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We consider artificial neurons which will update their weight coefficients with an internal rule based on
backpropagation, rather than using it as an external training procedure. To achieve this we include the
backpropagation error estimate as a separate entity in all the neuron models and perform its exchange
along the synaptic connections. In addition to this we add some special type of neurons with reference
inputs, which will serve as a base source of error estimates for the whole network. Finally, we introduce
a training control signal for all the neurons, which can enable the correction of weights and the exchange
of error estimates. For recurrent neural networks we also demonstrate how to integrate backpropagation
through time into their formalism with the help of some stack memory for reference inputs and external
data inputs of neurons. Also, for widely used neural networks, such as long short-term memory, radial
basis function networks, multilayer perceptrons and convolutional neural networks, we demonstrate their
alternative description within the framework of our new formalism. As a useful consequence, our approach
enables us to introduce neural networks with the adjustment of synaptic connections, tied to the integrated
backpropagation.
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Introduction

Backpropagation is one of the most successful and widely used algorithms for the training of neu-
ral networks. It has been adapted for such diverse models as multi-layer perceptrons, radial basis
function networks and convolutional neural networks [1-3]. Moreover, its modification of backprop-
agation through time (BPTT) has been successfully applied for the training of specialized recurrent
neural networks, such as long short-term memory [4,5]. The range of applied tasks that can be solved
by these models is also quite diverse. For example, convolutional networks are used [6,7] for image
recognition, networks of radial basis functions are used for time series prediction and control systems
construction [8], networks of long short-term memory are used for a handwritten text recognition
and generation [9, 10], machine translation [11], speech synthesis and recognition [12,13], and for
a video processing in conjunction with convolutional networks [14].

However, the implementation of backpropagation is an external training procedure in relation
to the models considered. Therefore, if we want to build a network with dynamical coefficients (see
examples in [15]) on the basis of this algorithm, we will need to include it directly into the core
formalism of standard models of neurons. This entails the introduction of backpropagation error
estimates A(t) as some separate entities, as well as special neurons N, with reference inputs e(t)
and a training control signal a(t) for our network. In the case of recurrent networks we will have to
add stack memory S, for external data inputs and S, for reference inputs of neurons.

As a result, our networks could be viewed as a special type of reprogrammable finite automata.
The first consequence is an ability to construct hierarchical networks, which will control the training
process for one another in ascending order. As a simple example one can consider two networks:
the first is trained to spot some special stimuli in the input data to activate the training of a much
bigger second one and control which parts of data will be sent to its data inputs and which to its
reference inputs. Another important consequence would be the ability to introduce neural networks
with the adjustment of synaptic connections (see the review in [16]) on the basis of integrated
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backpropagation. In theory the ideal connection adjustment algorithm should prevent the overfitting
of data by deleting all the unused connections and creating new links only when necessary.

§ 1. The description of basic models

A neuron number j from layer number i will be denoted as N*/. Subscripts for N*/ will be
variable-length strings: ¢,r,c,e, where ¢ is an activation function, r denotes a recurrent mode,
c identifies a mode with connection adjustment, and e denotes the presence of reference input
for that neuron. In the case of a non-recurrent neuron with static connections and without the
reference input, only ¢ will remain in this string. For example, the notation Ny’ will specify an
ordinary neuron with a sigmoid activation function. In the general case we will introduce neurons
NiJ in our models as:

NI () = (€9(0), 79 (6), 37 (), b7 (1), 97, 0,579 (1), 0" (2), B (1), 577 (1), £ (1), 29 (1))
o c(t) = (c(t),...,c (t)) — connections to other layers and external inputs.

1. If the input & is not connected to anything, then ¢’ (t) = (0,0,0).
2. If the input k is connected to the external input X,,(¢), then ch (t) = (0,0,m).

3. If the input k is connected to the output r of a neuron N'™, then czj(t) = (I,m,r).
o TH(t) = (z'7(t),..., 2} (t)) — data input values of N'%(t).
o W(t) = (wW(t),...,wi (t)) — weight coefficients of N*ZL(t).
e bii(t) — bias of neuron N'%(¢).
e iJ — aggregation function of N'L(t), for example (@, %) = 3wy - T, + b.
e ' — activation function of N'%(t), for example ¢(z) = th(z).
o G(t) = (5(0), ...y (£)) — output values 7 (1) = (6@ (1), (1))).
e a'J(t) — input signal of training activation for N”e(t)
. Zij(t) = (AY(1),..., AL (t)) — coefficients for backpropagation from N'Z(t).
e p'i(t) — paralysis indicator for weights of N'%(¢).
e £i9(t) — local minimum indicator of N'%(t).
o i(t) = (e}(t),..., e} (t)) — optional reference inputs for N'%(t).
Remark 1. For data inputs of neurons, four modes of operation are allowed:
1) when cij(t) = (0,0,0), we will have the zero input xzj(t) =0

2) when ¢/ () = (0,0,m), we will have external connection z}/ (t) = X, (t);

3) for ¢/ (t) = (I,m,r) and I < i, we will have an ordinary link 1/ (t) = 4™ (t);

