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NEURAL NETWORKS WITH DYNAMICAL COEFFICIENTS AND

ADJUSTABLE CONNECTIONS ON THE BASIS OF INTEGRATED

BACKPROPAGATION

We 
onsider arti�
ial neurons whi
h will update their weight 
oe�
ients with an internal rule based on

ba
kpropagation, rather than using it as an external training pro
edure. To a
hieve this we in
lude the

ba
kpropagation error estimate as a separate entity in all the neuron models and perform its ex
hange

along the synapti
 
onne
tions. In addition to this we add some spe
ial type of neurons with referen
e

inputs, whi
h will serve as a base sour
e of error estimates for the whole network. Finally, we introdu
e

a training 
ontrol signal for all the neurons, whi
h 
an enable the 
orre
tion of weights and the ex
hange

of error estimates. For re
urrent neural networks we also demonstrate how to integrate ba
kpropagation

through time into their formalism with the help of some sta
k memory for referen
e inputs and external

data inputs of neurons. Also, for widely used neural networks, su
h as long short-term memory, radial

basis fun
tion networks, multilayer per
eptrons and 
onvolutional neural networks, we demonstrate their

alternative des
ription within the framework of our new formalism. As a useful 
onsequen
e, our approa
h

enables us to introdu
e neural networks with the adjustment of synapti
 
onne
tions, tied to the integrated

ba
kpropagation.
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Introdu
tion

Ba
kpropagation is one of the most su

essful and widely used algorithms for the training of neu-

ral networks. It has been adapted for su
h diverse models as multi-layer per
eptrons, radial basis

fun
tion networks and 
onvolutional neural networks [1�3℄. Moreover, its modi�
ation of ba
kprop-

agation through time (BPTT) has been su

essfully applied for the training of spe
ialized re
urrent

neural networks, su
h as long short-term memory [4,5℄. The range of applied tasks that 
an be solved

by these models is also quite diverse. For example, 
onvolutional networks are used [6, 7℄ for image

re
ognition, networks of radial basis fun
tions are used for time series predi
tion and 
ontrol systems


onstru
tion [8℄, networks of long short-term memory are used for a handwritten text re
ognition

and generation [9, 10℄, ma
hine translation [11℄, spee
h synthesis and re
ognition [12, 13℄, and for

a video pro
essing in 
onjun
tion with 
onvolutional networks [14℄.

However, the implementation of ba
kpropagation is an external training pro
edure in relation

to the models 
onsidered. Therefore, if we want to build a network with dynami
al 
oe�
ients (see

examples in [15℄) on the basis of this algorithm, we will need to in
lude it dire
tly into the 
ore

formalism of standard models of neurons. This entails the introdu
tion of ba
kpropagation error

estimates ∆(t) as some separate entities, as well as spe
ial neurons Ne with referen
e inputs e(t)
and a training 
ontrol signal a(t) for our network. In the 
ase of re
urrent networks we will have to

add sta
k memory Sx for external data inputs and Se for referen
e inputs of neurons.
As a result, our networks 
ould be viewed as a spe
ial type of reprogrammable �nite automata.

The �rst 
onsequen
e is an ability to 
onstru
t hierar
hi
al networks, whi
h will 
ontrol the training

pro
ess for one another in as
ending order. As a simple example one 
an 
onsider two networks:

the �rst is trained to spot some spe
ial stimuli in the input data to a
tivate the training of a mu
h

bigger se
ond one and 
ontrol whi
h parts of data will be sent to its data inputs and whi
h to its

referen
e inputs. Another important 
onsequen
e would be the ability to introdu
e neural networks

with the adjustment of synapti
 
onne
tions (see the review in [16℄) on the basis of integrated

http://dx.doi.org/10.20537/vm180212


Neural networks with dynami
al 
oe�
ients 261

COMPUTER SCIENCE 2018. Vol. 28. Issue 2

ba
kpropagation. In theory the ideal 
onne
tion adjustment algorithm should prevent the over�tting

of data by deleting all the unused 
onne
tions and 
reating new links only when ne
essary.

� 1. The des
ription of basi
 models

A neuron number j from layer number i will be denoted as N i j
... . Subs
ripts for N i j

... will be

variable-length strings: ϕ, r, c, e, where ϕ is an a
tivation fun
tion, r denotes a re
urrent mode,

c identi�es a mode with 
onne
tion adjustment, and e denotes the presen
e of referen
e input

for that neuron. In the 
ase of a non-re
urrent neuron with stati
 
onne
tions and without the

referen
e input, only ϕ will remain in this string. For example, the notation N i j
σ will spe
ify an

ordinary neuron with a sigmoid a
tivation fun
tion. In the general 
ase we will introdu
e neurons

N i j
... in our models as:

N i j
...e(t) =

(

ci j(t), xi j(t), ωi j(t), bi j(t), ψi j , ϕi j, yi j(t), ai j(t),∆
i j
(t), pi j(t), ξi j(t), ei j(t)

)

.

� ci j(t) = (ci j1 (t), . . . , ci jn (t)) � 
onne
tions to other layers and external inputs.

1. If the input k is not 
onne
ted to anything, then ci jk (t) = (0, 0, 0).

2. If the input k is 
onne
ted to the external input Xm(t), then ci jk (t) = (0, 0,m).

3. If the input k is 
onne
ted to the output r of a neuron N lm
... , then ci jk (t) = (l,m, r).

� xi j(t) = (xi j1 (t), . . . , xi jn (t)) � data input values of N i j
...e(t).

� ωi j(t) = (ωi j
1 (t), . . . , ωi j

n (t)) � weight 
oe�
ients of N i j
...e(t).

� bi j(t) � bias of neuron N i j
...e(t).

� ψi j
� aggregation fun
tion of N i j

...e(t), for example ψ(ω, x) =
∑

ωk · xk + b.

� ϕi j
� a
tivation fun
tion of N i j

...e(t), for example ϕ(z) = th(z).

� yi j(t) = (yi j1 (t), . . . , yi jk (t)) � output values yi j(t) = ϕ(ψ(ωi j(t), xi j(t))).

� ai j(t) � input signal of training a
tivation for N i j
...e(t).

� ∆
i j
(t) = (∆i j

1 (t), . . . ,∆i j
n (t)) � 
oe�
ients for ba
kpropagation from N i j

...e(t).

� pi j(t) � paralysis indi
ator for weights of N i j
...e(t).

� ξi j(t) � lo
al minimum indi
ator of N i j
...e(t).

� ei j(t) = (ei j1 (t), . . . , ei jk (t)) � optional referen
e inputs for N i j
...e(t).

