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NEURAL NETWORKS WITH DYNAMICAL COEFFICIENTS AND

ADJUSTABLE CONNECTIONS ON THE BASIS OF INTEGRATED

BACKPROPAGATION

We onsider arti�ial neurons whih will update their weight oe�ients with an internal rule based on

bakpropagation, rather than using it as an external training proedure. To ahieve this we inlude the

bakpropagation error estimate as a separate entity in all the neuron models and perform its exhange

along the synapti onnetions. In addition to this we add some speial type of neurons with referene

inputs, whih will serve as a base soure of error estimates for the whole network. Finally, we introdue

a training ontrol signal for all the neurons, whih an enable the orretion of weights and the exhange

of error estimates. For reurrent neural networks we also demonstrate how to integrate bakpropagation

through time into their formalism with the help of some stak memory for referene inputs and external

data inputs of neurons. Also, for widely used neural networks, suh as long short-term memory, radial

basis funtion networks, multilayer pereptrons and onvolutional neural networks, we demonstrate their

alternative desription within the framework of our new formalism. As a useful onsequene, our approah

enables us to introdue neural networks with the adjustment of synapti onnetions, tied to the integrated

bakpropagation.
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Introdution

Bakpropagation is one of the most suessful and widely used algorithms for the training of neu-

ral networks. It has been adapted for suh diverse models as multi-layer pereptrons, radial basis

funtion networks and onvolutional neural networks [1�3℄. Moreover, its modi�ation of bakprop-

agation through time (BPTT) has been suessfully applied for the training of speialized reurrent

neural networks, suh as long short-term memory [4,5℄. The range of applied tasks that an be solved

by these models is also quite diverse. For example, onvolutional networks are used [6, 7℄ for image

reognition, networks of radial basis funtions are used for time series predition and ontrol systems

onstrution [8℄, networks of long short-term memory are used for a handwritten text reognition

and generation [9, 10℄, mahine translation [11℄, speeh synthesis and reognition [12, 13℄, and for

a video proessing in onjuntion with onvolutional networks [14℄.

However, the implementation of bakpropagation is an external training proedure in relation

to the models onsidered. Therefore, if we want to build a network with dynamial oe�ients (see

examples in [15℄) on the basis of this algorithm, we will need to inlude it diretly into the ore

formalism of standard models of neurons. This entails the introdution of bakpropagation error

estimates ∆(t) as some separate entities, as well as speial neurons Ne with referene inputs e(t)
and a training ontrol signal a(t) for our network. In the ase of reurrent networks we will have to

add stak memory Sx for external data inputs and Se for referene inputs of neurons.
As a result, our networks ould be viewed as a speial type of reprogrammable �nite automata.

The �rst onsequene is an ability to onstrut hierarhial networks, whih will ontrol the training

proess for one another in asending order. As a simple example one an onsider two networks:

the �rst is trained to spot some speial stimuli in the input data to ativate the training of a muh

bigger seond one and ontrol whih parts of data will be sent to its data inputs and whih to its

referene inputs. Another important onsequene would be the ability to introdue neural networks

with the adjustment of synapti onnetions (see the review in [16℄) on the basis of integrated

http://dx.doi.org/10.20537/vm180212


Neural networks with dynamial oe�ients 261

COMPUTER SCIENCE 2018. Vol. 28. Issue 2

bakpropagation. In theory the ideal onnetion adjustment algorithm should prevent the over�tting

of data by deleting all the unused onnetions and reating new links only when neessary.

� 1. The desription of basi models

A neuron number j from layer number i will be denoted as N i j
... . Subsripts for N i j

... will be

variable-length strings: ϕ, r, c, e, where ϕ is an ativation funtion, r denotes a reurrent mode,

c identi�es a mode with onnetion adjustment, and e denotes the presene of referene input

for that neuron. In the ase of a non-reurrent neuron with stati onnetions and without the

referene input, only ϕ will remain in this string. For example, the notation N i j
σ will speify an

ordinary neuron with a sigmoid ativation funtion. In the general ase we will introdue neurons

N i j
... in our models as:

N i j
...e(t) =

(

ci j(t), xi j(t), ωi j(t), bi j(t), ψi j , ϕi j, yi j(t), ai j(t),∆
i j
(t), pi j(t), ξi j(t), ei j(t)

)

.

� ci j(t) = (ci j1 (t), . . . , ci jn (t)) � onnetions to other layers and external inputs.

1. If the input k is not onneted to anything, then ci jk (t) = (0, 0, 0).

2. If the input k is onneted to the external input Xm(t), then ci jk (t) = (0, 0,m).

3. If the input k is onneted to the output r of a neuron N lm
... , then ci jk (t) = (l,m, r).

� xi j(t) = (xi j1 (t), . . . , xi jn (t)) � data input values of N i j
...e(t).

� ωi j(t) = (ωi j
1 (t), . . . , ωi j

n (t)) � weight oe�ients of N i j
...e(t).

� bi j(t) � bias of neuron N i j
...e(t).

� ψi j
� aggregation funtion of N i j

...e(t), for example ψ(ω, x) =
∑

ωk · xk + b.

� ϕi j
� ativation funtion of N i j

...e(t), for example ϕ(z) = th(z).

� yi j(t) = (yi j1 (t), . . . , yi jk (t)) � output values yi j(t) = ϕ(ψ(ωi j(t), xi j(t))).

� ai j(t) � input signal of training ativation for N i j
...e(t).

� ∆
i j
(t) = (∆i j

1 (t), . . . ,∆i j
n (t)) � oe�ients for bakpropagation from N i j

...e(t).

� pi j(t) � paralysis indiator for weights of N i j
...e(t).

� ξi j(t) � loal minimum indiator of N i j
...e(t).

� ei j(t) = (ei j1 (t), . . . , ei jk (t)) � optional referene inputs for N i j
...e(t).