4) for czj(t) = (I,m,r) and | > i, we will have a recurrent one xzj(t) =ylm(t —1).
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Model 1. Neurons N7 and N2 with sigmoid activation ¢?7(2) = 1/(1 +e-22=). The derivative
of this function is: 9¢/o: = 2ap(z)(1 — p(z)). As an aggregation function we will use a weighted
summation with the bias wij (W, T) = > wk -z +b, which as a result gives us a standard formula for

yI(t) = ' (Zw (t)-x ( ) + b (¢ )) Finally, general correction factors §°7 (¢) will be calculated:

(y'9(t) — €' (t)), for neurons with e'/; denote them by N.J;
§(t) = Z Alp(t), for neurons without €'/; denote them by N(f,j. (1.1)

7p7

()= (J, )

The application of formula (1.1) implies the explicit inclusion of weights wzj (t) into all of the back-
propagation coefficients Azf (t), which yields:

AV (1) =209 (1) (1 =y (0) 89 (1)w (1) o0 (1). (12)

The activation of training will be applied with a positive training signal a’/(t) > 0. For the adjust-
ment of weights we will use a standard formula with an added o(a®(t)):

Wl (1) = w/ (1) = 2uay’ () (1-y(1) 69(1) 2}/ (1) o (a™ (1)). (1.3)

Assuming xzj(t) =1, we will get a formula for bias adjustment b7 (¢ + 1) from (1.3).
We assume that a paralysis of weights w,’(t) occurs when 70% of them reach a threshold value

Wmax-
1, if Z |w t)| > 0.7 - wmax - 1,
pl(t) = k=T,n (1.4)
0, if otherwise.
In this expression, n is the number of neuron inputs xilj R ,xflj. Formulas for detecting a local

minimum of w,ij () will also use this number, but the main criteria for them will be a low amplitude
oscillation of Aw,” (t) = w;” (t +1) — w,’(¢):

Lot Y | Y w4+ ) —w ()] <wminon- [[ olai (7)),

ij
§(t) = k=In |tT=t—1¢,1 T=t—te t

(1.5)
0, if otherwise.
As a result, our basic model of sigmoid neuron will have only six parameters:
e n — number of data inputs;

® Wmax — maximum absolute values of weights w,”;

Wmin — minimum absolute values of weights w;”;

te — local minimum detection time;
e 1 — training rate of neuron;
e o — sigmoid stiffness (o > 1).

Model 2. Neurons N&f and Nti}fe with hyperbolic tangent as an activation function ¢*/(2) = th(z).
We will use a weighted summation with the bias ¢/ (@, T) = Y wy -7 +b as an aggregation function
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¥ just as in model 1. The derivative of the activation function will be ¢/o: = (1 — ¢©?(2)) which
leads to the replacement of formulas (1.2) and (1.3) by

AJ (1) = (1= ("7 (1)?) 0" (t)wy (t) oa’ (1)), (1.6)
W+ 1) = wi (1) — p (1= (y79(1))%) 69(8) 2l (1) o (a™ (1)) (1.7)

Bias update b'J(t + 1) is a special case of (1.7) and can be obtained by a simple substitution

x;j (t) = 1. Moreover, the formulas for calculating §°7(¢), p*/(t), and £¥7(¢) are completely analogous
to (1.1), (1.4), and (1.5).

Model 3. Neurons NN, d] and IV, ﬁ] with a linear activation function ¢?/(z) = 2. Just as in the first

two models, we will use the standard aggregation function ¢'/(w,Z) = Y wy - 21, + b. Formulas for

8" (t), P (t ), and &' (t) will be analogous to (1.1), (1.4), and (1.5). In turn, an expression for A}’ (t)

and wk I(t + 1) considering the linear ¢/ will be replaced by
AY (1) = 59 (1)w (1) o (e (1),

Wi (E+1) = wy (1) — 0 (8) 2 () o (a' (2)).

Model 4. Neurons Né{l and Néil . for the calculation of Euclidean distance, which use ¢'/(z) = /z
as an activation function and ¢/ (@, T) = > (w — 2x)? as an aggregation function. As a result, an

output value for them is '/ (t) = \/Z <w2] (t) — ) (t)) . General correction factors 6°7(t) will be:

§(y”(t) —¢'’(t)), for neurons with e'/; denote them by Ny ;

§'(t) = Z Aip (t), for neurons without e'?; denote them by N]f]ﬁl
l,p,k:
e’ ()=(i-i1)
Taking into account a special aggregation function, we will have the following formula for backprop-
agation coefficients A} J (t):

A1) = 59@) - (w () = 2 () - ola™ (1) /5 ().
Finally, a formula for weight coefficients w,ij (t 4+ 1) will be updated as follow:
w%+n=%mwnwAWA

and N%J

Model 5. Convolutional neurons N2/ Cony e

Conv

T (t) = <xlﬁ (t),. x%n(t)), vector output 7'/ (t) = <yij(t), . ,y,@{(t)) and weighted summation

with linear activation ¢?7(z) = 2, matrix input

as an aggregation wlf(w,x) = (D Wk Tp1,.--5 ) Wk - Tm)- This variant will yield as its output
the dot product of input data with the kernel of the weight coefficients @'/ () = (w!7(t),...,w (£)).
Thus, the final output values would be

70 = (570l 0) = | 2 W Ori 0. 3 w00

k=I,n k=1,n
As a result, general correction factors 6°7(t) will be:

Z(y“(t) —€lJ(t)), for neurons with €7; denote them by Né{mve;