Remark 1. For data inputs of neurons, four modes of operation are allowed:

1) when ci jk (t) = (0, 0, 0), we will have the zero input xi jk (t) = 0;

2) when ci jk (t) = (0, 0,m), we will have external 
onne
tion xi jk (t) = Xm(t);

3) for ci jk (t) = (l,m, r) and l < i, we will have an ordinary link xi jk (t) = ylmr (t);

4) for ci jk (t) = (l,m, r) and l ≥ i, we will have a re
urrent one xi jk (t) = yl mr (t− 1).
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Model 1. Neurons N i j
σ and N i j

σe with sigmoid a
tivation ϕi j(z) = 1/(1 + e−2αz). The derivative

of this fun
tion is:

∂ϕ/∂z = 2αϕ(z)(1 − ϕ(z)). As an aggregation fun
tion we will use a weighted

summation with the bias ψi j(ω, x) =
∑

ωk ·xk+ b, whi
h as a result gives us a standard formula for

yi j(t) = ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

. Finally, general 
orre
tion fa
tors δi j(t) will be 
al
ulated:

δi j(t) =















(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j
σe;

∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t), for neurons without ei j; denote them by N i j

σ . (1.1)

The appli
ation of formula (1.1) implies the expli
it in
lusion of weights ωi j
k (t) into all of the ba
k-

propagation 
oe�
ients ∆i j
k (t), whi
h yields:

∆i j
k (t) = 2α yi j(t)

(

1− yi j(t)
)

δi j(t)ωi j
k (t)σ(ai j(t)). (1.2)

The a
tivation of training will be applied with a positive training signal ai j(t) > 0. For the adjust-
ment of weights we will use a standard formula with an added σ(ai j(t)):

ωi j
k (t+ 1) = ωi j

k (t)− 2µα yi j(t)
(

1− yi j(t)
)

δi j(t)xi jk (t)σ(ai j(t)). (1.3)

Assuming xi jk (t) = 1, we will get a formula for bias adjustment bi j(t+ 1) from (1.3).

We assume that a paralysis of weights ωi j
k (t) o

urs when 70% of them rea
h a threshold value

ωmax:

pi j(t) =











1, if

∑

k=1,n

|ωi j
k (t)| > 0.7 · ωmax · n,

0, if otherwise.

(1.4)

In this expression, n is the number of neuron inputs xi j1 , . . . , x
i j
n . Formulas for dete
ting a lo
al

minimum of ωi j
k (t) will also use this number, but the main 
riteria for them will be a low amplitude

os
illation of ∆ωi j
k (t) = ωi j

k (t+ 1)− ωi j
k (t):

ξi j(t) =



















1, if

∑

k=1,n

∣

∣

∣

∣

∣

∣

∑

τ=t−tξ ,t

ωi j
k (τ + 1)− ωi j

k (τ)

∣

∣

∣

∣

∣

∣

< ωmin · n ·
∏

τ=t−tξ,t

σ(ai j(τ)),

0, if otherwise.

(1.5)

As a result, our basi
 model of sigmoid neuron will have only six parameters:

� n � number of data inputs;

� ωmax � maximum absolute values of weights ωi j
k ;

� ωmin � minimum absolute values of weights ωi j
k ;

� tξ � lo
al minimum dete
tion time;

� µ � training rate of neuron;

� α � sigmoid sti�ness (α ≥ 1).

Model 2. Neurons N i j
th and N i j

th e with hyperboli
 tangent as an a
tivation fun
tion ϕi j(z) = th(z).
We will use a weighted summation with the bias ψi j(ω, x) =

∑

ωk ·xk+b as an aggregation fun
tion
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ψi j
, just as in model 1. The derivative of the a
tivation fun
tion will be

∂ϕ/∂z = (1− ϕ2(z)) whi
h
leads to the repla
ement of formulas (1.2) and (1.3) by

∆i j
k (t) =

(

1− (yi j(t))2
)

δi j(t)ωi j
k (t)σ(ai j(t)), (1.6)

ωi j
k (t+ 1) = ωi j

k (t)− µ
(

1− (yi j(t))2
)

δi j(t)xi jk (t)σ(ai j(t)). (1.7)

Bias update bi j(t + 1) is a spe
ial 
ase of (1.7) and 
an be obtained by a simple substitution

xi jk (t) = 1. Moreover, the formulas for 
al
ulating δi j(t), pi j(t), and ξi j(t) are 
ompletely analogous

to (1.1), (1.4), and (1.5).

Model 3. Neurons N i j
id and N i j

id e with a linear a
tivation fun
tion ϕi j(z) = z. Just as in the �rst

two models, we will use the standard aggregation fun
tion ψi j(ω, x) =
∑

ωk · xk + b. Formulas for
δi j(t), pi j(t), and ξi j(t) will be analogous to (1.1), (1.4), and (1.5). In turn, an expression for ∆i j

k (t)

and ωi j
k (t+ 1) 
onsidering the linear ϕi j

will be repla
ed by

∆i j
k (t) = δi j(t)ωi j

k (t)σ(ai j(t)),

ωi j
k (t+ 1) = ωi j

k (t)− µ δi j(t)xi jk (t)σ(ai j(t)).

Model 4. Neurons N i j
Ed and N i j

Ed e for the 
al
ulation of Eu
lidean distan
e, whi
h use ϕi j(z) =
√
z

as an a
tivation fun
tion and ψi j(ω, x) =
∑

(ωk − xk)
2
as an aggregation fun
tion. As a result, an

output value for them is yi j(t) =

√

∑

(

ωi j
k (t)− xi jk (t)

)2
. General 
orre
tion fa
tors δi j(t) will be:

δi j(t) =























1

2
(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j

Ed e;
∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t), for neurons without ei j; denote them by N i j

Ed.

Taking into a

ount a spe
ial aggregation fun
tion, we will have the following formula for ba
kprop-

agation 
oe�
ients ∆i j
k (t):

∆i j
k (t) = δi j(t) ·

(

ωi j
k (t)− xi jk (t)

)

· σ(ai j(t))/yi j(t).

Finally, a formula for weight 
oe�
ients ωi j
k (t+ 1) will be updated as follow:

ωi j
k (t+ 1) = ωi j

k (t)− 2µ ·∆i j
k (t).