Remark 1. For data inputs of neurons, four modes of operation are allowed:

1) when ci jk (t) = (0, 0, 0), we will have the zero input xi jk (t) = 0;

2) when ci jk (t) = (0, 0,m), we will have external onnetion xi jk (t) = Xm(t);

3) for ci jk (t) = (l,m, r) and l < i, we will have an ordinary link xi jk (t) = ylmr (t);

4) for ci jk (t) = (l,m, r) and l ≥ i, we will have a reurrent one xi jk (t) = yl mr (t− 1).
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Model 1. Neurons N i j
σ and N i j

σe with sigmoid ativation ϕi j(z) = 1/(1 + e−2αz). The derivative

of this funtion is:

∂ϕ/∂z = 2αϕ(z)(1 − ϕ(z)). As an aggregation funtion we will use a weighted

summation with the bias ψi j(ω, x) =
∑

ωk ·xk+ b, whih as a result gives us a standard formula for

yi j(t) = ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

. Finally, general orretion fators δi j(t) will be alulated:

δi j(t) =















(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j
σe;

∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t), for neurons without ei j; denote them by N i j

σ . (1.1)

The appliation of formula (1.1) implies the expliit inlusion of weights ωi j
k (t) into all of the bak-

propagation oe�ients ∆i j
k (t), whih yields:

∆i j
k (t) = 2α yi j(t)

(

1− yi j(t)
)

δi j(t)ωi j
k (t)σ(ai j(t)). (1.2)

The ativation of training will be applied with a positive training signal ai j(t) > 0. For the adjust-
ment of weights we will use a standard formula with an added σ(ai j(t)):

ωi j
k (t+ 1) = ωi j

k (t)− 2µα yi j(t)
(

1− yi j(t)
)

δi j(t)xi jk (t)σ(ai j(t)). (1.3)

Assuming xi jk (t) = 1, we will get a formula for bias adjustment bi j(t+ 1) from (1.3).

We assume that a paralysis of weights ωi j
k (t) ours when 70% of them reah a threshold value

ωmax:

pi j(t) =











1, if

∑

k=1,n

|ωi j
k (t)| > 0.7 · ωmax · n,

0, if otherwise.

(1.4)

In this expression, n is the number of neuron inputs xi j1 , . . . , x
i j
n . Formulas for deteting a loal

minimum of ωi j
k (t) will also use this number, but the main riteria for them will be a low amplitude

osillation of ∆ωi j
k (t) = ωi j

k (t+ 1)− ωi j
k (t):

ξi j(t) =



















1, if

∑

k=1,n

∣

∣

∣

∣

∣

∣

∑

τ=t−tξ ,t

ωi j
k (τ + 1)− ωi j

k (τ)

∣

∣

∣

∣

∣

∣

< ωmin · n ·
∏

τ=t−tξ,t

σ(ai j(τ)),

0, if otherwise.

(1.5)

As a result, our basi model of sigmoid neuron will have only six parameters:

� n � number of data inputs;

� ωmax � maximum absolute values of weights ωi j
k ;

� ωmin � minimum absolute values of weights ωi j
k ;

� tξ � loal minimum detetion time;

� µ � training rate of neuron;

� α � sigmoid sti�ness (α ≥ 1).

Model 2. Neurons N i j
th and N i j

th e with hyperboli tangent as an ativation funtion ϕi j(z) = th(z).
We will use a weighted summation with the bias ψi j(ω, x) =

∑

ωk ·xk+b as an aggregation funtion
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ψi j
, just as in model 1. The derivative of the ativation funtion will be

∂ϕ/∂z = (1− ϕ2(z)) whih
leads to the replaement of formulas (1.2) and (1.3) by

∆i j
k (t) =

(

1− (yi j(t))2
)

δi j(t)ωi j
k (t)σ(ai j(t)), (1.6)

ωi j
k (t+ 1) = ωi j

k (t)− µ
(

1− (yi j(t))2
)

δi j(t)xi jk (t)σ(ai j(t)). (1.7)

Bias update bi j(t + 1) is a speial ase of (1.7) and an be obtained by a simple substitution

xi jk (t) = 1. Moreover, the formulas for alulating δi j(t), pi j(t), and ξi j(t) are ompletely analogous

to (1.1), (1.4), and (1.5).

Model 3. Neurons N i j
id and N i j

id e with a linear ativation funtion ϕi j(z) = z. Just as in the �rst

two models, we will use the standard aggregation funtion ψi j(ω, x) =
∑

ωk · xk + b. Formulas for
δi j(t), pi j(t), and ξi j(t) will be analogous to (1.1), (1.4), and (1.5). In turn, an expression for ∆i j

k (t)

and ωi j
k (t+ 1) onsidering the linear ϕi j

will be replaed by

∆i j
k (t) = δi j(t)ωi j

k (t)σ(ai j(t)),

ωi j
k (t+ 1) = ωi j

k (t)− µ δi j(t)xi jk (t)σ(ai j(t)).

Model 4. Neurons N i j
Ed and N i j

Ed e for the alulation of Eulidean distane, whih use ϕi j(z) =
√
z

as an ativation funtion and ψi j(ω, x) =
∑

(ωk − xk)
2
as an aggregation funtion. As a result, an

output value for them is yi j(t) =

√

∑

(

ωi j
k (t)− xi jk (t)

)2
. General orretion fators δi j(t) will be:

δi j(t) =























1

2
(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j

Ed e;
∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t), for neurons without ei j; denote them by N i j

Ed.

Taking into aount a speial aggregation funtion, we will have the following formula for bakprop-

agation oe�ients ∆i j
k (t):

∆i j
k (t) = δi j(t) ·

(

ωi j
k (t)− xi jk (t)

)

· σ(ai j(t))/yi j(t).

Finally, a formula for weight oe�ients ωi j
k (t+ 1) will be updated as follow:

ωi j
k (t+ 1) = ωi j

k (t)− 2µ ·∆i j
k (t).

Model 5. Convolutional neurons N i j
Conv and N i j

Conv e with linear ativation ϕi j(z) = z, matrix input

xi j(t) =
(

xi j11(t), . . . , x
i j
nm(t)

)

, vetor output yi j(t) =
(

yi j1 (t), . . . , yi jm (t)
)

and weighted summation

as an aggregation ψi j(ω, x) = (
∑

ωk · xk1, . . . ,
∑

ωk · xkm). This variant will yield as its output

the dot produt of input data with the kernel of the weight oe�ients ωi j(t) = (ωi j
1 (t), . . . , ωi j

n (t)).
Thus, the �nal output values would be

yi j(t) =
(

yi j1 (t), . . . , yi jm (t)
)

=





∑

k=1,n

ωi j
k (t)xi jk1(t), . . . ,

∑

k=1,n

ωi j
k (t)xi jkm(t)



 .