6"I(t) = Z Z Azp(t) for neurons without €/; denote them by N/

Conv*
r 7p7
i ()= ( 1,5,7)
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We have used a double range of indices for the inputs z¢/(t) = (2}/(t),. .. ,xl}ﬂ}b(t)), which made it
quite convenient to describe the aggregation operation. However, the application of a similar scheme
for @7 (t) and A" (t) would break the compatibility with other neuron layers, which use the notation
of models 1-4. As a result, we will represent them as vectors ¢ (t) = (ci/(t), ..., cllm(t)) and

Zij(t) = (Aij (t),... ,Afljm(t)), while binding them with inputs 77 () (k1 = 1, and ks = 1,m):
e when in the disconnected mode céglil)mMQ =(0,0,0) — xzjb =0;

e for the external input cz(gl =(0,0,7) — xgb (t) = X,.(t);

71)m+k2
e in the standard mode czgrl)mMQ =(l,p,r) — x%,@ (t) = yiP(t) (1 <i);
e in the recurrent mode c( ks = =(,p,7r) — a:;c]l,@ (t) = ylrp(t - 1) (I >1).

For backpropagation coefficients, we will have the corresponding formula:

Al

(k1— 1)m+k2( )= 6“( t) - wkj(t) J(aij(t))’ where k1 = 1’—” and ko =1, m.

We will not be able to use general correction factors §°/(t) in the pure form for weights coefficients,
as a result our formula for their update would be quite complicated:

(Y (t) — el (t)), for N

Conv e’

G+ =wf O - pd el DD AR, for N, (1.8)

l1,l2,p:
et 2 (t)=(i.4.r)

All other formulas for p*/(t) and &%/ (t) would be the same as in model 1.
Model 6. Linear rectification blocks BR]eLu and BR]eLu . with an activation function ¢ (z%J(t)) =
= max(0, 2/ (t)). We do not call this blocks of artificial neurons, because they do not have weight

coefficients w'/(¢) and an aggregation function. As a smooth approximation of a max(0, z) one can

. d 1
take ¢'J(2) ~ (1/2a)log(1 + €2*%), which has the following derivative: a—i ~ e General

correction coefficients 6°7(t) are calculated by a formula similar to (1.1), while the backpropagation
coefficient A}’ (t) is

AP (1) =67 (1) - o(a (1)) / (14720 0)).

Model 7. Pooling layers By | and BY
pling as an aggregation funct1on (i (t)) = max(x' (t), ..., 24 (t)). General correction coefficients

Poole With a linear activation function ¢(z) = z and subsam-

will be calculated similarly to formula (1.1), while for the backpropagation coefficients Azj(t) we
will have

0, if otherwise.

A (1) = {5”'(75) ca(a’(t), i P(a'i(E) = ! (1),

Model 8. Gaussian blocks Brl., and Bnorme with the normal activation function cp ( ) = e~ B

and only one single data input. The derivative of this function is g_go = —283/log(B) — log(p(2))).
z

As a result, for a single backpropagation coefficient Allj (t) we will have the followmg formula:

AV (1) = ~28y" (1) log(8) — log(y (1)) 8 (1) o (a' (1)),

General correction coefficients 6°7(t) will use the same formula as in (1.1).
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Model 9. Multiplication blocks BY and Bije with two data inputs xij and xéj , a linear activation
¢(z) = z and an aggregation function ¢ (x1,z2) = z - £9. General correction coefficients §%7(¢) will
use formula analogous to (1.1) and the backpropagation coefficients:

AY(8) = 89() - a5’ (1) - o (a’ (1), AY (1) = 8(t) - 2y (1) - o(a' (1)),

Model 10. Summation blocks Bij and Bfe with two data inputs xilj and xéj , a linear activation
¢(z) = z and an aggregation (1, 72) = o1 + x3. General correction coefficients 6?7 (¢) will use a
formula analogous to (1.1) and the backpropagation coefficients

AV (1) = a(a'(1))01(1).

Model 11. Tangent activator blocks Béﬁ and Bég . With a single input and hyperbolic tangent as
an activation function ((z) = tanh(z). General correction coefficients §°7(¢) will use a formula
analogous to (1.1) and the backpropagation coefficients

AJ(8) = (1= (y7 (1)) a(a (1)) 677 (t).
§ 2. Recurrent neurons with an integrated stack memory

For recurrent neurons without reference input €/(t), we will use the following scheme:
NI () = (70,79, 5 (0,79 (1), 69 (1), 97,90, 79 (1), a9 (8), B (1), 91 (1), €7 (1))

In this expression we introduce a stack memory S_”( t) for those data inputs of neurons, which are

connected to an external input source: ¢;’(t) = (0,0,r), =}, I(t) = X,(t). The stack memory S_xij(t)
will be a function according to a standard algorithm.
1. When o(a’(t)) = 0, we make writing to S%/ for all k, if CZ]( ) =1(0,0,7) and r # 0:

Vm =1, MaxM S;i(m,t +1)= S;i(m - 1,1), S”(O t+1)= xk I(t). (2.1)

2. When o(a’/(t)) = 1, we make reading from S5/ for all k, if czj(t) = (0,0,r) and r # 0:

Vm =1, MaxM S;i(m —1,t+1) = S;i(m,t), S;i(MaxM,t +1)=0. (2.2)

After the inclusion of the stack memory, two formulas from standard neuron models should be
updated with the highest priority: a formula for y*/(t) and §?7(t). We will consider their change
with the example of the model 2 with hyperbolic tangent.

