \ldots$ be any ascending chain of E-annihilators in R, where $I_\infty = \bigcup_{i=1}^\infty I_i$ is s- \mathcal{L} -dense in R. By hypothesis, there exists a positive integer n such that $I_n = I_{n+k}, \forall k \in \mathbb{N}$ and so $I_n = I_\infty$. Hence I_n is s- \mathcal{L} -dense in R.

 $(2) \Rightarrow (3a)$. Let \mathcal{L} satisfy conditions (α) and (β) and let $I_1 \subseteq I_2 \subseteq \ldots$ be any ascending chain of E-annihilators in R such that I_i are s- \mathcal{L} -dense left ideals of R. Since $I_1 \subseteq I_{\infty}$ and \mathcal{L} satisfies conditions (α) and (β), we have from Lemma 5 that I_{∞} is a s- \mathcal{L} -dense left ideal of R. By hypothesis, the chain $I_1 \subseteq I_2 \subseteq \ldots$ terminates.

 $(3) \Rightarrow (1)$. Let \mathcal{L} satisfy conditions $(\alpha), (\mu), (\beta), \text{ and } (I) \text{ and let } (R, J, f, E^{(\mathbb{N})}) \in \mathcal{L}$. Since E is \mathcal{L} injective, we have from Lemma 3 that $E^{\mathbb{N}}$ is \mathcal{L} -injective. Since $E^{(\mathbb{N})}$ is a submodule of $E^{\mathbb{N}}$, it follows that $g = i \circ f : J \to E^{\mathbb{N}}$ is a homomorphism, where $i : E^{(\mathbb{N})} \to E^{\mathbb{N}}$ is the inclusion homomorphism. Since \mathcal{L} satisfies condition (β) , we have $(R, J, i \circ f, E^{\mathbb{N}}) \in \mathcal{L}$. Thus, by Theorem 1, there is an element $x = (x_1, x_2, \ldots) \in E^{\mathbb{N}}$ such that $g(a) = ax, \forall a \in J$. Thus $f(a) = g(a) = ax, \forall a \in J$. Let $X = \{x_1, x_2, \ldots\}$ and $X_k = X \setminus \{x_1, x_2, \ldots, x_k\} = \{x_{k+1}, x_{k+2}, \ldots\}$ for all $k \ge 1$. Thus we have the following descending chain of subsets of $X : X \supseteq X_1 \supseteq X_2 \supseteq \ldots$; this yields an ascending chain of *E*-annihilators in *R*: $l_R(X) \subseteq l_R(X_1) \subseteq l_R(X_2) \subseteq \ldots$ Let $J_{k+1} = l_R(X_k)$, for all $k \geq 0$, where $X_0 = X$ and $J_{\infty} = \bigcup_{i=1}^{\infty} J_i$. Since $f(J) \subseteq E^{(\mathbb{N})}$, it follows that, for any $a \in J$, either $ax_k = 0, \forall k \in \mathbb{N}$, or there is a largest integer $n \in \mathbb{N}$ such that $ax_n \neq 0$. If there is a largest integer $n \in \mathbb{N}$ such that $ax_n \neq 0$, then $ax_{n+k} = 0, \forall k \geq 1$. Therefore, $a \in l_R(X_n) = J_{n+1} \subseteq J_{\infty}$. Thus for any $a \in J$, we have $a \in J_{\infty}$, and this implies that $J \subseteq J_{\infty}$. Since $(R, J, f, E^{(\mathbb{N})}) \in \mathcal{L}$ and \mathcal{L} satisfies condition (I), it follows that J is s- \mathcal{L} -dense left ideal in R. Since $J \subseteq J_{\infty}$ and \mathcal{L} satisfies conditions (α) and (β), we have from Lemma 5 that J_{∞} is s- \mathcal{L} -dense left ideal in R. Thus we have the following ascending chain $J_1 \subseteq J_2 \subseteq \ldots$ of E-annihilators in R such that J_∞ is s- \mathcal{L} -dense left ideal in R. By applying condition (3b), there is an $s \in \mathbb{N}$ such that J_s is s- \mathcal{L} -dense left ideal in R. Since $J_s \subseteq J_{s+k}, \forall k \in \mathbb{N}$ and \mathcal{L} satisfies conditions (α) and (β), it follows from Lemma 5 that J_{s+k} is s- \mathcal{L} -dense left ideal in $R, \forall k \in \mathbb{N}$. Thus we have the following ascending chain $J_s \subseteq J_{s+1} \subseteq \ldots$ of *E*-annihilators in *R* such that J_{s+k} is *s*- \mathcal{L} -dense left ideal in $R \forall k \in \mathbb{N}$. By applying condition (3a), the chain $J_s \subseteq J_{s+1} \subseteq \ldots$ becomes stationary at a left ideal of R, say $J_t = l_R(X_{t-1})$ and so $J_t = J_{\infty}$. Thus for any $a \in J$, we have $ax_{t+k} = 0, \forall k \geq 0$ and then $a(0, 0, \dots, 0, x_t, x_{t+1}, \dots) = 0$. Take $y = (x_1, x_2, \dots, x_{t-1}, 0, 0, \dots)$. It is clear that $y \in E^{(\mathbb{N})}$ and for any $a \in J$, then $f(a) = ax = ax - a(0, 0, \dots, 0, x_t, x_{t+1}, 0, 0, \dots) = a(x_1, x_2, \dots, x_{t-1}, 0, 0, \dots) = ay$. Thus for every $(R, J, f, E^{(\mathbb{N})}) \in \mathcal{L}$ there exists an element $y \in E^{(\mathbb{N})}$ such that $f(a) = ay, \forall a \in J$. Since \mathcal{L} satisfies conditions (α) and (μ), it follows from Theorem 1 that $E^{(\mathbb{N})}$ is \mathcal{L} -injective. Since \mathcal{L} satisfies condition (γ), it follows from Corollary 15 that E is countably $\sum \mathcal{L}$ -injective.

