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ON LIMIT CYCLES, RESONANCE AND HOMOCLINIC STRUCTURES

IN ASYMMETRIC PENDULUM-TYPE EQUATION

Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard

equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit

cycles, which reduces to the study of the Poincaré–Pontryagin generating functions, is solved. A partition

of the parameter plane into domains with different behavior of the phase curves is constructed. Basic

phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the

question of the structure of the resonance zones, to which the solution of the problem of synchronization

of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of

solutions of the original equation in individual resonance zones, are calculated and analyzed. The global

behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is

ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the

nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On

the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original

equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point,

is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the

saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
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Introduction

The problem of the effect of an external periodic perturbation on a self-oscillatory system is

one of the classical problems in the theory of oscillations. For systems close to linear conser-

vative ones, the main results were obtained already in the papers of A. A. Andronov, A. A. Witt,

N. N. Bogolyubov, Yu. A. Mitropolsky and others. For systems close to nonlinear conservative

ones, such a problem was first considered in the papers of A. D. Morozov and L. P. Shilnikov of

the 70-80-ies. There are many papers devoted to various issues in the study of such problems, by

now. However, many problems remain unsolved and require consideration of new examples.

In this paper we study both analytically and numerically the effect of an external periodic

force in an asymmetric pendulum-type equation

ẍ+ sin x = ε[(p0 + p1ẋ+ p2 cos nx)ẋ+ p3 cos p4t], (0.1)

where p0, p1, p2, p3 > 0, p4 > 0 are parameters, ε is a small positive parameter, n ∈ N.

The unperturbed equation (ε = 0) is equivalent to the system ẋ = y, ẏ = − sin x that

corresponds to the integrable Hamiltonian system with the Hamiltonian function H(x, y) =
y2/2 − cos x. On phase cylinder {x(mod(2π)), y} it has two equilibrium points: a center (0, 0)
and a saddle (π, 0) ≡ (−π, 0).

Phase curves, which are defined by the energy integral H(x, y) = h, can be divided into two

classes:

https://doi.org/10.20537/vm190207
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Fig. 1. Phase trajectories of the unperturbed system

• phase curves not covering phase cylinder (they correspond to the values h ∈ (−1, 1));

• phase curves covering phase cylinder (they correspond to the values h > 1).

The set of phase curves (shown in blue in Fig. 1) not covering the phase cylinder forms the

region G1 of oscillatory motions of the pendulum. The set of phase curves (shown in red in Fig. 1)

covering the phase cylinder forms two regions of the rotational motions of the pendulum: G+
2

(on the upper half-cylinder) and G−
2 (on the lower half-cylinder). The oscillatory and rotational

regions are separated by two separatrix loops Γ+ = Γ+
s

⋃
Γ+
u and Γ− = Γ−

s

⋃
Γ−
u (shown in black

in Fig. 1).

Solutions of the unperturbed system are known (see, for example, [1]):

x(k, θ) = 2 arcsin (k sn(2Kθ/π)), y(k, θ) = 2k cn(2Kθ/π),

k2 = (1 + h)/2, ω = π/(2K) ∈ (0, 1)

for the region G1,

x(k, θ) = 2 am(Kθ/π), y(k, θ) = ±(2/k) dn(Kθ/π),

k2 = 2/(1 + h), ω = π/(kK) ∈ (0,+∞)
(0.2)

for the regions G±
2 . Here, ω is the frequency of motion on closed phase curves y2/2− cosx = h,

θ = ωt ∈ [0, 2π] is the angular variable, K(k) is a complete elliptic integral of the first kind, k is

its module.

In view of the fundamental significance of pendulum-type equations in the theory of nonlinear

oscillations, many papers have been devoted to their study (see, e.g., [1–6] and references therein).

Estimates of the maximal number of limit cycles for perturbed pendulum equations were obtained

in [1–4]. In particular, equation (0.1) for p0 = p1 = p3 = 0 was studied in [1–3], the main result

of which is the following theorem.