As a result, general orretion fators δi j(t) will be:

δi j(t) =























∑

r

(yi jr (t)− ei jr (t)), for neurons with ei j; denote them by N i j
Conv e;

∑

r

∑

l,p,k:

c
l p
k

(t)=(i,j,r)

∆l p
k (t) for neurons without ei j ; denote them by N i j

Conv.
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We have used a double range of indies for the inputs xi j(t) =
(

xi j11(t), . . . , x
i j
nm(t)

)

, whih made it

quite onvenient to desribe the aggregation operation. However, the appliation of a similar sheme

for ci j(t) and ∆
i j
(t) would break the ompatibility with other neuron layers, whih use the notation

of models 1�4. As a result, we will represent them as vetors ci j(t) = (ci j1 (t), . . . , ci jn·m(t)) and

∆
i j
(t) = (∆i j

1 (t), . . . ,∆i j
n·m(t)), while binding them with inputs xi j(t) (k1 = 1, n and k2 = 1,m):

� when in the disonneted mode ci j(k1−1)m+k2
= (0, 0, 0) −→ xi jk1k2 = 0;

� for the external input ci j(k1−1)m+k2
= (0, 0, r) −→ xi jk1k2(t) = Xr(t);

� in the standard mode ci j(k1−1)m+k2
= (l, p, r) −→ xi jk1k2(t) = yl pr (t) (l < i);

� in the reurrent mode ci j(k1−1)m+k2
= (l, p, r) −→ xi jk1k2(t) = yl pr (t− 1) (l ≥ i).

For bakpropagation oe�ients, we will have the orresponding formula:

∆i j
(k1−1)m+k2

(t) = δi j(t) · ωi j
k1
(t) · σ(ai j(t)), where k1 = 1, n and k2 = 1,m.

We will not be able to use general orretion fators δi j(t) in the pure form for weights oe�ients,

as a result our formula for their update would be quite ompliated:

ωi j
k (t+ 1) = ωi j

k (t)− µ
∑

r

xi jkr



















(yi jr (t)− ei jr (t)), for N i j
Conv e;

∑

l1,l2,p:

c
l1 l2
p (t)=(i,j,r)

∆l1 l2
p (t), for N i j

Conv. (1.8)

All other formulas for pi j(t) and ξi j(t) would be the same as in model 1.

Model 6. Linear reti�ation bloks Bi j
ReLu and Bi j

ReLu e with an ativation funtion ϕi j(xi j(t)) =
= max(0, xi j(t)). We do not all this bloks of arti�ial neurons, beause they do not have weight

oe�ients ωi j(t) and an aggregation funtion. As a smooth approximation of a max(0, z) one an

take ϕi j(z) ≈ (1/2α) log(1 + e2αz), whih has the following derivative:

∂ϕ

∂z
≈ 1

1 + e−2αz
. General

orretion oe�ients δi j(t) are alulated by a formula similar to (1.1), while the bakpropagation

oe�ient ∆i j
1 (t) is

∆i j
1 (t) = δi j(t) · σ(ai j(t)) /

(

1 + e−2αxi j(t)
)

.

Model 7. Pooling layers Bi j
Pool and B

i j
Pool e with a linear ativation funtion ϕ(z) = z and subsam-

pling as an aggregation funtion ψ(xi j(t)) = max(xi j1 (t), . . . , xi jn (t)). General orretion oe�ients

will be alulated similarly to formula (1.1), while for the bakpropagation oe�ients ∆i j
k (t) we

will have

∆i j
k (t) =

{

δi j(t) · σ(ai j(t)), if ψ(xi j(t)) = xi jk (t),

0, if otherwise.

Model 8. Gaussian bloks Bi j
norm and Bi j

norm e with the normal ativation funtion ϕi j(z) = e−βz2

and only one single data input. The derivative of this funtion is

∂ϕ

∂z
= ϕ(z)(−2β

√

log(β)− log(ϕ(z))).

As a result, for a single bakpropagation oe�ient ∆i j
1 (t) we will have the following formula:

∆i j
1 (t) = −2βyi j(t)

√

log(β)− log(yi j(t)) δi j(t)σ(ai j(t)).

General orretion oe�ients δi j(t) will use the same formula as in (1.1).
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Model 9. Multipliation bloks Bi j
∗ and Bi j

∗ e with two data inputs xi j1 and xi j2 , a linear ativation

ϕ(z) = z and an aggregation funtion ψ(x1, x2) = x1 · x2. General orretion oe�ients δi j(t) will
use formula analogous to (1.1) and the bakpropagation oe�ients:

∆i j
1 (t) = δi j(t) · xi j2 (t) · σ(ai j(t)), ∆i j

2 (t) = δi j(t) · xi j1 (t) · σ(ai j(t)).

Model 10. Summation bloks Bi j
+ and Bi j

+ e with two data inputs xi j1 and xi j2 , a linear ativation

ϕ(z) = z and an aggregation ψ(x1, x2) = x1 + x2. General orretion oe�ients δi j(t) will use a

formula analogous to (1.1) and the bakpropagation oe�ients

∆i j
k (t) = σ(ai j(t))δi j(t).

Model 11. Tangent ativator bloks Bi j
th and Bi j

th e with a single input and hyperboli tangent as

an ativation funtion ϕ(z) = tanh(z). General orretion oe�ients δi j(t) will use a formula

analogous to (1.1) and the bakpropagation oe�ients

∆i j
k (t) =

(

1− (yi j(t))2
)

σ(ai j(t)) δi j(t).

� 2. Reurrent neurons with an integrated stak memory

For reurrent neurons without referene input ei j(t), we will use the following sheme:

N i j
...r(t) =

(

ci j(t), xi j(t), Sx
i j
(t), ωi j(t), bi j(t), ψi j , ϕi j , yi j(t), ai j(t),∆

i j
(t), pi j(t), ξi j(t)

)

.