S (t) = SNoooaAYm+ Y APE-1)p. (2.3)
ULp,k: 1>i l,p,k: 1<i
P (H)=(i,4,1) P (H)=C(i,j,1)

In general, we can guarantee that such scheme will implement the standard algorithm of backprop-
agation through time if we replace a formula for y*/(¢) by this one:

o (Z wiﬂ'(t)oc;j(t))’ when o(a'/(t)) =0,

k
yi(e) = 24
G WOR/ O+ Y @/ 180.0) | when o (1) = 1.

k: c;gj;é(0,0,r) k: ckjf(O 0,r)
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Taking into account the use of the stack memory, a transfer of the value Afkp (t—1) with a unit delay
with a’/(t) = a'J(t — 1) > 0 will be exactly the transfer of training data from the future (one stack
of higher level), rather then from the past. Completely by analogy, we will change a formula for the
weight coefficients w;” (¢t + 1) to update:

2t/ (1), if €7 # (0,0,7);

(2.5)
S;i (0,t), if otherwise.

Wl (t+1) = w () —p (1= (¥ (1)%) 67 (o (a' (1)) {

At the same time, a formula for the backpropagation coefficients Azj (t) will be (1.6), the same as in
standard model, as well as a formula for bias update b'I(t+1). For the neurons N}/ _ with reference
inputs €'/, we will also add the stack memory S27.

1. When o(a’(t)) = 0, we make writing to S’

Vm =1, MaxM S (m,t+1) =89 (m —1,t), S7(0,t+1)=e"(t). (2.6)

2. When o(a’?(t)) = 1, we make reading from S’

Vm =1, MazM S (m—1,t+1)=579(m,t), S (MaxM,t+1)=0. (2.7)

Formulas for correction of coefficients §°/(t) of neurons Ntzﬁ . Will be replaced by the following ones:

0 = () - ST+ D APE-1)p. (2.8)
l,p,k: 1<i
cip(t):(injvl)

If a neuron Ntzlf o is allowed to have connections to external data inputs X,(¢), then it will use
formulas (2.4) and (2.5), while otherwise standard formulas from model 2 are used.
As a result, all recurrent neurons will have only one additional parameter:

o MaxM — depth of stack memory.

Without any fundamental differences a recurrent mode could be introduced to all the other standard
neuron models with inclusion of the stack memory. To prepare our recurrent network for training
on m < MaxM etalon values, one will have to supply this data values X (¢),...,X (¢t +m) with

corresponding reference values e(t),...,e(t +m), while holding the a*/(t) = ... = a*/(t + m) = 0.
To complete one full cycle of training, we will need to turn the training signal high and hold it for
an additional m time steps a’/(t + m+1) = ... = a’J(t + 2m) = 1.

§ 3. Neurons with adjustable connections

The general idea of our neural link adjustment is to remove those connections that are almost
out of use and create new connections with the most active neurons of the previous layers, provided
the training with current connections can lead to a paralysis of weight coefficients or to a fluctuation
of their values near the local minimum.

Algorithm of a new link creation. On each iteration ¢ of the neuron N'J, we make the
following steps: -

Step 1. Check if a neuron is unable to fix §°7(t) with current z;’(t), even if it raises all the weight
coefficients almost to wpax (we choose 0.7 wmax as a control value):

y(t) — (bij( ) — sign( 5” Zx t)0. 7wmax>

Cii (1) =1, if

newi

< |6 (t)].
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If this event is detected (Cpw, (t) = 1) and the training signal is active (a’?(t) = 1), then we will go
to step 2. Otherwise, we need to verify additionally that a sign of §°3(t) and §*9(t — 1) is different,
while 2} (¢) and 2’ (¢ — 1) are almost identical:

Cyl

news

() =1, if&7(t-1)07(t) <0 and > |}/ (t) =2} (t—1)] < 0.1n max. (3.1)
k

If this event is detected (Cpw,(t) = 1) and the training signal is active (a’?(t) = 1), then we will go
to step 2. Otherwise, we restart the algorithm and wait for a next iteration. B
Step 2. Among all the connections of our neuron N'7., we are looking for an empty one: ¢;’(t) =
= (0,0,0). If we managed to find some suitable k, then we will proceed to step 3. Otherwise, we
restart the algorithm and wait for a next iteration.

Step 3. With a probability Pyee,1 we will go to step 4. If a transition to step 4 was not carried out,

then we will search for a suitable candidate yﬁ;lp for a new connection from previous 7 — 1 layer of
a neural net. We will carry out this selection according to the following conditions:
e there is no current connection to i '* from N'%: Ak : ¢/ (t)=(i—1,p,7);

e among all the admissible candidates, we select the maximum modulo: max |y "P(t)];

p

e if more than one yffl was found, then we will choose any random one of them.

If we managed to find some suitable p and r, then we will go directly to the final step 5; otherwise,
we will go to step 4 first.

Step 4. If our neuron is N'%.. from a recurrent layer, then with a probability P,... we will try to
create a recurrent connection; otherwise, we will try to create a deep connection with some distant
neural layers. Among all the yip (I < i—1 for a direct one and [ > i for a recurrent one), we choose
such one that the following conditions hold:

e there is no current connection from N'Z: Ak : czj (t) = (I,p,r) and (I,p) # (i,7);

e we select the maximum modulo: max |y:? (¢ — 1)| for a recurrent one; max |y-P(t) - 21—l for
a direct! one;

e if more than one yfnp was found, then we will choose any random one of them.