Theorem 1. There exists a sufficiently small ε∗(n) > 0 such that for any ε ∈ (0, ε∗) the

equation:

ẍ+ sin x = εp2ẋ cosnx, n ∈ N,

has exactly n−1 rough limit cycles in the region of oscillatory motions. In the region of rotational

motions, there are no limit cycles.
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According to [1–3], equation (0.1) for p1 = p3 = 0, p0 6= 0:

ẍ+ sin x = ε(p0 + p2 cosnx)ẋ, n ∈ N,

has exactly n limit cycles (n − 1 limit cycles are located in the region of oscillatory motions

and one limit cycle is on the boundary of the oscillatory and rotational regions (the saddle

limit cycle)) for p0 = p∗0 = (−1)n(4n2 − 1)−1p2. Thus, we can obtain any number of self-

oscillatory modes by setting the corresponding n ∈ N. In [1, 3] it was also shown that the

equations describing the topology of resonance zones in nonconservative systems close to the

two-dimensional Hamiltonian ones belong to the class of self-oscillatory pendulum equations.

Phase synchronization problems lead to nonautonomous pendulum equations [5].

The nonautonomous equation (0.1) for p1 = 0 (symmetric case), to which the problem of the

interaction of two coupled pendulums was reduced, was studied in [6]. In this paper, the structure

of the resonance zones was ascertained, and the conditions for the existence of Poincaré homo-

clinic structure were found. In addition, the problem of the passage of closed invariant curves

through the main resonance under variation of perturbation frequency was studied numerically at

n = 5.
Equation (0.1) in the case when autonomous perturbations destroy the symmetry of the un-

perturbed equation (that is, when p1 6= 0) has not been considered until now. The asymmetric

term in the perturbation greatly complicates the study of both autonomous and nonautonomous

equations.

Without loss of generality, we assume that p0 = −1 in equation (0.1). Writing this equation

in the form of the system and setting n = 3, we have

{
ẋ = y,

ẏ = − sin x+ ε[(−1 + p1y + p2 cos 3x)y + p3 cos p4t].
(0.3)

In this paper it will be shown that system (0.3) has a very rich dynamics, many of the features of

which for systems close to Hamiltonian ones became known only recently.

An analysis of system (0.3) involves the solution of the following problems:

• ascertain the structures of resonance zones outside the neighborhood of unperturbed sepa-

ratrices;

• determine the conditions for the existence of Poincaré homoclinic structures in a small

neighborhood of unperturbed separatrices.

Solution of these problems rests upon the solution of the problem of limit cycles for the au-

tonomous system (p3 = 0). Therefore, we will start with a study of the dynamics of an au-

tonomous system.

§ 1. Investigation of an autonomous system

Poincaré–Pontryagin generating functions

The main problem in studying system (0.3) for p3 = 0 is the problem of limit cycles. Its

solution results in finding real zeros of the Poincaré–Pontryagin generating functions [1]:

B(h(I)) ≡ B(k(h)) ≡ 1

2π

∫ 2π

0

(−1 + p1y + p2 cos 3x)yx
′
θ dθ, (1.1)

where x = x(h(I), θ), y = y(h(I), θ) are solutions of the unperturbed system on closed phase

curves y2/2− cos x = h(I); I , θ are “action–angle” variables.
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A simple real root of the equation B(k(h)) = 0 corresponds to a rough limit cycle of the

original autonomous system [1]. Calculating the integral in (1.1), we find

B1 = B1(k(h)) =
8

105π
{(1− k2)(105 + (128k4 − 80k2 + 3)p2)K(k) +

+ (−105 + (2k2 − 1)(128k4 − 128k2 + 3)p2)E(k)}
(1.2)

for the region G1,

B2 = B±
2 (k(h)) =

4

105πk7
{2(1− k2)(−27k4 + 128k2 − 128)p2K(k) +

+ (−105k6 + (2− k2)(3k4 − 128k2 + 128)p2)E(k)±
105πp1

2
(2− k2)k5}

(1.3)

for the regions G±
2 . Here, E(k) is a complete elliptic integral of the second kind.