In this expression we introdue a stak memory Sx
i j
(t) for those data inputs of neurons, whih are

onneted to an external input soure: ci jk (t) = (0, 0, r), xi jk (t) = Xr(t). The stak memory Sx
i j
(t)

will be a funtion aording to a standard algorithm.

1. When σ(ai j(t)) = 0, we make writing to Si j
xk

for all k, if ci jk (t) = (0, 0, r) and r 6= 0:

∀m = 1,MaxM Si j
xk
(m, t+ 1) = Si j

xk
(m− 1, t), Si j

xk
(0, t+ 1) = xi jk (t). (2.1)

2. When σ(ai j(t)) = 1, we make reading from Si j
xk

for all k, if ci jk (t) = (0, 0, r) and r 6= 0:

∀m = 1,MaxM Si j
xk
(m− 1, t+ 1) = Si j

xk
(m, t), Si j

xk
(MaxM, t+ 1) = 0. (2.2)

After the inlusion of the stak memory, two formulas from standard neuron models should be

updated with the highest priority: a formula for yi j(t) and δi j(t). We will onsider their hange

with the example of the model 2 with hyperboli tangent.

δi j(t) =



















∑

l,p,k: l>i

c
l p
k

(t)=(i,j,1)

∆l p
k (t) +

∑

l,p,k: l≤i

c
l p
k
(t)=(i,j,1)

∆l p
k (t− 1)



















. (2.3)

In general, we an guarantee that suh sheme will implement the standard algorithm of bakprop-

agation through time if we replae a formula for yi j(t) by this one:

yi j(t) =































ϕi j

(

∑

k

ωi j
k (t)xi jk (t)

)

, when σ(ai j(t)) = 0,

ϕi j







∑

k: ci j
k
6=(0,0,r)

ωi j
k (t)xi jk (t) +

∑

k: ci j
k
=(0,0,r)

ωi j
k (t)Si j

xk
(0, t)






, when σ(ai j(t)) = 1.

(2.4)
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Taking into aount the use of the stak memory, a transfer of the value ∆l p
k (t−1) with a unit delay

with ai j(t) = ai j(t− 1) > 0 will be exatly the transfer of training data from the future (one stak

of higher level), rather then from the past. Completely by analogy, we will hange a formula for the

weight oe�ients ωi j
k (t+ 1) to update:

ωi j
k (t+ 1) = ωi j

k (t)−µ
(

1− (yi j(t))2
)

δi j(t)σ(ai j(t))

{

xi jk (t), if ci jk 6= (0, 0, r);

Si j
xk
(0, t), if otherwise.

(2.5)

At the same time, a formula for the bakpropagation oe�ients ∆i j
k (t) will be (1.6), the same as in

standard model, as well as a formula for bias update bi j(t+1). For the neurons N i j
th r e with referene

inputs ei j , we will also add the stak memory Si j
e .

1. When σ(ai j(t)) = 0, we make writing to Si j
e :

∀m = 1,MaxM Si j
e (m, t+ 1) = Si j

e (m− 1, t), Si j
e (0, t+ 1) = ei j(t). (2.6)

2. When σ(ai j(t)) = 1, we make reading from Si j
e :

∀m = 1,MaxM Si j
e (m− 1, t+ 1) = Si j

e (m, t), Si j
e (MaxM, t+ 1) = 0. (2.7)

Formulas for orretion of oe�ients δi j(t) of neurons N i j
th r e will be replaed by the following ones:

δi j(t) =



















(yi j(t)− Si j
e (0, t)) +

∑

l,p,k: l≤i

c
l p
k
(t)=(i,j,1)

∆l p
k (t− 1)



















. (2.8)

If a neuron N i j
th r e is allowed to have onnetions to external data inputs Xr(t), then it will use

formulas (2.4) and (2.5), while otherwise standard formulas from model 2 are used.

As a result, all reurrent neurons will have only one additional parameter:

� MaxM � depth of stak memory.

Without any fundamental di�erenes a reurrent mode ould be introdued to all the other standard

neuron models with inlusion of the stak memory. To prepare our reurrent network for training

on m ≤ MaxM etalon values, one will have to supply this data values X(t), . . . ,X(t + m) with
orresponding referene values e(t), . . . , e(t +m), while holding the ai j(t) = . . . = ai j(t +m) = 0.
To omplete one full yle of training, we will need to turn the training signal high and hold it for

an additional m time steps ai j(t+m+ 1) = . . . = ai j(t+ 2m) = 1.

� 3. Neurons with adjustable onnetions

The general idea of our neural link adjustment is to remove those onnetions that are almost

out of use and reate new onnetions with the most ative neurons of the previous layers, provided

the training with urrent onnetions an lead to a paralysis of weight oe�ients or to a �utuation

of their values near the loal minimum.

Algorithm of a new link reation. On eah iteration t of the neuron N i j
...c we make the

following steps:

Step 1. Chek if a neuron is unable to �x δi j(t) with urrent xi jk (t), even if it raises all the weight

oe�ients almost to ωmax (we hoose 0.7ωmax as a ontrol value):

Ci j
new1

(t) = 1, if

∣

∣

∣

∣

∣

y(t)− ϕ

(

bi j(t)− sign(δi j(t))
∑

k

xi jk (t) 0.7ωmax

)∣

∣

∣

∣

∣

<
∣

∣δi j(t)
∣

∣ .
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If this event is deteted (Ci j
new1

(t) = 1) and the training signal is ative (ai j(t) = 1), then we will go

to step 2. Otherwise, we need to verify additionally that a sign of δi j(t) and δi j(t− 1) is di�erent,
while xi jk (t) and xi jk (t− 1) are almost idential:

Ci j
new2

(t) = 1, if δi j(t−1) δi j(t) < 0 and

∑

k

|xi jk (t)−xi jk (t−1)| < 0.1nxmax. (3.1)

If this event is deteted (Ci j
new2

(t) = 1) and the training signal is ative (ai j(t) = 1), then we will go

to step 2. Otherwise, we restart the algorithm and wait for a next iteration.