Model 5. Convolutional neurons N i j
Conv and N i j

Conv e with linear a
tivation ϕi j(z) = z, matrix input

xi j(t) =
(

xi j11(t), . . . , x
i j
nm(t)

)

, ve
tor output yi j(t) =
(

yi j1 (t), . . . , yi jm (t)
)

and weighted summation

as an aggregation ψi j(ω, x) = (
∑

ωk · xk1, . . . ,
∑

ωk · xkm). This variant will yield as its output

the dot produ
t of input data with the kernel of the weight 
oe�
ients ωi j(t) = (ωi j
1 (t), . . . , ωi j

n (t)).
Thus, the �nal output values would be

yi j(t) =
(

yi j1 (t), . . . , yi jm (t)
)

=





∑

k=1,n

ωi j
k (t)xi jk1(t), . . . ,

∑

k=1,n

ωi j
k (t)xi jkm(t)



 .

As a result, general 
orre
tion fa
tors δi j(t) will be:

δi j(t) =























∑

r

(yi jr (t)− ei jr (t)), for neurons with ei j; denote them by N i j
Conv e;

∑

r

∑

l,p,k:

c
l p
k

(t)=(i,j,r)

∆l p
k (t) for neurons without ei j ; denote them by N i j

Conv.
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We have used a double range of indi
es for the inputs xi j(t) =
(

xi j11(t), . . . , x
i j
nm(t)

)

, whi
h made it

quite 
onvenient to des
ribe the aggregation operation. However, the appli
ation of a similar s
heme

for ci j(t) and ∆
i j
(t) would break the 
ompatibility with other neuron layers, whi
h use the notation

of models 1�4. As a result, we will represent them as ve
tors ci j(t) = (ci j1 (t), . . . , ci jn·m(t)) and

∆
i j
(t) = (∆i j

1 (t), . . . ,∆i j
n·m(t)), while binding them with inputs xi j(t) (k1 = 1, n and k2 = 1,m):

� when in the dis
onne
ted mode ci j(k1−1)m+k2
= (0, 0, 0) −→ xi jk1k2 = 0;

� for the external input ci j(k1−1)m+k2
= (0, 0, r) −→ xi jk1k2(t) = Xr(t);

� in the standard mode ci j(k1−1)m+k2
= (l, p, r) −→ xi jk1k2(t) = yl pr (t) (l < i);

� in the re
urrent mode ci j(k1−1)m+k2
= (l, p, r) −→ xi jk1k2(t) = yl pr (t− 1) (l ≥ i).

For ba
kpropagation 
oe�
ients, we will have the 
orresponding formula:

∆i j
(k1−1)m+k2

(t) = δi j(t) · ωi j
k1
(t) · σ(ai j(t)), where k1 = 1, n and k2 = 1,m.

We will not be able to use general 
orre
tion fa
tors δi j(t) in the pure form for weights 
oe�
ients,

as a result our formula for their update would be quite 
ompli
ated:

ωi j
k (t+ 1) = ωi j

k (t)− µ
∑

r

xi jkr



















(yi jr (t)− ei jr (t)), for N i j
Conv e;

∑

l1,l2,p:

c
l1 l2
p (t)=(i,j,r)

∆l1 l2
p (t), for N i j

Conv. (1.8)

All other formulas for pi j(t) and ξi j(t) would be the same as in model 1.

Model 6. Linear re
ti�
ation blo
ks Bi j
ReLu and Bi j

ReLu e with an a
tivation fun
tion ϕi j(xi j(t)) =
= max(0, xi j(t)). We do not 
all this blo
ks of arti�
ial neurons, be
ause they do not have weight


oe�
ients ωi j(t) and an aggregation fun
tion. As a smooth approximation of a max(0, z) one 
an

take ϕi j(z) ≈ (1/2α) log(1 + e2αz), whi
h has the following derivative:

∂ϕ

∂z
≈ 1

1 + e−2αz
. General


orre
tion 
oe�
ients δi j(t) are 
al
ulated by a formula similar to (1.1), while the ba
kpropagation


oe�
ient ∆i j
1 (t) is

∆i j
1 (t) = δi j(t) · σ(ai j(t)) /

(

1 + e−2αxi j(t)
)

.

Model 7. Pooling layers Bi j
Pool and B

i j
Pool e with a linear a
tivation fun
tion ϕ(z) = z and subsam-

pling as an aggregation fun
tion ψ(xi j(t)) = max(xi j1 (t), . . . , xi jn (t)). General 
orre
tion 
oe�
ients

will be 
al
ulated similarly to formula (1.1), while for the ba
kpropagation 
oe�
ients ∆i j
k (t) we

will have

∆i j
k (t) =

{

δi j(t) · σ(ai j(t)), if ψ(xi j(t)) = xi jk (t),

0, if otherwise.

Model 8. Gaussian blo
ks Bi j
norm and Bi j

norm e with the normal a
tivation fun
tion ϕi j(z) = e−βz2

and only one single data input. The derivative of this fun
tion is

∂ϕ

∂z
= ϕ(z)(−2β

√

log(β)− log(ϕ(z))).

As a result, for a single ba
kpropagation 
oe�
ient ∆i j
1 (t) we will have the following formula:

∆i j
1 (t) = −2βyi j(t)

√

log(β)− log(yi j(t)) δi j(t)σ(ai j(t)).

General 
orre
tion 
oe�
ients δi j(t) will use the same formula as in (1.1).



Neural networks with dynami
al 
oe�
ients 265

COMPUTER SCIENCE 2018. Vol. 28. Issue 2

Model 9. Multipli
ation blo
ks Bi j
∗ and Bi j

∗ e with two data inputs xi j1 and xi j2 , a linear a
tivation

ϕ(z) = z and an aggregation fun
tion ψ(x1, x2) = x1 · x2. General 
orre
tion 
oe�
ients δi j(t) will
use formula analogous to (1.1) and the ba
kpropagation 
oe�
ients:

∆i j
1 (t) = δi j(t) · xi j2 (t) · σ(ai j(t)), ∆i j

2 (t) = δi j(t) · xi j1 (t) · σ(ai j(t)).

Model 10. Summation blo
ks Bi j
+ and Bi j

+ e with two data inputs xi j1 and xi j2 , a linear a
tivation

ϕ(z) = z and an aggregation ψ(x1, x2) = x1 + x2. General 
orre
tion 
oe�
ients δi j(t) will use a

formula analogous to (1.1) and the ba
kpropagation 
oe�
ients

∆i j
k (t) = σ(ai j(t))δi j(t).

Model 11. Tangent a
tivator blo
ks Bi j
th and Bi j

th e with a single input and hyperboli
 tangent as

an a
tivation fun
tion ϕ(z) = tanh(z). General 
orre
tion 
oe�
ients δi j(t) will use a formula

analogous to (1.1) and the ba
kpropagation 
oe�
ients

∆i j
k (t) =

(

1− (yi j(t))2
)

σ(ai j(t)) δi j(t).