If we managed to find some suitable [, p, 7, then we will go to the final step 5.

Step 5. For the chosen k and 4.7, we assume ¢’ (t+1) = (I,p,r) and perform an initialization:
Wil (t+ 1) = wnin, if 679 (t) <0, and W} (t + 1) = —wmin, if 69 (t) > 0.

Algorithm of a redundant link deletion. On each iteration of a neuron we make the following
steps: - N
Step 1. Check if a neuron N'% has |w,”| lower than wy, during ¢, iterations:

Cilt=1 i | (|wlij(7')|—wmm> -o(a'(1))] < 0.

t—to<T<t

Step 2. Delete all connections with C’églk(t) = 1, assuming czj(t +1) = (0,0,0). An exception to
this rule will be a connection to the external data source ¢ (t) = (0,0,7), and also the previously
deleted one czj(t) = (0,0,0), for which our algorithm of a new link creation has found [, p,r on the
current iteration cfcj (t+1)=(l,p,7r).

Compared with previous models, we add the following parameters:

® T..x — maximum absolute value for input data of the neuron;

'We use the factor 27" in order to ensure the priority creation of links with a close layers.
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e t, — control time for an old link deletion;
® Pjeept — probability of creating a deep link bypassing a previous layer;
e P... — probability of a new deep link to be a recurrent one.

We can suggest the following general guidelines for selecting these parameters. The choice of a
probability P, very much depends on the desired topology of the neural network. Values of Py, >
0.5 are selected if the network has a hybrid architecture and prefers creating recurrent connections,
while P... < 0.5 is chosen if, on the contrary, it is preferable to create deep direct links. For a Pyeep1
probability, large values should not be chosen, preferably Pgec,1 < 0.2. The control time ¢, should
be chosen small enough ¢, =~ 3...5, because otherwise a neuron may fail to reorganize connections
in time, which can lead to a paralysis of weight coefficients. The choice of z,,x depends heavily on
how input data of neurons was normalized. Most often, we assume Ty, = 1.

For the optimal link creation, it is advisable to alternate a supply of training examples in all possible
variants of their sequential submission to a neural network. In theory, an algorithm with adaptive
connection readjustment can solve the problem with overfitting in deep neural networks. The idea is
that it should start its operation almost completely devoid of any connections and with a maximally
generalizing output function. New links are added during the course of training, which leads to
a gradual decrease in a degree of generalization of training examples.

§ 4. Examples of building a neural network system

All the neural networks _from our examples will have:
e external data inputs X (¢) = (X1(¢),...,Xn(2));

external data outputs Y (t) = (Yi(t),...,Ym(t));

e reference inputs E(t) = (E1(t),..., En(t));

a general training control signal a(t);

a general detection of local minimum &(t);

a general detection of paralysis p(t).

The training control signal a(t) will be applied to all the neurons N%J from our network as
a'J(t) = a(t). The general detection signals £(t) and p(t) will be constructed with a logical dis-

junction £(¢) = VEU(t) and p(t) = Vp'i(t).

Example 1. Long sort-term memory network with integrated training. Our LSTMIT (LSTM +

Integrated Training) network will consist of 9 layers (j = 1,m):

1. N — recurrent input layer. According to our notation this neurons will use equations from
model 2 part1a11y replaced by (2.1)-(2.5).

2. N2J — recurrent input gates. They will use equations from model 1 changed by analogy to
(2.1)-(2.5).

3. B3J — multiplier blocks (see model 9).

4. Ngﬁ — recurrent forget gates. They are completely analogous to input gates.

5. B*ﬂ — recurrent multiplier blocks. Will use equations of model 9 changed by analogy with
(2.1)-(23)

6. Bi] — summation blocks (see model 10).

7. Bzhj — tangent activation blocks (see model 11).

8. N> — recurrent output gates. They are fully analogous to gates of layer 2 and 4.

9. BYJ. — recurrent output multiplier blocks with reference inputs €7 (t) = E;(t). They will use
equations of model 10, changed by analogy with (2.6)—(2.8).

Since we have already described the operation of all the models considered, it would be sufficient
for a full description to define only static connections ¢/ for all the layers.
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(0,0,k), if k=T,n,
(9,k,1), if k=n+1,n+m.

: CAld 25 45 85
Gate and input layers: ¢,” = ¢.” = ¢’ =¢.” =

Multiplier blocks B27 of layer 3: c‘;’j =(1,7,1) and cgj = (2,7,1).

Multiplier blocks B2/ of layer 5: c =(4,7,1) and cgj = (6,7,1).

Summation blocks Bij of layer 6: ¢ = (3,7,1) and 57 = (5,4, 1).

Tangent blocks Bt7h] of layer 7: czj = (6,7,1).
e Multipliers BYY, of the last layer: ¢}? = (7,7,1) and )7 = (8,4, 1).

To prepare LgI‘MIT network for training on m < MaxM etalon values, we will have to supply
this data values X (¢),..., X (t +m) with corresponding reference values E(t),..., E(t + m), while

holding the control signal low: a(t) = ... = a(t +m) = 0. To complete one full cycle of training we
will need to turn the training signal high and hold it for an additional m time steps a(t + m + 1) =
=...=a(t+2m)=1.