Step 2. Among all the onnetions of our neuron N i j
...c, we are looking for an empty one: ci jk (t) =

= (0, 0, 0). If we managed to �nd some suitable k, then we will proeed to step 3. Otherwise, we

restart the algorithm and wait for a next iteration.

Step 3. With a probability Pdeep1 we will go to step 4. If a transition to step 4 was not arried out,

then we will searh for a suitable andidate yi−1 p
r for a new onnetion from previous i− 1 layer of

a neural net. We will arry out this seletion aording to the following onditions:

� there is no urrent onnetion to yi−1 p
r from N i j

...c: 6 ∃ ḱ : ci j
ḱ
(t) = (i− 1, p, r);

� among all the admissible andidates, we selet the maximum modulo: max |yi−1 p
r (t)|;

� if more than one yi−1 p
r was found, then we will hoose any random one of them.

If we managed to �nd some suitable p and r, then we will go diretly to the �nal step 5; otherwise,

we will go to step 4 �rst.

Step 4. If our neuron is N i j
...r c from a reurrent layer, then with a probability Prec we will try to

reate a reurrent onnetion; otherwise, we will try to reate a deep onnetion with some distant

neural layers. Among all the yl pr (l < i− 1 for a diret one and l ≥ i for a reurrent one), we hoose
suh one that the following onditions hold:

� there is no urrent onnetion from N i j
...c: 6 ∃ ḱ : ci j

ḱ
(t) = (l, p, r) and (l, p) 6= (i, j);

� we selet the maximum modulo: max |yl pr (t− 1)| for a reurrent one; max |yl pr (t) · 2−|l−i|| for
a diret

1

one;

� if more than one yl pr was found, then we will hoose any random one of them.

If we managed to �nd some suitable l, p, r, then we will go to the �nal step 5.

Step 5. For the hosen k and yl pr , we assume ci jk (t + 1) = (l, p, r) and perform an initialization:

ωi j
k (t+ 1) = ωmin, if δ

i j(t) ≤ 0, and ωi j
k (t+ 1) = −ωmin, if δ

i j(t) > 0.
Algorithm of a redundant link deletion. On eah iteration of a neuron we make the following

steps:

Step 1. Chek if a neuron N i j
...c has |ωi j

k | lower than ωmin during to iterations:

Ci j
del k(t) = 1, if

∣

∣

∣

∣

∣

∣

∑

t−to≤τ≤t

(

|ωi j
k (τ)| − ωmin

)

· σ(ai j(τ))

∣

∣

∣

∣

∣

∣

< 0.

Step 2. Delete all onnetions with Ci j
del k(t) = 1, assuming ci jk (t+1) = (0, 0, 0). An exeption to

this rule will be a onnetion to the external data soure ci jk (t) = (0, 0, r), and also the previously

deleted one ci jk (t) = (0, 0, 0), for whih our algorithm of a new link reation has found l, p, r on the

urrent iteration ci jk (t+ 1) = (l, p, r).
Compared with previous models, we add the following parameters:

� xmax � maximum absolute value for input data of the neuron;

1

We use the fator 2
−|l−i|

in order to ensure the priority reation of links with a lose layers.
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� to � ontrol time for an old link deletion;

� Pdeep1 � probability of reating a deep link bypassing a previous layer;

� Prec � probability of a new deep link to be a reurrent one.

We an suggest the following general guidelines for seleting these parameters. The hoie of a

probability Prec very muh depends on the desired topology of the neural network. Values of Prec >
0.5 are seleted if the network has a hybrid arhiteture and prefers reating reurrent onnetions,

while Prec < 0.5 is hosen if, on the ontrary, it is preferable to reate deep diret links. For a Pdeep1

probability, large values should not be hosen, preferably Pdeep1 ≤ 0.2. The ontrol time to should

be hosen small enough to ≈ 3 . . . 5, beause otherwise a neuron may fail to reorganize onnetions

in time, whih an lead to a paralysis of weight oe�ients. The hoie of xmax depends heavily on

how input data of neurons was normalized. Most often, we assume xmax = 1.
For the optimal link reation, it is advisable to alternate a supply of training examples in all possible

variants of their sequential submission to a neural network. In theory, an algorithm with adaptive

onnetion readjustment an solve the problem with over�tting in deep neural networks. The idea is

that it should start its operation almost ompletely devoid of any onnetions and with a maximally

generalizing output funtion. New links are added during the ourse of training, whih leads to

a gradual derease in a degree of generalization of training examples.

� 4. Examples of building a neural network system

All the neural networks from our examples will have:

� external data inputs X(t) = (X1(t), . . . ,Xn(t));

� external data outputs Y (t) = (Y1(t), . . . , Ym(t));

� referene inputs E(t) = (E1(t), . . . , Em(t));

� a general training ontrol signal a(t);

� a general detetion of loal minimum ξ(t);

� a general detetion of paralysis p(t).

The training ontrol signal a(t) will be applied to all the neurons N i j
from our network as

ai j(t) = a(t). The general detetion signals ξ(t) and p(t) will be onstruted with a logial dis-

juntion ξ(t) = ∨ξi j(t) and p(t) = ∨pi j(t).

Example 1. Long sort-term memory network with integrated training. Our LSTMIT (LSTM +

Integrated Training) network will onsist of 9 layers (j = 1,m):

1. N1 j
th r � reurrent input layer. Aording to our notation this neurons will use equations from

model 2 partially replaed by (2.1)�(2.5).

2. N2 j
σ r � reurrent input gates. They will use equations from model 1 hanged by analogy to

(2.1)�(2.5).

3. B3 j
∗ � multiplier bloks (see model 9).

4. N4 j
σ r � reurrent forget gates. They are ompletely analogous to input gates.

5. B5 j
∗ r � reurrent multiplier bloks. Will use equations of model 9 hanged by analogy with

(2.1)�(2.3)

6. B6 j
+ � summation bloks (see model 10).

7. B7 j
th � tangent ativation bloks (see model 11).

8. N8 j
σ r � reurrent output gates. They are fully analogous to gates of layer 2 and 4.

9. B9 j
∗ re � reurrent output multiplier bloks with referene inputs e9 j(t) = Ej(t). They will use

equations of model 10, hanged by analogy with (2.6)�(2.8).