� 2. Re
urrent neurons with an integrated sta
k memory

For re
urrent neurons without referen
e input ei j(t), we will use the following s
heme:

N i j
...r(t) =

(

ci j(t), xi j(t), Sx
i j
(t), ωi j(t), bi j(t), ψi j , ϕi j , yi j(t), ai j(t),∆

i j
(t), pi j(t), ξi j(t)

)

.

In this expression we introdu
e a sta
k memory Sx
i j
(t) for those data inputs of neurons, whi
h are


onne
ted to an external input sour
e: ci jk (t) = (0, 0, r), xi jk (t) = Xr(t). The sta
k memory Sx
i j
(t)

will be a fun
tion a

ording to a standard algorithm.

1. When σ(ai j(t)) = 0, we make writing to Si j
xk

for all k, if ci jk (t) = (0, 0, r) and r 6= 0:

∀m = 1,MaxM Si j
xk
(m, t+ 1) = Si j

xk
(m− 1, t), Si j

xk
(0, t+ 1) = xi jk (t). (2.1)

2. When σ(ai j(t)) = 1, we make reading from Si j
xk

for all k, if ci jk (t) = (0, 0, r) and r 6= 0:

∀m = 1,MaxM Si j
xk
(m− 1, t+ 1) = Si j

xk
(m, t), Si j

xk
(MaxM, t+ 1) = 0. (2.2)

After the in
lusion of the sta
k memory, two formulas from standard neuron models should be

updated with the highest priority: a formula for yi j(t) and δi j(t). We will 
onsider their 
hange

with the example of the model 2 with hyperboli
 tangent.

δi j(t) =



















∑

l,p,k: l>i

c
l p
k

(t)=(i,j,1)

∆l p
k (t) +

∑

l,p,k: l≤i

c
l p
k
(t)=(i,j,1)

∆l p
k (t− 1)



















. (2.3)

In general, we 
an guarantee that su
h s
heme will implement the standard algorithm of ba
kprop-

agation through time if we repla
e a formula for yi j(t) by this one:

yi j(t) =































ϕi j

(

∑

k

ωi j
k (t)xi jk (t)

)

, when σ(ai j(t)) = 0,

ϕi j







∑

k: ci j
k
6=(0,0,r)

ωi j
k (t)xi jk (t) +

∑

k: ci j
k
=(0,0,r)

ωi j
k (t)Si j

xk
(0, t)






, when σ(ai j(t)) = 1.

(2.4)
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Taking into a

ount the use of the sta
k memory, a transfer of the value ∆l p
k (t−1) with a unit delay

with ai j(t) = ai j(t− 1) > 0 will be exa
tly the transfer of training data from the future (one sta
k

of higher level), rather then from the past. Completely by analogy, we will 
hange a formula for the

weight 
oe�
ients ωi j
k (t+ 1) to update:

ωi j
k (t+ 1) = ωi j

k (t)−µ
(

1− (yi j(t))2
)

δi j(t)σ(ai j(t))

{

xi jk (t), if ci jk 6= (0, 0, r);

Si j
xk
(0, t), if otherwise.

(2.5)

At the same time, a formula for the ba
kpropagation 
oe�
ients ∆i j
k (t) will be (1.6), the same as in

standard model, as well as a formula for bias update bi j(t+1). For the neurons N i j
th r e with referen
e

inputs ei j , we will also add the sta
k memory Si j
e .

1. When σ(ai j(t)) = 0, we make writing to Si j
e :

∀m = 1,MaxM Si j
e (m, t+ 1) = Si j

e (m− 1, t), Si j
e (0, t+ 1) = ei j(t). (2.6)

2. When σ(ai j(t)) = 1, we make reading from Si j
e :

∀m = 1,MaxM Si j
e (m− 1, t+ 1) = Si j

e (m, t), Si j
e (MaxM, t+ 1) = 0. (2.7)

Formulas for 
orre
tion of 
oe�
ients δi j(t) of neurons N i j
th r e will be repla
ed by the following ones:

δi j(t) =



















(yi j(t)− Si j
e (0, t)) +

∑

l,p,k: l≤i

c
l p
k
(t)=(i,j,1)

∆l p
k (t− 1)



















. (2.8)

If a neuron N i j
th r e is allowed to have 
onne
tions to external data inputs Xr(t), then it will use

formulas (2.4) and (2.5), while otherwise standard formulas from model 2 are used.

As a result, all re
urrent neurons will have only one additional parameter:

� MaxM � depth of sta
k memory.

Without any fundamental di�eren
es a re
urrent mode 
ould be introdu
ed to all the other standard

neuron models with in
lusion of the sta
k memory. To prepare our re
urrent network for training

on m ≤ MaxM etalon values, one will have to supply this data values X(t), . . . ,X(t + m) with

orresponding referen
e values e(t), . . . , e(t +m), while holding the ai j(t) = . . . = ai j(t +m) = 0.
To 
omplete one full 
y
le of training, we will need to turn the training signal high and hold it for

an additional m time steps ai j(t+m+ 1) = . . . = ai j(t+ 2m) = 1.

� 3. Neurons with adjustable 
onne
tions

The general idea of our neural link adjustment is to remove those 
onne
tions that are almost

out of use and 
reate new 
onne
tions with the most a
tive neurons of the previous layers, provided

the training with 
urrent 
onne
tions 
an lead to a paralysis of weight 
oe�
ients or to a �u
tuation

of their values near the lo
al minimum.

Algorithm of a new link 
reation. On ea
h iteration t of the neuron N i j
...c we make the

following steps:

Step 1. Che
k if a neuron is unable to �x δi j(t) with 
urrent xi jk (t), even if it raises all the weight


oe�
ients almost to ωmax (we 
hoose 0.7ωmax as a 
ontrol value):

Ci j
new1

(t) = 1, if

∣

∣

∣

∣

∣

y(t)− ϕ

(

bi j(t)− sign(δi j(t))
∑

k

xi jk (t) 0.7ωmax

)∣

∣

∣

∣

∣

<
∣

∣δi j(t)
∣

∣ .
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If this event is dete
ted (Ci j
new1

(t) = 1) and the training signal is a
tive (ai j(t) = 1), then we will go

to step 2. Otherwise, we need to verify additionally that a sign of δi j(t) and δi j(t− 1) is di�erent,
while xi jk (t) and xi jk (t− 1) are almost identi
al:

Ci j
new2

(t) = 1, if δi j(t−1) δi j(t) < 0 and

∑

k

|xi jk (t)−xi jk (t−1)| < 0.1nxmax. (3.1)

If this event is dete
ted (Ci j
new2

(t) = 1) and the training signal is a
tive (ai j(t) = 1), then we will go

to step 2. Otherwise, we restart the algorithm and wait for a next iteration.