Neurons with adjustable connections could be used for models, composed of many LSTMIT networks.
However, this should be done only to LSTMIT networks without external data connections and only

to their first layers, changing Nthjr to Nth .. and assuming Pyeepr = FPree = 0. At the initial time
at least half of the direct links of this layer Nth] should be disabled to suppress the overfitting.
In addition to this, we will also have to forbid a deletion of recurrent links, in order to prevent

a disruption of a base LSTM logic.

Remark 2. The main difference of our LSTMIT from classical LSTM is in the introduction of

the stack memory Sxi for n external data 1nputs of Ntlhjr, NZI N2J and N8I, as well as the stack

memory 527 for external reference inputs of BYS »e- It is important to note, that for a model composed
of many consequential LSTMIT networks a stack memory is not required for inner LSTMIT without
external connections.

Example 2. Radial basis functions with integrated training. This RBFIT network will consist
of three layers (j = 1,m):

1) Néé — Euclidean distance neurons;
2) Bﬁg;m — Gaussian activators;
3) N3L — single linear neuron with reference input e(t).

All static connections are very simple and straightforward:

e for all the input neurons NEC{ we have: ck = (0,0,k), where k =1, n;

e Gaussian activators B are linked directly: c?j = (1,7,1), where j = 1,m;

e N2L is connected to all the second layer: c;! = (2,k,1), where k =1, m.

It is possible to use Nl?alc . with adjustable connections instead of Ni?ale. In this variant we will
connect it at the initial time to at least half of the neurons from layer 2, and assume Pyeep1 = Prec = 0.
As a result, our network will start with a high degree of input generalization and will gradually

decrease it during a training process.

Example 3. Recurrent radial basis network for chaotic series (j = 1,m):

17 .
1) B, — recurrent summation blocks;



270 M. N. Nazarov
COMPUTER SCIENCE 2018. Vol. 28. Issue?2

2) Nég — Euclidean distance neurons;
3) B3J.. — Gaussian activators;
4) NAl — hyperbolic tangent neuron with reference input e(t).

thre

This network has only one data input X;(¢), and all static connections are very simple:

e for the first recurrent layer c%j =(0,0,1) and céj =(4,1,1) for all j =1, m;

e second layer neurons Nég are linked directly: c?j = (1,7,1), where j = 1,m;

e Gaussian blocks BiJ., are also linked directly: ci’j =(2,7,1), where j = 1,m;

e NAL is connected to all the third layer: ¢ = (3,k, 1), where k = 1, m.

The stack memory S/ (t) for data inputs will be used only for blocks Bij,, and the stack memory for
reference inputs S21(¢) would be used only for a single neuron Nl .. A training algorithm for the
approximation of chaotic sequence Y (0),Y(1),...,Y(n) will be composed of two steps. At first we
will send X (t9) = Y (0), X1(to + 7) = 0 to data inputs and E;(tg) = Y (1), E1(to+7) =Y (7 +1)
to reference inputs, while holding the training signal low: a(ty + 7) = 0 for 7 = 1,n — 1. After that
we will set the training signal to one and wait additional n cycles: a(to + 7) = 1 for 7 = n, 2n.

It is possible to use Njj! __ with adjustable links instead of N3! . In this variant we will connect
it at the initial time to only one neuron from layer 2, and assume Pyeepr = Prec = 0. As a result
parallel approximation branches will be added only when they are necessary, which will gradually

increase the probability of successful training.

Example 4. Convolutional neural networks CONVIT with integrated training. In base variant
this network consists of:

1) Négnv — convolutional layer, where j = 1,n1 and all neurons have mj outputs;
2) BéiLu — linear rectification layer, where j = 1,nymq;

3) ngol — pooling layer, where j = 1,n1mo and mo < my;
4) Ni — output sigmoid layer, where j = 1,n1m3 and mg < ma.

In general case, we assume that the input data is [, in the form of a 3D matrix (h = 1 for
monochrome and h = 3 for colour). We transform this three-dimensional matrix to a vector form
according to a standard algorithm:

~

Xotl(B-D)+iw(y—1) = fapy, a=11 B=1Tw vy=1h.

In addition to this, we will need to introduce the following three auxiliary functions for working with
indices (zresty is the remainder of x divided by y; [z] is the integer part of x):

y, if ylz,
O(z,y) = {

rresty, if otherwise;

[z/y], if ylzx,
[#/y] + 1, if otherwise;

A (z,y) = {

A (z,y) = { [x/y][a;yl’ if ylz,

|, if otherwise.
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We assume that convolutional neurons Négnv will read the input data with a sliding window of
size f - f from each slice of a three-dimensional matrix ;.. Also, we restrict that this window
will move along the image with a unit step st = 1. After a convolution operation, we will get
my =1 -w; =({—f+1) (w— f+1) data at the outputs of each convolutional neurons. Then
these values will pass through the linear rectification blocks and enter the pooling layer. We choose
a pooling window to be of size g - g, which finally yields m; = g>mg = ¢?lowsy and Iy = l1/g,
we = wi/g. In this case, the organization of network connections can be carried out as follow:

e Every Négnv will have C%ojz‘fl)mhtﬁ(t)

= (0,0,k), where a = 1, f2h, § = 1,m; and

k=0(c, f)+1{\ (o, f) = 1} +lw {X (a, )} +1{0(B,w — f+1) = 1} + X" (B,w — f+1).