Sine we have already desribed the operation of all the models onsidered, it would be su�ient

for a full desription to de�ne only stati onnetions ci j for all the layers.
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� Gate and input layers: c1 jk = c2 jk = c4 jk = c8 jk =

{

(0, 0, k), if k = 1, n,

(9, k, 1), if k = n+ 1, n+m.

� Multiplier bloks B3 j
∗ of layer 3: c3 j1 = (1, j, 1) and c3 j2 = (2, j, 1).

� Multiplier bloks B5 j
∗r of layer 5: c5 j1 = (4, j, 1) and c5 j2 = (6, j, 1).

� Summation bloks B6 j
+ of layer 6: c6 j1 = (3, j, 1) and c6 j2 = (5, j, 1).

� Tangent bloks B7 j
th of layer 7: c7 j1 = (6, j, 1).

� Multipliers B9 j
∗re of the last layer: c

9 j
1 = (7, j, 1) and c9 j2 = (8, j, 1).

To prepare LSTMIT network for training on m ≤ MaxM etalon values, we will have to supply

this data values X(t), . . . ,X(t +m) with orresponding referene values E(t), . . . , E(t +m), while
holding the ontrol signal low: a(t) = . . . = a(t+m) = 0. To omplete one full yle of training we

will need to turn the training signal high and hold it for an additional m time steps a(t+m+ 1) =
= . . . = a(t+ 2m) = 1.

Neurons with adjustable onnetions ould be used for models, omposed of many LSTMIT networks.

However, this should be done only to LSTMIT networks without external data onnetions and only

to their �rst layers, hanging N1 j
th r to N1 j

th r c and assuming Pdeep1 = Prec = 0. At the initial time

at least half of the diret links of this layer N1 j
th r c should be disabled to suppress the over�tting.

In addition to this, we will also have to forbid a deletion of reurrent links, in order to prevent

a disruption of a base LSTM logi.

Remark 2. The main di�erene of our LSTMIT from lassial LSTM is in the introdution of

the stak memory Si j
xk

for n external data inputs of N1 j
th r, N

2 j
σ r, N

4 j
σ r and N8 j

σ r, as well as the stak

memory S9 j
e for external referene inputs of B9 j

∗ re. It is important to note, that for a model omposed

of many onsequential LSTMIT networks a stak memory is not required for inner LSTMIT without

external onnetions.

Example 2. Radial basis funtions with integrated training. This RBFIT network will onsist

of three layers (j = 1,m):

1) N1 j
Ed � Eulidean distane neurons;

2) B2 j
norm � Gaussian ativators;

3) N3 1
id e � single linear neuron with referene input e(t).

All stati onnetions are very simple and straightforward:

� for all the input neurons N1 j
Ed we have: c1 jk = (0, 0, k), where k = 1, n;

� Gaussian ativators B2 j
norm are linked diretly: c2 j1 = (1, j, 1), where j = 1,m;

� N3 1
id e is onneted to all the seond layer: c3 1k = (2, k, 1), where k = 1,m.

It is possible to use N3 1
id c e with adjustable onnetions instead of N3 1

id e. In this variant we will

onnet it at the initial time to at least half of the neurons from layer 2, and assume Pdeep1 = Prec = 0.
As a result, our network will start with a high degree of input generalization and will gradually

derease it during a training proess.

Example 3. Reurrent radial basis network for haoti series (j = 1,m):

1) B1 j
+ r � reurrent summation bloks;
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2) N2 j
Ed � Eulidean distane neurons;

3) B3 j
norm � Gaussian ativators;

4) N4 1
th r e � hyperboli tangent neuron with referene input e(t).

This network has only one data input X1(t), and all stati onnetions are very simple:

� for the �rst reurrent layer c1 j1 = (0, 0, 1) and c1 j2 = (4, 1, 1) for all j = 1,m;

� seond layer neurons N2 j
Ed are linked diretly: c2 j1 = (1, j, 1), where j = 1,m;

� Gaussian bloks B3 j
norm are also linked diretly: c3 j1 = (2, j, 1), where j = 1,m;

� N4 1
th r e is onneted to all the third layer: c4 1k = (3, k, 1), where k = 1,m.

The stak memory S1 j
x1
(t) for data inputs will be used only for bloks B1 j

+ r and the stak memory for

referene inputs S4 1
e (t) would be used only for a single neuron N4 1

th r e. A training algorithm for the

approximation of haoti sequene Y (0), Y (1), . . . , Y (n) will be omposed of two steps. At �rst we

will send X1(t0) = Y (0), X1(t0 + τ) = 0 to data inputs and E1(t0) = Y (1), E1(t0 + τ) = Y (τ + 1)
to referene inputs, while holding the training signal low: a(t0 + τ) = 0 for τ = 1, n − 1. After that
we will set the training signal to one and wait additional n yles: a(t0 + τ) = 1 for τ = n, 2n.

It is possible to use N4 1
th r c e with adjustable links instead of N4 1

th r e. In this variant we will onnet

it at the initial time to only one neuron from layer 2, and assume Pdeep1 = Prec = 0. As a result

parallel approximation branhes will be added only when they are neessary, whih will gradually

inrease the probability of suessful training.

Example 4. Convolutional neural networks CONVIT with integrated training. In base variant

this network onsists of:

1) N1 j
Conv � onvolutional layer, where j = 1, n1 and all neurons have m1 outputs;

2) B2 j
ReLu � linear reti�ation layer, where j = 1, n1m1;

3) B3 j
Pool � pooling layer, where j = 1, n1m2 and m2 ≪ m1;

4) N4 j
σe � output sigmoid layer, where j = 1, n1m3 and m3 ≪ m2.

In general ase, we assume that the input data is Il w h in the form of a 3D matrix (h = 1 for

monohrome and h = 3 for olour). We transform this three-dimensional matrix to a vetor form

aording to a standard algorithm:

Xα+l(β−1)+lw(γ−1) = iαβγ , α = 1, l β = 1, w γ = 1, h.