Step 2. Among all the 
onne
tions of our neuron N i j
...c, we are looking for an empty one: ci jk (t) =

= (0, 0, 0). If we managed to �nd some suitable k, then we will pro
eed to step 3. Otherwise, we

restart the algorithm and wait for a next iteration.

Step 3. With a probability Pdeep1 we will go to step 4. If a transition to step 4 was not 
arried out,

then we will sear
h for a suitable 
andidate yi−1 p
r for a new 
onne
tion from previous i− 1 layer of

a neural net. We will 
arry out this sele
tion a

ording to the following 
onditions:

� there is no 
urrent 
onne
tion to yi−1 p
r from N i j

...c: 6 ∃ ḱ : ci j
ḱ
(t) = (i− 1, p, r);

� among all the admissible 
andidates, we sele
t the maximum modulo: max |yi−1 p
r (t)|;

� if more than one yi−1 p
r was found, then we will 
hoose any random one of them.

If we managed to �nd some suitable p and r, then we will go dire
tly to the �nal step 5; otherwise,

we will go to step 4 �rst.

Step 4. If our neuron is N i j
...r c from a re
urrent layer, then with a probability Prec we will try to


reate a re
urrent 
onne
tion; otherwise, we will try to 
reate a deep 
onne
tion with some distant

neural layers. Among all the yl pr (l < i− 1 for a dire
t one and l ≥ i for a re
urrent one), we 
hoose
su
h one that the following 
onditions hold:

� there is no 
urrent 
onne
tion from N i j
...c: 6 ∃ ḱ : ci j

ḱ
(t) = (l, p, r) and (l, p) 6= (i, j);

� we sele
t the maximum modulo: max |yl pr (t− 1)| for a re
urrent one; max |yl pr (t) · 2−|l−i|| for
a dire
t

1

one;

� if more than one yl pr was found, then we will 
hoose any random one of them.

If we managed to �nd some suitable l, p, r, then we will go to the �nal step 5.

Step 5. For the 
hosen k and yl pr , we assume ci jk (t + 1) = (l, p, r) and perform an initialization:

ωi j
k (t+ 1) = ωmin, if δ

i j(t) ≤ 0, and ωi j
k (t+ 1) = −ωmin, if δ

i j(t) > 0.
Algorithm of a redundant link deletion. On ea
h iteration of a neuron we make the following

steps:

Step 1. Che
k if a neuron N i j
...c has |ωi j

k | lower than ωmin during to iterations:

Ci j
del k(t) = 1, if

∣

∣

∣

∣

∣

∣

∑

t−to≤τ≤t

(

|ωi j
k (τ)| − ωmin

)

· σ(ai j(τ))

∣

∣

∣

∣

∣

∣

< 0.

Step 2. Delete all 
onne
tions with Ci j
del k(t) = 1, assuming ci jk (t+1) = (0, 0, 0). An ex
eption to

this rule will be a 
onne
tion to the external data sour
e ci jk (t) = (0, 0, r), and also the previously

deleted one ci jk (t) = (0, 0, 0), for whi
h our algorithm of a new link 
reation has found l, p, r on the


urrent iteration ci jk (t+ 1) = (l, p, r).
Compared with previous models, we add the following parameters:

� xmax � maximum absolute value for input data of the neuron;

1

We use the fa
tor 2
−|l−i|

in order to ensure the priority 
reation of links with a 
lose layers.
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� to � 
ontrol time for an old link deletion;

� Pdeep1 � probability of 
reating a deep link bypassing a previous layer;

� Prec � probability of a new deep link to be a re
urrent one.

We 
an suggest the following general guidelines for sele
ting these parameters. The 
hoi
e of a

probability Prec very mu
h depends on the desired topology of the neural network. Values of Prec >
0.5 are sele
ted if the network has a hybrid ar
hite
ture and prefers 
reating re
urrent 
onne
tions,

while Prec < 0.5 is 
hosen if, on the 
ontrary, it is preferable to 
reate deep dire
t links. For a Pdeep1

probability, large values should not be 
hosen, preferably Pdeep1 ≤ 0.2. The 
ontrol time to should

be 
hosen small enough to ≈ 3 . . . 5, be
ause otherwise a neuron may fail to reorganize 
onne
tions

in time, whi
h 
an lead to a paralysis of weight 
oe�
ients. The 
hoi
e of xmax depends heavily on

how input data of neurons was normalized. Most often, we assume xmax = 1.
For the optimal link 
reation, it is advisable to alternate a supply of training examples in all possible

variants of their sequential submission to a neural network. In theory, an algorithm with adaptive


onne
tion readjustment 
an solve the problem with over�tting in deep neural networks. The idea is

that it should start its operation almost 
ompletely devoid of any 
onne
tions and with a maximally

generalizing output fun
tion. New links are added during the 
ourse of training, whi
h leads to

a gradual de
rease in a degree of generalization of training examples.

� 4. Examples of building a neural network system

All the neural networks from our examples will have:

� external data inputs X(t) = (X1(t), . . . ,Xn(t));

� external data outputs Y (t) = (Y1(t), . . . , Ym(t));

� referen
e inputs E(t) = (E1(t), . . . , Em(t));

� a general training 
ontrol signal a(t);

� a general dete
tion of lo
al minimum ξ(t);

� a general dete
tion of paralysis p(t).

The training 
ontrol signal a(t) will be applied to all the neurons N i j
from our network as

ai j(t) = a(t). The general dete
tion signals ξ(t) and p(t) will be 
onstru
ted with a logi
al dis-

jun
tion ξ(t) = ∨ξi j(t) and p(t) = ∨pi j(t).

Example 1. Long sort-term memory network with integrated training. Our LSTMIT (LSTM +

Integrated Training) network will 
onsist of 9 layers (j = 1,m):

1. N1 j
th r � re
urrent input layer. A

ording to our notation this neurons will use equations from

model 2 partially repla
ed by (2.1)�(2.5).

2. N2 j
σ r � re
urrent input gates. They will use equations from model 1 
hanged by analogy to

(2.1)�(2.5).