Such large number of terms is responsible for five types of transitions when reading data with
a sliding window f - f. The term 0(«, f) is responsible for a movement along a separate col-
umn of the sliding window, I {\"(a, f) — 1} is included for a transition between this columns,
and the term lw {)\_(a, f2)} for a transition between separate h colour layers. By analogy,
1{0(B,w — f + 1) — 1} is responsible for a horizontal shift of the sliding window and the final
term A7 (8, w — f + 1) for its vertical shift.

e Second layer B?{iLu is linked directly c?j = (1, «, 8), where:

j=(a=1m;+p and a=1,ny, f=1,m;.

e For ngol we have czj =(2,(,1),j=(a—=1)ma+ G and a =1,n;, B =1,ma9,

C = (a - 1)m1 + H(k’g) + ll {A+(k’g) - 1} +gl1 {9(5’w2) - 1} +g)\_(B,U)2), k= 1’92'

The first term in this expression (aw—1)m; is responsible for a transition between n; information
channels (from mnj neurons of the first layer). The next term 6(k,g) denotes the movement
along the columns of the sliding window g-g. By analogy, gy {0(8,w2) — 1} is responsible for
a horizontal shift of the sliding window and g A\~ (8, ws) is used for its vertical shift.

e The layer N2Z is connected as: Cil = (3,k,1) and k = 1,nyma, j = 1,n1ms.

For a considered basic architecture of a convolutional network, each layer is, in fact, performing some
manipulation over three-dimensional data. In particular, the first layer has h-[-w input values, and
outputs ny -l; -w; values to the next layer, which are reduced by pooling layer to nj -ls-wo. The main
option of scaling such network is to connect successive layers of pooling and convolution. In this case,
the convolutional layers will increase the depth of the three-dimensional data h < nqy < ng < ...,
and, at the same time, will reduce the length and width of data l > I; > ... and w > wy; > ...,
while the pooling layers will only reduce the length and width without altering the depth of data.

It is possible to use Nége with adjustable connections instead of Né‘g. In this variant we will
connect it at the initial time to at least half of the neurons from layer 3, and assume Pyeep1 = Prec = 0.
As a result, a network will start with a high degree of input generalization and will gradually decrease
it during the training process. The comparison with dropout algorithm from [17] on MNIST data
set is presented in a table below. The overall time for a training of convit networks was constraint
to not exceed the corresponding training time for dropout networks for more then 20 %.

Considering the high effectiveness of dropout algorithm we can also add its support in our neuron
models. For this we will have to add some variables to store a dropout state:

o Fi(t) = (ri(t),... ,rz‘j (t)) — dropout state values for outputs of N*J(t).
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Table 1. Comparison with dropout networks on MNIST data set

Method Unit type Architecture Error % | Time
Dropout NN Logistic 3 layers, 1024 units 1.35 t1
Convit NN Logistic 3 layers, 1024 units 1.38 < 1.2t
Dropout NN + max-norm RELU 3 layers, 1024 units 1.06 to
Convit NN + max-norm RELU 3 layers, 1024 units 1.1 <1.2¢9

Updating this variables will be according to a standard rule (p' is included in neuron parameters):
Vi, gl Tlij(t) ~ Bernoulli(p'?).

For example, if we would like to incorporate dropout in model 1, then we will have to change only
the formulas for the output y*/(t) and general correction factors 67 (¢):

i <Zw £) + b (t )), if a'(t) = 0

v =9 y
ey () - a0) + 90, i () =1
(y'(t) — €' (t)), for neurons with ¢'/; denote them by N:J;
§H(t) = Z Aip(t) 7 (t), for neurons without e'/; denote them by N/,
l,p,k:

P (H)=(i.5,1)

The integration of dropout in all the other neuron models will follow a similar scheme with a sole
exception of convolutional neurons. For them, we will have to use a dot product for vector output
7'7(t) and also incorporate dropout coefficients r,,’ (t) in formula (1.8) as

(yii(t) — €I (t)), for NI

Conv e’
D) =) - Y ah g 2 ARORI0), for Neg,
m l1,l2,p:

et 2 (0)=(i.j,r)

Example 5. Multilayer perceptron PERCIT with integrated training and link adjustment. In
a basic configuration, this neural network consists of k layers:

1. N2 — input layer, where j = 1,n; and all neurons have n data inputs.

2. N(,% ﬁ — layer with adjustable links, where j = 1,75 and neurons have n; inputs.
k—1. NF:'9 — adjustable layer, where j = 1,7n,_; and all neurons have ng_s inputs.

k. NEI, — output layer, where j = 1,n;, and all neurons have n;_; inputs.

The initial connectlons will be organized as follow:

— all neurons N2/ are connected to all the external inputs ck (0 0,k), k=1,n;

— for all other layers, we set 75% of all connections to be blank ¢’ = (0,0,0), and other 25%
to be linked to random neurons from the previous layer.

For the adjustable neurons, we set the following parameters: the probability of a recurrent
connection Py, = 0, the probability of creating a deep link bypassing the previous layer Pgee,, = 0.1,
the control time for deleting the old links ¢, = 4 and the maximum absolute value for input data
Tmax = 1. For deep neural networks, one of the main problems of training them with gradient
methods is the vanishing gradient problem. However, if we allow the creation of deep links with a
10 % probability, then we will significantly reduce this effect by passing through the error via several
layers.
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Remark 3. For the optimal creation of new connections, it is advisable to alternate the sup-
ply of training examples in all possible variants of their sequential submission. In this case the
condition (3.1) will be used to its full potential.