In addition to this, we will need to introdue the following three auxiliary funtions for working with

indies (x rest y is the remainder of x divided by y; [x] is the integer part of x):

θ(x, y) =

{

y, if y|x,
x rest y, if otherwise;

λ+(x, y) =

{

[x/y] , if y|x,
[x/y] + 1, if otherwise;

λ−(x, y) =

{

[x/y]− 1, if y|x,
[x/y] , if otherwise.
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We assume that onvolutional neurons N1 j
Conv will read the input data with a sliding window of

size f · f from eah slie of a three-dimensional matrix Il w h. Also, we restrit that this window

will move along the image with a unit step st = 1. After a onvolution operation, we will get

m1 = l1 · w1 = (l − f + 1) · (w − f + 1) data at the outputs of eah onvolutional neurons. Then

these values will pass through the linear reti�ation bloks and enter the pooling layer. We hoose

a pooling window to be of size g · g, whih �nally yields m1 = g2m2 = g2 l2 w2 and l2 = l1/g,
w2 = w1/g. In this ase, the organization of network onnetions an be arried out as follow:

� Every N1 j
Conv will have c1 j

(α−1)m1+β
(t) = (0, 0, k), where α = 1, f2h, β = 1,m1 and

k = θ(α, f) + l
{

λ+(α, f)− 1
}

+ lw
{

λ−(α, f2)
}

+ l {θ(β,w − f + 1)− 1}+ λ−(β,w − f + 1).

Suh large number of terms is responsible for �ve types of transitions when reading data with

a sliding window f · f . The term θ(α, f) is responsible for a movement along a separate ol-

umn of the sliding window, l {λ+(α, f)− 1} is inluded for a transition between this olumns,

and the term lw
{

λ−(α, f2)
}

for a transition between separate h olour layers. By analogy,

l {θ(β,w − f + 1)− 1} is responsible for a horizontal shift of the sliding window and the �nal

term λ−(β,w − f + 1) for its vertial shift.

� Seond layer B2 j
ReLu is linked diretly c2 j1 = (1, α, β), where:

j = (α− 1)m1 + β and α = 1, n1, β = 1,m1.

� For B3 j
Pool we have c

3j
k = (2, ζ, 1), j = (α− 1)m2 + β and α = 1, n1, β = 1,m2,

ζ = (α− 1)m1 + θ(k, g) + l1
{

λ+(k, g) − 1
}

+ g l1 {θ(β,w2)− 1}+ g λ−(β,w2), k = 1, g2.

The �rst term in this expression (α−1)m1 is responsible for a transition between n1 information

hannels (from n1 neurons of the �rst layer). The next term θ(k, g) denotes the movement

along the olumns of the sliding window g · g. By analogy, g l1 {θ(β,w2)− 1} is responsible for
a horizontal shift of the sliding window and g λ−(β,w2) is used for its vertial shift.

� The layer N4 j
σe is onneted as: c4jk = (3, k, 1) and k = 1, n1m2, j = 1, n1m3.

For a onsidered basi arhiteture of a onvolutional network, eah layer is, in fat, performing some

manipulation over three-dimensional data. In partiular, the �rst layer has h · l ·w input values, and

outputs n1 ·l1 ·w1 values to the next layer, whih are redued by pooling layer to n1 ·l2 ·w2. The main

option of saling suh network is to onnet suessive layers of pooling and onvolution. In this ase,

the onvolutional layers will inrease the depth of the three-dimensional data h < n1 < n2 < . . .,
and, at the same time, will redue the length and width of data l > l1 > . . . and w > w1 > . . .,
while the pooling layers will only redue the length and width without altering the depth of data.

It is possible to use N4 j
σ c e with adjustable onnetions instead of N4 j

σ e. In this variant we will

onnet it at the initial time to at least half of the neurons from layer 3, and assume Pdeep1 = Prec = 0.
As a result, a network will start with a high degree of input generalization and will gradually derease

it during the training proess. The omparison with dropout algorithm from [17℄ on MNIST data

set is presented in a table below. The overall time for a training of onvit networks was onstraint

to not exeed the orresponding training time for dropout networks for more then 20%.

Considering the high e�etiveness of dropout algorithm we an also add its support in our neuron

models. For this we will have to add some variables to store a dropout state:

� ri j(t) = (ri j1 (t), . . . , ri jk (t)) � dropout state values for outputs of N i j
... (t).
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Table 1. Comparison with dropout networks on MNIST data set

Method Unit type Arhiteture Error % Time

Dropout NN Logisti 3 layers, 1024 units 1.35 t1
Convit NN Logisti 3 layers, 1024 units 1.38 ≤ 1.2 t1
Dropout NN + max-norm RELU 3 layers, 1024 units 1.06 t2
Convit NN + max-norm RELU 3 layers, 1024 units 1.1 ≤ 1.2 t2

Updating this variables will be aording to a standard rule (pi j is inluded in neuron parameters):

∀ i, j, l ri jl (t) ∼ Bernoulli(pi j).

For example, if we would like to inorporate dropout in model 1, then we will have to hange only

the formulas for the output yi j(t) and general orretion fators δi j(t):

yi j(t) =







ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

, if ai j(t) = 0;

ri j(t) · ϕi j
(

∑

ωi j
k (t) · xi jk (t) + bi j(t)

)

, if ai j(t) = 1.

δi j(t) =















(yi j(t)− ei j(t)), for neurons with ei j ; denote them by N i j
σe ;

∑

l,p,k:

c
l p
k
(t)=(i,j,1)

∆l p
k (t) ri j(t), for neurons without ei j ; denote them by N i j

σ .

The integration of dropout in all the other neuron models will follow a similar sheme with a sole

exeption of onvolutional neurons. For them, we will have to use a dot produt for vetor output

yi j(t) and also inorporate dropout oe�ients ri jp (t) in formula (1.8) as:

ωi j
k (t+ 1) = ωi j

k (t)− µ
∑

m

xi jkm



















(yi jm (t)− ei jm (t)), for N i j
Conv e;

∑

l1,l2,p:

c
l1 l2
p (t)=(i,j,r)

∆l1 l2
p (t) ri jm (t), for N i j

Conv.