3. B3 j
∗ � multiplier blo
ks (see model 9).

4. N4 j
σ r � re
urrent forget gates. They are 
ompletely analogous to input gates.

5. B5 j
∗ r � re
urrent multiplier blo
ks. Will use equations of model 9 
hanged by analogy with

(2.1)�(2.3)

6. B6 j
+ � summation blo
ks (see model 10).

7. B7 j
th � tangent a
tivation blo
ks (see model 11).

8. N8 j
σ r � re
urrent output gates. They are fully analogous to gates of layer 2 and 4.

9. B9 j
∗ re � re
urrent output multiplier blo
ks with referen
e inputs e9 j(t) = Ej(t). They will use

equations of model 10, 
hanged by analogy with (2.6)�(2.8).

Sin
e we have already des
ribed the operation of all the models 
onsidered, it would be su�
ient

for a full des
ription to de�ne only stati
 
onne
tions ci j for all the layers.
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� Gate and input layers: c1 jk = c2 jk = c4 jk = c8 jk =

{

(0, 0, k), if k = 1, n,

(9, k, 1), if k = n+ 1, n+m.

� Multiplier blo
ks B3 j
∗ of layer 3: c3 j1 = (1, j, 1) and c3 j2 = (2, j, 1).

� Multiplier blo
ks B5 j
∗r of layer 5: c5 j1 = (4, j, 1) and c5 j2 = (6, j, 1).

� Summation blo
ks B6 j
+ of layer 6: c6 j1 = (3, j, 1) and c6 j2 = (5, j, 1).

� Tangent blo
ks B7 j
th of layer 7: c7 j1 = (6, j, 1).

� Multipliers B9 j
∗re of the last layer: c

9 j
1 = (7, j, 1) and c9 j2 = (8, j, 1).

To prepare LSTMIT network for training on m ≤ MaxM etalon values, we will have to supply

this data values X(t), . . . ,X(t +m) with 
orresponding referen
e values E(t), . . . , E(t +m), while
holding the 
ontrol signal low: a(t) = . . . = a(t+m) = 0. To 
omplete one full 
y
le of training we

will need to turn the training signal high and hold it for an additional m time steps a(t+m+ 1) =
= . . . = a(t+ 2m) = 1.

Neurons with adjustable 
onne
tions 
ould be used for models, 
omposed of many LSTMIT networks.

However, this should be done only to LSTMIT networks without external data 
onne
tions and only

to their �rst layers, 
hanging N1 j
th r to N1 j

th r c and assuming Pdeep1 = Prec = 0. At the initial time

at least half of the dire
t links of this layer N1 j
th r c should be disabled to suppress the over�tting.

In addition to this, we will also have to forbid a deletion of re
urrent links, in order to prevent

a disruption of a base LSTM logi
.

Remark 2. The main di�eren
e of our LSTMIT from 
lassi
al LSTM is in the introdu
tion of

the sta
k memory Si j
xk

for n external data inputs of N1 j
th r, N

2 j
σ r, N

4 j
σ r and N8 j

σ r, as well as the sta
k

memory S9 j
e for external referen
e inputs of B9 j

∗ re. It is important to note, that for a model 
omposed

of many 
onsequential LSTMIT networks a sta
k memory is not required for inner LSTMIT without

external 
onne
tions.

Example 2. Radial basis fun
tions with integrated training. This RBFIT network will 
onsist

of three layers (j = 1,m):

1) N1 j
Ed � Eu
lidean distan
e neurons;

2) B2 j
norm � Gaussian a
tivators;

3) N3 1
id e � single linear neuron with referen
e input e(t).

All stati
 
onne
tions are very simple and straightforward:

� for all the input neurons N1 j
Ed we have: c1 jk = (0, 0, k), where k = 1, n;

� Gaussian a
tivators B2 j
norm are linked dire
tly: c2 j1 = (1, j, 1), where j = 1,m;

� N3 1
id e is 
onne
ted to all the se
ond layer: c3 1k = (2, k, 1), where k = 1,m.

It is possible to use N3 1
id c e with adjustable 
onne
tions instead of N3 1

id e. In this variant we will


onne
t it at the initial time to at least half of the neurons from layer 2, and assume Pdeep1 = Prec = 0.
As a result, our network will start with a high degree of input generalization and will gradually

de
rease it during a training pro
ess.

Example 3. Re
urrent radial basis network for 
haoti
 series (j = 1,m):

1) B1 j
+ r � re
urrent summation blo
ks;
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2) N2 j
Ed � Eu
lidean distan
e neurons;

3) B3 j
norm � Gaussian a
tivators;

4) N4 1
th r e � hyperboli
 tangent neuron with referen
e input e(t).

This network has only one data input X1(t), and all stati
 
onne
tions are very simple:

� for the �rst re
urrent layer c1 j1 = (0, 0, 1) and c1 j2 = (4, 1, 1) for all j = 1,m;

� se
ond layer neurons N2 j
Ed are linked dire
tly: c2 j1 = (1, j, 1), where j = 1,m;

� Gaussian blo
ks B3 j
norm are also linked dire
tly: c3 j1 = (2, j, 1), where j = 1,m;

� N4 1
th r e is 
onne
ted to all the third layer: c4 1k = (3, k, 1), where k = 1,m.

The sta
k memory S1 j
x1
(t) for data inputs will be used only for blo
ks B1 j

+ r and the sta
k memory for

referen
e inputs S4 1
e (t) would be used only for a single neuron N4 1

th r e. A training algorithm for the

approximation of 
haoti
 sequen
e Y (0), Y (1), . . . , Y (n) will be 
omposed of two steps. At �rst we

will send X1(t0) = Y (0), X1(t0 + τ) = 0 to data inputs and E1(t0) = Y (1), E1(t0 + τ) = Y (τ + 1)
to referen
e inputs, while holding the training signal low: a(t0 + τ) = 0 for τ = 1, n − 1. After that
we will set the training signal to one and wait additional n 
y
les: a(t0 + τ) = 1 for τ = n, 2n.

It is possible to use N4 1
th r c e with adjustable links instead of N4 1

th r e. In this variant we will 
onne
t

it at the initial time to only one neuron from layer 2, and assume Pdeep1 = Prec = 0. As a result

parallel approximation bran
hes will be added only when they are ne
essary, whi
h will gradually

in
rease the probability of su

essful training.

Example 4. Convolutional neural networks CONVIT with integrated training. In base variant

this network 
onsists of:

1) N1 j
Conv � 
onvolutional layer, where j = 1, n1 and all neurons have m1 outputs;

2) B2 j
ReLu � linear re
ti�
ation layer, where j = 1, n1m1;

3) B3 j
Pool � pooling layer, where j = 1, n1m2 and m2 ≪ m1;

4) N4 j
σe � output sigmoid layer, where j = 1, n1m3 and m3 ≪ m2.