Solution of the problem of limit cycles. Oscillatory region G1

The roots of the characteristic equation

λ2 − ε(−1 + p2)λ+ 1 = 0

determine the type of the equilibrium state (0, 0) of the perturbed system. We find λ1,2 =

ε(−1 + p2)

2
±

√
ε2(−1 + p2)

2

4
− 1. Therefore, for sufficiently small ε 6= 0 and p2 = 1, the

equilibrium state (0, 0) is a structurally unstable focus.

Let us decompose the function B1 in a neighborhood of k = 0 in a power series up to terms

of order k5, using the known expansions:

K(k) =
π

2

(
1 +

k2

4
+

9k4

64
+O(k5)

)
, E(k) =

π

2

(
1− k2

4
− 3k4

64
+O(k5)

)
.

As a result, we find

B1(k) = 2(−1 + p2)k
2 − 1

4
(1 + 35p2)k

4 +O(k5).

Since under the condition p2 = 1 (the condition for the focus (0, 0) to be structurally unstable)

the first Lyapunov exponent ℓ1 = 1 + 35p2 is nonzero, then no more than one limit cycle can be

generated from such a focus [7].

From the system

B1(k) = 0,
dB1(k)

dk
= 0

we find two bifurcation values p2 ≈ −8.481 and p2 ≈ 27.273, for each of which there is a double

limit cycle.

It is not difficult to prove the following theorem on estimating the number of limit cycles of

system (0.3) for p3 = 0 in region G1.

Theorem 2. For sufficiently small ε the number of limit cycles in region G1 of system (0.3) for

p3 = 0 does not exceed three.

The proof of this theorem reduces (see [1]) to the proof of the estimate of the number of simple

zeros of the function B1(k) on the interval (0, 1).
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Solution of the problem of limit cycles. Rotational regions G±
2

From the system

B2(k) = 0,
dB2(k)

dk
= 0

we find the curve of double cycles in parametric form

p1 = ±4k

5π

((
1024− 1536k2 + 620k4 − 54k6

)
KE+

(
−128 + 256k2 − 155k4 + 27k6

)
K

2 +

+
(
−896 + 896k2 − 161k4

)
E

2
)
/
((
512− 1024k2 + 732k4 − 220k6 + 21k8

)
K+

+
(
−512 + 768k2 − 380k4 + 62k6

)
E
)
,

p2 = 21k6
((
k2 − 2

)
K+ 4E

)
/
((
512− 1024k2 + 732k4 − 220k6 + 21k8

)
K+

+
(
−512 + 768k2 − 380k4 + 62k6

)
E
)
.

Note that the saddle value σs = −ε(1 + p2) can vanish to zero at p2 = −1, so that the double

cycle can merge with the separatrix.

Estimating the number of simple zeros of the functions B±
2 (k) on the interval (0, 1), it is not

difficult to prove the following theorem.

Theorem 3. For sufficiently small ε the number of limit cycles in each region G±
2 of sys-

tem (0.3) for p3 = 0 does not exceed two.

Note that for functions B±
2 (k) at |p1| → 0, we have k → 0 (the limit cycle in G±

2 goes to

infinity).

Solution of the problem of limit cycles. Neighborhood of the separatrix loops

The magnitude of the splitting of the unperturbed separatrices under the action of the per-

turbation can be represented in the form ∆ = ε∆1 + O(ε2). Using Melnikov formula [8], we

find

∆1 = ∆1(t0) =

∫ ∞

−∞

[−1 + p1ys(t− t0) + p2 cos 3xs(t− t0)]y
2
s(t− t0) dt, (1.4)

where xs(τ) = 2 arcsin th τ , ys(τ) = ±2/ch τ are solutions of the unperturbed system on the

separatrix. Calculating the integral in (1.4), we find

∆±
1 = 4

[
−2± πp1 +

2

35
p2

]
.

Note that B1(1) = −8

π
+

8

35π
p2, B2(1) = B±

2 (1) = −4

π
± 2p1 +

4

35π
p2. Obviously, the

expression for ∆±
1 coincides with the expression for B±

2 (1) (up to a constant). From the equations

∆±
1 = 0 (or B±

2 (1) = 0) we define the bifurcation set corresponding to the separatrix loop in the

perturbed system: 2(p2 − 35) ± 35πp1 = 0 (“plus” (“minus”) sign corresponds to a separatrix

loop on the upper (lower) half-cylinder).