Example 5. Multilayer pereptron PERCIT with integrated training and link adjustment. In

a basi on�guration, this neural network onsists of k layers:

1. N1 j
σ � input layer, where j = 1, n1 and all neurons have n data inputs.

2. N2 j
σ c � layer with adjustable links, where j = 1, n2 and neurons have n1 inputs.

k − 1. Nk−1 j
σ c � adjustable layer, where j = 1, nk−1 and all neurons have nk−2 inputs.

k. Nk j
σ c e � output layer, where j = 1, nk and all neurons have nk−1 inputs.

The initial onnetions will be organized as follow:

� all neurons N1 j
σ are onneted to all the external inputs c1 jk = (0, 0, k), k = 1, n;

� for all other layers, we set 75% of all onnetions to be blank ci jk = (0, 0, 0), and other 25%

to be linked to random neurons from the previous layer.

For the adjustable neurons, we set the following parameters: the probability of a reurrent

onnetion Prec = 0, the probability of reating a deep link bypassing the previous layer Pdeep1 = 0.1,
the ontrol time for deleting the old links to = 4 and the maximum absolute value for input data

xmax = 1. For deep neural networks, one of the main problems of training them with gradient

methods is the vanishing gradient problem. However, if we allow the reation of deep links with a

10% probability, then we will signi�antly redue this e�et by passing through the error via several

layers.
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Remark 3. For the optimal reation of new onnetions, it is advisable to alternate the sup-

ply of training examples in all possible variants of their sequential submission. In this ase the

ondition (3.1) will be used to its full potential.

Results and Disussion

An important methodologial advantage of our approah is standardization with the development

of a universal general formalism for a broad range of neuron models. First of all, this greatly simpli�es

an integration of any new models with other ativation funtions or aggregation of the input data.

Seondly, our approah enables us to onstrut a hierarhial networks Nnet1, . . . , Nnetk, where
eah Nnetj is ontrolling the training proess of the next network Nnetj+1. For example, the �rst

network Nnet1 ould be trained to spot some basi visual stimuli in video data, whih will be used

to issue training ommand for a muh bigger seond network Nnet2. On its part this network Nnet2
ould be trained with the assistane of the Nnet1 to spot a more omplex training stimuli, maybe

not only in the video data, but in the additional audio data supplied (like verbal ommand: �train

please�) and learn to assoiate the orresponding data and issue the training signal for the next one

Nnet3, and so on.

All of the basi neuron models onsidered an be easily generalized by swithing from standard

stohasti gradient desent to a more advaned algorithm. For example, one an integrate stohasti

desent with momentum in that models, or stohasti desent with adaptive momentum estimation.
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Íåéðîííûå ñåòè ñ äèíàìè÷åñêèìè êîý��èöèåíòàìè è ïåðåñòðàèâàåìûìè ñâÿçÿìè íà îñ-

íîâå èíòåãðèðîâàííîãî îáðàòíîãî ðàñïðîñòðàíåíèÿ
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�àññìàòðèâàþòñÿ èñêóññòâåííûå íåéðîíû, ÷üè âåñîâûå êîý��èöèåíòû áóäóò èçìåíÿòüñÿ ïî ñïåöèàëü-

íîìó çàêîíó, îñíîâàííîìó íà èíòåãðèðîâàííîì â èõ ìîäåëè îáðàòíîì ðàñïðîñòðàíåíèè. Äëÿ ýòîãî êî-

ý��èöèåíòû ïîãðåøíîñòè îáðàòíîãî ðàñïðîñòðàíåíèÿ ââîäÿòñÿ â ÿâíîì âèäå âî âñå ìîäåëè íåéðîíîâ

è îñóùåñòâëÿåòñÿ ïåðåäà÷à èõ çíà÷åíèé âäîëü ìåæíåéðîííûõ ñâÿçåé. Â äîïîëíåíèå ê ýòîìó ââîäèò-

ñÿ ñïåöèàëüíûé òèï íåéðîíîâ ñ ýòàëîííûìè âõîäàìè, êîòîðûå áóäóò âûñòóïàòü â êà÷åñòâå îñíîâíîãî

èñòî÷íèêà ïåðâè÷íîé îöåíêè ïîãðåøíîñòè äëÿ âñåé íåéðîííîé ñåòè. Â ïîñëåäíþþ î÷åðåäü ââîäèòñÿ êîí-

òðîëüíûé ñèãíàë äëÿ çàïóñêà îáó÷åíèÿ, êîòîðûé áóäåò óïðàâëÿòü ïðîöåññîì ïåðåäà÷è êîý��èöèåíòîâ

ïîãðåøíîñòè è êîððåêòèðîâêîé âåñîâ íåéðîíîâ. Äëÿ ðåêóððåíòíûõ íåéðîííûõ ñåòåé äåìîíñòðèðóåòñÿ

êàê ïðîâåñòè èíòåãðàöèþ îáðàòíîãî ðàñïðîñòðàíåíèÿ âî âðåìåíè â èõ �îðìàëèçì ñ ïîìîùüþ ñòåêîâîé

ïàìÿòè äëÿ âíåøíèõ âõîäîâ íåéðîíîâ. Äîïîëíèòåëüíî ê ýòîìó ðàññìàòðèâàþòñÿ ïðèìåðû êàê �îðìàëè-

çîâàòü â ðàìêàõ äàííîãî ïîäõîäà òàêèå ïîïóëÿðíûå íåéðîííûå ñåòè, êàê ñåòè äîëãîé êðàòêîâðåìåííîé

ïàìÿòè, ñåòè ðàäèàëüíî-áàçèñíûõ �óíêöèé, ìíîãîñëîéíûå ïåðöåïòðîíû è ñâåðòî÷íûå íåéðîííûå ñå-

òè. Îñíîâíûì ïðàêòè÷åñêèì ñëåäñòâèåì äàííîãî ïîäõîäà ÿâëÿåòñÿ âîçìîæíîñòü îïèñàíèÿ íåéðîííûõ

ñåòåé ñ ïåðåñòðàèâàåìûìè ñâÿçÿìè íà îñíîâå èíòåãðèðîâàííîãî àëãîðèòìà îáðàòíîãî ðàñïðîñòðàíåíèÿ.
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