In general 
ase, we assume that the input data is Il w h in the form of a 3D matrix (h = 1 for

mono
hrome and h = 3 for 
olour). We transform this three-dimensional matrix to a ve
tor form

a

ording to a standard algorithm:

Xα+l(β−1)+lw(γ−1) = iαβγ , α = 1, l β = 1, w γ = 1, h.

In addition to this, we will need to introdu
e the following three auxiliary fun
tions for working with

indi
es (x rest y is the remainder of x divided by y; [x] is the integer part of x):

θ(x, y) =

{

y, if y|x,
x rest y, if otherwise;

λ+(x, y) =

{

[x/y] , if y|x,
[x/y] + 1, if otherwise;

λ−(x, y) =

{

[x/y]− 1, if y|x,
[x/y] , if otherwise.



Neural networks with dynami
al 
oe�
ients 271

COMPUTER SCIENCE 2018. Vol. 28. Issue 2

We assume that 
onvolutional neurons N1 j
Conv will read the input data with a sliding window of

size f · f from ea
h sli
e of a three-dimensional matrix Il w h. Also, we restri
t that this window

will move along the image with a unit step st = 1. After a 
onvolution operation, we will get

m1 = l1 · w1 = (l − f + 1) · (w − f + 1) data at the outputs of ea
h 
onvolutional neurons. Then

these values will pass through the linear re
ti�
ation blo
ks and enter the pooling layer. We 
hoose

a pooling window to be of size g · g, whi
h �nally yields m1 = g2m2 = g2 l2 w2 and l2 = l1/g,
w2 = w1/g. In this 
ase, the organization of network 
onne
tions 
an be 
arried out as follow:

� Every N1 j
Conv will have c1 j

(α−1)m1+β
(t) = (0, 0, k), where α = 1, f2h, β = 1,m1 and

k = θ(α, f) + l
{

λ+(α, f)− 1
}

+ lw
{

λ−(α, f2)
}

+ l {θ(β,w − f + 1)− 1}+ λ−(β,w − f + 1).

Su
h large number of terms is responsible for �ve types of transitions when reading data with

a sliding window f · f . The term θ(α, f) is responsible for a movement along a separate 
ol-

umn of the sliding window, l {λ+(α, f)− 1} is in
luded for a transition between this 
olumns,

and the term lw
{

λ−(α, f2)
}

for a transition between separate h 
olour layers. By analogy,

l {θ(β,w − f + 1)− 1} is responsible for a horizontal shift of the sliding window and the �nal

term λ−(β,w − f + 1) for its verti
al shift.

� Se
ond layer B2 j
ReLu is linked dire
tly c2 j1 = (1, α, β), where:

j = (α− 1)m1 + β and α = 1, n1, β = 1,m1.

� For B3 j
Pool we have c

3j
k = (2, ζ, 1), j = (α− 1)m2 + β and α = 1, n1, β = 1,m2,

ζ = (α− 1)m1 + θ(k, g) + l1
{

λ+(k, g) − 1
}

+ g l1 {θ(β,w2)− 1}+ g λ−(β,w2), k = 1, g2.

The �rst term in this expression (α−1)m1 is responsible for a transition between n1 information


hannels (from n1 neurons of the �rst layer). The next term θ(k, g) denotes the movement

along the 
olumns of the sliding window g · g. By analogy, g l1 {θ(β,w2)− 1} is responsible for
a horizontal shift of the sliding window and g λ−(β,w2) is used for its verti
al shift.

� The layer N4 j
σe is 
onne
ted as: c4jk = (3, k, 1) and k = 1, n1m2, j = 1, n1m3.

For a 
onsidered basi
 ar
hite
ture of a 
onvolutional network, ea
h layer is, in fa
t, performing some

manipulation over three-dimensional data. In parti
ular, the �rst layer has h · l ·w input values, and

outputs n1 ·l1 ·w1 values to the next layer, whi
h are redu
ed by pooling layer to n1 ·l2 ·w2. The main

option of s
aling su
h network is to 
onne
t su

essive layers of pooling and 
onvolution. In this 
ase,

the 
onvolutional layers will in
rease the depth of the three-dimensional data h < n1 < n2 < . . .,
and, at the same time, will redu
e the length and width of data l > l1 > . . . and w > w1 > . . .,
while the pooling layers will only redu
e the length and width without altering the depth of data.

It is possible to use N4 j
σ c e with adjustable 
onne
tions instead of N4 j

σ e. In this variant we will


onne
t it at the initial time to at least half of the neurons from layer 3, and assume Pdeep1 = Prec = 0.
As a result, a network will start with a high degree of input generalization and will gradually de
rease

it during the training pro
ess. The 
omparison with dropout algorithm from [17℄ on MNIST data

set is presented in a table below. The overall time for a training of 
onvit networks was 
onstraint

to not ex
eed the 
orresponding training time for dropout networks for more then 20%.

Considering the high e�e
tiveness of dropout algorithm we 
an also add its support in our neuron

models. For this we will have to add some variables to store a dropout state:

� ri j(t) = (ri j1 (t), . . . , ri jk (t)) � dropout state values for outputs of N i j
... (t).
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Table 1. Comparison with dropout networks on MNIST data set

Method Unit type Ar
hite
ture Error % Time

Dropout NN Logisti
 3 layers, 1024 units 1.35 t1
Convit NN Logisti
 3 layers, 1024 units 1.38 ≤ 1.2 t1
Dropout NN + max-norm RELU 3 layers, 1024 units 1.06 t2
Convit NN + max-norm RELU 3 layers, 1024 units 1.1 ≤ 1.2 t2

Updating this variables will be a

ording to a standard rule (pi j is in
luded in neuron parameters):

∀ i, j, l ri jl (t) ∼ Bernoulli(pi j).

For example, if we would like to in
orporate dropout in model 1, then we will have to 
hange only

the formulas for the output yi j(t) and general 
orre
tion fa
tors δi j(t):

yi j(t) =







ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

, if ai j(t) = 0;

ri j(t) · ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

, if ai j(t) = 1.

δi j(t) =















(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j
σe ;

∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t) ri j(t), for neurons without ei j ; denote them by N i j

σ .