Results and Discussion

An important methodological advantage of our approach is standardization with the development
of a universal general formalism for a broad range of neuron models. First of all, this greatly simplifies
an integration of any new models with other activation functions or aggregation of the input data.
Secondly, our approach enables us to construct a hierarchical networks Nnety,..., Nnety, where
each Nnet; is controlling the training process of the next network Nnet;;;. For example, the first
network Nnet; could be trained to spot some basic visual stimuli in video data, which will be used
to issue training command for a much bigger second network Nnet,. On its part this network Nneto
could be trained with the assistance of the Nnet; to spot a more complex training stimuli, maybe
not only in the video data, but in the additional audio data supplied (like verbal command: “train
please”) and learn to associate the corresponding data and issue the training signal for the next one
Nnets, and so on.

All of the basic neuron models considered can be easily generalized by switching from standard
stochastic gradient descent to a more advanced algorithm. For example, one can integrate stochastic
descent with momentum in that models, or stochastic descent with adaptive momentum estimation.
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CBdA3€il, peKypPpPEHTHbIE HEHPOHHBIE CETH.

YIK 519.68, 007.5
DOT: 10.20537/vm180212

PaccmarpuBaroTCcst HCKYCCTBEHHBIE HEMPOHBI, YbU BECOBBIE KOIMDMUITHEHTHI OYIyT U3MEHSATHCS 10 CIEIUaIb-
HOMY 3aKOHY, OCHOBAHHOMY HA WHTEIPDHPOBAHHOM B UX MOeu 0OpaTHOM pacmpocrpaneruu. J[as 3Toro Ko-
3¢ uUIUIEeHTH TOrPeITHOCTH 0OPATHOTO PACIPOCTPAHEHUS BBOJAATCS B SBHOM BHJIE BO BCE MOJEU HEHPOHOB
¥ OCYIIECTBJIETCS TIepeJlava WX 3HAUYEHWH BIOTL MEKHEHPOHHBIX CBsA3el. B momommenne K 3TOMY BBOINT-
CS1 CITENUAIBHBIN THUIT HEHPOHOB C TAJOHHBIMHU BXOJIAME, KOTOPBIE OYIyT BHICTYNATH B KAYECTBE OCHOBHOTO
WCTOYHWKA TEPBUYHOMN OIEHKH MOTPEITHOCTH [ BCel HeifipoHHOM ceTn. B mocaeanion ouepeah BBOINTCS KOH-
TPONBHBIN CUTHAJ /TS 3aIIyCKa 00y YIeHusI, KOTOPbIH OyIeT yIpaBaaTh IPOIECCOM Mepeaadn Ko MUumeHToB
TIOTPEITHOCTH U KOPPEKTUPOBKOH BECOB HeHpPoHOB. /1T peKyppeHTHBIX HeHPOHHBIX CeTel NeMOHCTPUPYETCs
KaK IIPOBECTH WHTEIPAIIAI0 OOPATHOTO PACIPOCTPAHEHNS BO BPEMEHHU B UX (DOPMATI3IM C MOMOIIBIO CTEKOBO#
MTaMSITH JJISI BHEITHUX BXOJIO0B HEMPOHOB. JIOMOTHUTENIHHO K STOMY PACCMATPUBAIOTCS IPUMEPHI Kak (hopmasin-
30BaTh B PAMKAX JAHHOTO MOJIXOA TaKNe MOMyJISpHBIE HEMPOHHBIE CETH, KaK CETH JIOATOI KPATKOBPEMEHHON!
MaMsATH, CeTH PaAUaATIbHO-0A3MCHBIX (PYHKINI, MHOTOCIONHBIE TMEPIENTPOHBI M CBEPTOYHbIE HEHPOHHBIE Ce-
. OCHOBHBIM MPAKTUYIECKUAM CIEJICTBHEM JAHHOTO MOIXOMA SBJISETCS BO3MOXKHOCTH OMUCAHUS HEHPOHHBIX
ceTeil C mepecTpanBaeMbIMU CBA3SIMHU HA OCHOBE HHTETPUPOBAHHOIO AJITOPUTMA OOPATHOTO PACIIPOCTPAHEHHUS.

IMocrynmuna B pegaknmio 22.05.2018

Hazapos Makcum Hukonaesud, crapruii npemnomasaressb, Kadenpa Boicineit marematuku 1, HanponanbHbIH
uccaenoBarenbekuit yausepcurer « MU Ty, 124498, r. Mocksa, r. 3emenorpas, miomans [lokuna, 1.
E-mail: nazarov-maximilian@yandex.ru


https://arxiv.org/pdf/1411.4389.pdf
http://dx.doi.org/10.14498/vsgtu1052
http://dx.doi.org/10.3367/UFNe.2016.10.037902
http://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
mailto:nazarov-maximilian@yandex.ru
http://dx.doi.org/10.20537/vm180212
mailto:nazarov-maximilian@yandex.ru

	The description of basic models 
	Recurrent neurons with an integrated stack memory
	Neurons with adjustable connections
	Examples of building a neural network system