Corollary 17. Let ρ be any *P*-filter. Then the following conditions are equivalent.

(1) E is countably $\sum \mathcal{L}_{(\rho,\infty)}$ -injective.

(2) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense left ideal in *R*, terminates.

(3) The following conditions hold.

(a) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of E-annihilators in R, where I_j is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense left ideals of $R \forall j \in \mathbb{N}$, terminates.

(b) For every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense left ideal in *R*, there exists a positive integer *n* such that I_n is $s \cdot \mathcal{L}_{(\rho,\infty)}$ -dense in *R*. (4) *E* is $\sum -\mathcal{L}_{(\rho,\infty)}$ -injective.

P r o o f. By Lemma 1, Lemma 6 and Theorem 6, we have the equivalence of (1), (2), and (3). (1) \Leftrightarrow (4). By Corollary 15.

Corollary 18 (see [6, Theorem 16.16, p. 98]). Let τ be any hereditary torsion theory and let E be τ -injective module. Then the following conditions are equivalent.

(1) E is countably $\sum -\tau$ -injective.

(2) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is τ -dense left ideal in *R*, terminates.

(3) The following conditions hold.

(a) Every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where I_j is τ -dense left ideals of $R \forall j \in \mathbb{N}$, terminates.

(b) For every ascending chain $I_1 \subseteq I_2 \subseteq \ldots$ of *E*-annihilators in *R*, where $I_{\infty} = \bigcup_{j=1}^{\infty} I_j$ is τ -dense left ideal in *R*, there exists a positive integer *n* such that I_n is τ -dense in *R*.

(4) E is $\sum \tau$ -injective.

P r o o f. By taking a P-filter $\rho = \rho_{\tau}$ and applying Corollary 17.

Corollary 19 (see [11, Proposition 3, p. 184]). The following conditions on an injective module E are equivalent.

- (1) E is countably \sum -injective.
- (2) R satisfies the ACC on the E-annihilators left ideals.
- (3) E is \sum -injective.

P r o o f. By taking $\rho = \Re$ and applying Corollary 17.

Corollary 20. Let \mathcal{L} satisfy conditions (α) , (μ) , and (δ) , and let $\{E_i \mid 1 \leq i \leq n\}$ be a family of modules. If E_i is $\sum \mathcal{L}$ -injective $\forall i = 1, 2, ..., n$, then $\bigoplus_{i=1}^n E_i$ is $\sum \mathcal{L}$ -injective.

Proof. By Corollary 5 and Corollary 15.

Corollary 21. Let ρ_1 and ρ_2 be any two *P*-filters and let $\{E_i \mid 1 \leq i \leq n\}$ be a family of modules. If E_i is $\sum \mathcal{L}_{(\rho_1,\rho_2)}$ -injective $\forall i = 1, 2, ..., n$, then $\bigoplus_{i=1}^n E_i$ is $\sum \mathcal{L}_{(\rho_1,\rho_2)}$ -injective.

Proof. By Lemma 1 and Corollary 20.