The integration of dropout in all the other neuron models will follow a similar s
heme with a sole

ex
eption of 
onvolutional neurons. For them, we will have to use a dot produ
t for ve
tor output

yi j(t) and also in
orporate dropout 
oe�
ients ri jp (t) in formula (1.8) as:

ωi j
k (t+ 1) = ωi j

k (t)− µ
∑

m

xi jkm



















(yi jm (t)− ei jm (t)), for N i j
Conv e;

∑

l1,l2,p:

c
l1 l2
p (t)=(i,j,r)

∆l1 l2
p (t) ri jm (t), for N i j

Conv.

Example 5. Multilayer per
eptron PERCIT with integrated training and link adjustment. In

a basi
 
on�guration, this neural network 
onsists of k layers:

1. N1 j
σ � input layer, where j = 1, n1 and all neurons have n data inputs.

2. N2 j
σ c � layer with adjustable links, where j = 1, n2 and neurons have n1 inputs.

k − 1. Nk−1 j
σ c � adjustable layer, where j = 1, nk−1 and all neurons have nk−2 inputs.

k. Nk j
σ c e � output layer, where j = 1, nk and all neurons have nk−1 inputs.

The initial 
onne
tions will be organized as follow:

� all neurons N1 j
σ are 
onne
ted to all the external inputs c1 jk = (0, 0, k), k = 1, n;

� for all other layers, we set 75% of all 
onne
tions to be blank ci jk = (0, 0, 0), and other 25%

to be linked to random neurons from the previous layer.

For the adjustable neurons, we set the following parameters: the probability of a re
urrent


onne
tion Prec = 0, the probability of 
reating a deep link bypassing the previous layer Pdeep1 = 0.1,
the 
ontrol time for deleting the old links to = 4 and the maximum absolute value for input data

xmax = 1. For deep neural networks, one of the main problems of training them with gradient

methods is the vanishing gradient problem. However, if we allow the 
reation of deep links with a

10% probability, then we will signi�
antly redu
e this e�e
t by passing through the error via several

layers.
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Remark 3. For the optimal 
reation of new 
onne
tions, it is advisable to alternate the sup-

ply of training examples in all possible variants of their sequential submission. In this 
ase the


ondition (3.1) will be used to its full potential.

Results and Dis
ussion

An important methodologi
al advantage of our approa
h is standardization with the development

of a universal general formalism for a broad range of neuron models. First of all, this greatly simpli�es

an integration of any new models with other a
tivation fun
tions or aggregation of the input data.

Se
ondly, our approa
h enables us to 
onstru
t a hierar
hi
al networks Nnet1, . . . , Nnetk, where
ea
h Nnetj is 
ontrolling the training pro
ess of the next network Nnetj+1. For example, the �rst

network Nnet1 
ould be trained to spot some basi
 visual stimuli in video data, whi
h will be used

to issue training 
ommand for a mu
h bigger se
ond network Nnet2. On its part this network Nnet2

ould be trained with the assistan
e of the Nnet1 to spot a more 
omplex training stimuli, maybe

not only in the video data, but in the additional audio data supplied (like verbal 
ommand: �train

please�) and learn to asso
iate the 
orresponding data and issue the training signal for the next one

Nnet3, and so on.

All of the basi
 neuron models 
onsidered 
an be easily generalized by swit
hing from standard

sto
hasti
 gradient des
ent to a more advan
ed algorithm. For example, one 
an integrate sto
hasti


des
ent with momentum in that models, or sto
hasti
 des
ent with adaptive momentum estimation.
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�àññìàòðèâàþòñÿ èñêóññòâåííûå íåéðîíû, ÷üè âåñîâûå êîý��èöèåíòû áóäóò èçìåíÿòüñÿ ïî ñïåöèàëü-

íîìó çàêîíó, îñíîâàííîìó íà èíòåãðèðîâàííîì â èõ ìîäåëè îáðàòíîì ðàñïðîñòðàíåíèè. Äëÿ ýòîãî êî-

ý��èöèåíòû ïîãðåøíîñòè îáðàòíîãî ðàñïðîñòðàíåíèÿ ââîäÿòñÿ â ÿâíîì âèäå âî âñå ìîäåëè íåéðîíîâ

è îñóùåñòâëÿåòñÿ ïåðåäà÷à èõ çíà÷åíèé âäîëü ìåæíåéðîííûõ ñâÿçåé. Â äîïîëíåíèå ê ýòîìó ââîäèò-

ñÿ ñïåöèàëüíûé òèï íåéðîíîâ ñ ýòàëîííûìè âõîäàìè, êîòîðûå áóäóò âûñòóïàòü â êà÷åñòâå îñíîâíîãî

èñòî÷íèêà ïåðâè÷íîé îöåíêè ïîãðåøíîñòè äëÿ âñåé íåéðîííîé ñåòè. Â ïîñëåäíþþ î÷åðåäü ââîäèòñÿ êîí-

òðîëüíûé ñèãíàë äëÿ çàïóñêà îáó÷åíèÿ, êîòîðûé áóäåò óïðàâëÿòü ïðîöåññîì ïåðåäà÷è êîý��èöèåíòîâ

ïîãðåøíîñòè è êîððåêòèðîâêîé âåñîâ íåéðîíîâ. Äëÿ ðåêóððåíòíûõ íåéðîííûõ ñåòåé äåìîíñòðèðóåòñÿ

êàê ïðîâåñòè èíòåãðàöèþ îáðàòíîãî ðàñïðîñòðàíåíèÿ âî âðåìåíè â èõ �îðìàëèçì ñ ïîìîùüþ ñòåêîâîé

ïàìÿòè äëÿ âíåøíèõ âõîäîâ íåéðîíîâ. Äîïîëíèòåëüíî ê ýòîìó ðàññìàòðèâàþòñÿ ïðèìåðû êàê �îðìàëè-

çîâàòü â ðàìêàõ äàííîãî ïîäõîäà òàêèå ïîïóëÿðíûå íåéðîííûå ñåòè, êàê ñåòè äîëãîé êðàòêîâðåìåííîé

ïàìÿòè, ñåòè ðàäèàëüíî-áàçèñíûõ �óíêöèé, ìíîãîñëîéíûå ïåðöåïòðîíû è ñâåðòî÷íûå íåéðîííûå ñå-

òè. Îñíîâíûì ïðàêòè÷åñêèì ñëåäñòâèåì äàííîãî ïîäõîäà ÿâëÿåòñÿ âîçìîæíîñòü îïèñàíèÿ íåéðîííûõ

ñåòåé ñ ïåðåñòðàèâàåìûìè ñâÿçÿìè íà îñíîâå èíòåãðèðîâàííîãî àëãîðèòìà îáðàòíîãî ðàñïðîñòðàíåíèÿ.
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