REFERENCES

- Anderson F.W., Fuller K.R. Rings and categories of modules, New York: Springer, 1992. DOI: 10.1007/978-1-4612-4418-9
- Azumaya G., Mbuntum F., Varadarajan K. On M-projective and M-injective modules, Pacific J. Math., 1975, vol. 59, no. 1, pp. 9–16. DOI: 10.2140/pjm.1975.59.9
- Baer R. Abelian groups that are direct summands of every containing abelian group, Bull. Amer. Math. Soc., 1940, vol. 46, no. 10, pp. 800–806. DOI: 10.1090/S0002-9904-1940-07306-9
- Beachy J.A. A generalization of injectivity, *Pacific J. Math.*, 1972, vol. 41, no. 2, pp. 313–327. DOI: 10.2140/pjm.1972.41.313
- Bland P.E. A note on quasi-divisible modules, Communications in Algebra, 1990, vol. 18, no. 6, pp. 1953– 1959. DOI: 10.1080/00927879008824003
- 6. Charalambides S. Topics in Torsion Theory, Ph.D. Thesis, New Zealand: University of Otago, 2006.
- Crivei S. A note on τ-quasi-injective modules, Stud. Univ. Babeş Bolyai Math., 2001, vol. 46, no. 3, pp. 33-39. http://www.cs.ubbcluj.ro/~studia-m/2001-3/CRIVEI.pdf
- 8. Crivei S. Injective modules relative to torsion theories, Cluj-Napoca: EFES Publishing House, 2004.
- Dauns J. Classes of modules, Forum Mathematicum, 1991, vol. 3, no. 3, pp. 327–338. DOI: 10.1515/form.1991.3.327
- 10. Dauns J., Zhou Y. Classes of Modules, Boca Raton: Chapman and Hall/CRC, 2006.
- Faith C. Rings with ascending condition on annihilators, Nagoya Math. J., 1966, vol. 27, no. 1, pp. 179– 191. DOI: 10.1017/S0027763000011983
- Fuchs L. On quasi-injective modules, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1969, vol. 23, no. 4, pp. 541– 546.
- 13. Golan J.S. Torsion theories, New York: Longman Scientific and Technical, 1986.
- 14. Jirásko J. Generalized injectivity, Comment. Math. Univ. Carolin., 1975, vol. 16, no. 4, pp. 621–636.
- 15. Kasch F. Modules and rings, London: Academic Press Inc., 1982.
- Mohamed S.H., Müller B.J. Continuous and discrete modules, London: Cambridge University Press, 1990. DOI: 10.1017/CBO9780511600692
- Page S.S., Zhou Y.Q. On direct sums of injective modules and chain conditions, *Canad. J. Math.*, 1994, vol. 46, no. 3, pp. 634–647. DOI: 10.4153/CJM-1994-034-9
- 18. Smith P.F. Injective modules and their generalizations, Glasgow: University of Glasgow, 1997.
- 19. Stenström B. Rings of quotients, Berlin: Springer-Verlag, 1975. DOI: 10.1007/978-3-642-66066-5
- Yi O. On injective modules and locally nilpotent endomorphisms of injective modules, Math. J. Okayama Univ., 1998, vol. 40, no. 1, pp. 7-13. http://ousar.lib.okayama-u.ac.jp/33679

Received 03.02.2018

Mehdi Akeel Ramadan, Doctor of Mathematics, Assistant Professor, Department of Mathematics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq. E-mail: akeel.mehdi@qu.edu.iq

А.Р. Mexdu Об *L*-инъективных модулях

Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2018. Т. 28. Вып. 2. С. 176–192.

Ключевые слова: инъективный модуль, обобщенный критерий Фукса, наследственная теория кручения, *t*-плотный, прерадикал, естественный класс.

УДК 512.553.3

DOI: 10.20537/vm180204

Пусть $\mathcal{M} = \{(M, N, f, Q) \mid M, N, Q \in R$ -Mod, $N \leq M, f \in \operatorname{Hom}_R(N, Q)\}$ и пусть \mathcal{L} – непустой подкласс \mathcal{M} . Jirásko ввел понятие \mathcal{L} -инъективного модуля как обобщение инъективного модуля: модуль Q называется \mathcal{L} -инъективным, если для каждого $(B, A, f, Q) \in \mathcal{L}$ существует гомоморфизм $g: B \to Q$ такой, что g(a) = f(a) для всех $a \in A$. Целью данной работы является изучение \mathcal{L} -инъективных модулей и некоторых связанных с ними понятий. Даны некоторые характеристики \mathcal{L} -инъективных модулей. Приводится версия критерия Бэра для \mathcal{L} -инъективности. В качестве обобщений M-инъективных модулей вводятся понятия \mathcal{L} -M-инъективного модуля и s- \mathcal{L} -M-инъективного модуля и даются некоторые результаты о них. Дана наша версия обобщенного критерия Фукса. Получены условия, при которых класс \mathcal{L} -инъективных модулей замкнут относительно прямых сумм. Наконец, мы вводим и изучаем понятие $\sum -\mathcal{L}$ -инъективности как обобщение \sum -инъективности и $\sum -\tau$ -инъективности.

Поступила в редакцию 03.02.2018

Мехди Акиль Рамадан, доктор математики, доцент, математическое отделение, Образовательный колледж, Университет Аль-Кадисия, Аль-Кадисия, Ирак. E-mail: akeel.mehdi@qu.edu.iq