When p1 = 0 (symmetric case), we have B1(1) = 2B2(1) (there are two separatrix loops – on

the upper and lower half-cylinders). When p1 6= 0 (asymmetric case), this equality is not satisfied.

In this case, for p2 = 35 (B1(1) = 0), there is a separatrix loop enclosing the equilibrium state

(0, 0) of focus type.

From the equation 2(p2 − 35) ± 35πp1 = 0, under the condition p2 = −1 (when the saddle

value vanishes to zero) we find p1 = ± 72

35π
. As a result, we obtain the extreme point (± 72

35π
,−1)

of the double cycle curve in region G±
2 , respectively.
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Fig. 2. Partition of the plane of parameters (p2, p1) into domains with different topological structures.

L1 : p2 = 1 — curve of structurally unstable focus in G1; L
±

2 : 35πp1 ± 2(p2 − 35) = 0 — curves of separatrix

loops of a saddle in G±

2 ; L±

3 : p2 = 35 — curve of separatrix loop enclosing the equilibrium state (0, 0) of focus

type; L4 : p2 = −8.481 and L5 : p2 = 27.273 — double cycle curves in G1; L6 — double cycle curve in G+
2 ;

A+(
72

35π
,−1) ∈ L+

2 — extreme point of the double cycle curve L6 in G+

2

Global result. Bifurcation diagram on the plane of parameters (p2, p1)

Since the system (0.3) for p3 = 0 is invariant under the change of variables (p1, x, y) →
(−p1,−x,−y), the partition of the plane of the parameters (p2, p1) is symmetric to the p2 axis.

Therefore, it suffices to construct a bifurcation diagram, for example, for the upper half-plane

p1 > 0.

The resulting bifurcation curves divide the upper half-plane of the plane of the parameters

(p2, p1) into 15 domains with different phase portraits topology (see Fig. 2). An enlarged fragment

of this diagram is shown in Fig. 3. The introduced notation (i, j, k) means the existence of i = 0, 3
limit cycles in G1, j = 0, 2 in G+

2 , and k = 0, 2 in G−
2 .
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Main phase portraits of the system (0.3) for p3 = 0 for the values of the parameters from

15 domains are shown in Fig. 4. They are obtained using the WInSet software [9, 10]. Stable
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Definition 1. It is said that in system (2.1) there is a resonance if the natural frequency ω and

the perturbation frequency p4 are commensurable:

ω(I) =
q

p
p4, (2.2)

where p and q are coprime integer numbers.

The level I = Ipq, found from condition (2.2), will be called the resonance level.

It is well known [1] that in the neighborhood

Uµ = {(I, θ) : Ipq − Cµ < I < Ipq + Cµ, 0 6 θ < 2π, C = const > 0}, µ =
√
ε,

of the individual resonance level I = Ipq (it will be called the resonance zone) the system (2.1)

reduces to an equation of the form

d2v

dτ 2
− bA(v, Ipq) = µσ(v, Ipq)

dv

dτ
, (2.3)

where

A(v, Ipq) =
1

2πp

∫ 2πp

0

[(−1 + p1y + p2 cos 3x)y + p3 cosϕ]x
′
θ
∣

∣

∣

∣

x=x(Ipq,v+qϕ/p)
y=y(Ipq ,v+qϕ/p)

dϕ,

σ(v, Ipq) =
1

2πp

∫ 2πp

0

((−1 + 2p1y + p2 cos 3x))
∣

∣

∣

∣

x=x(Ipq,v+qϕ/p)
y=y(Ipq,v+qϕ/p)

dϕ,

θ = v + qϕ/p, τ = µt, b = dω(Ipq)/dI .

It is equation (2.3) that will interest us, since it determines the topology of individual resonance

zones up to terms of order µ2. A simple stable (unstable) equilibrium state of the averaged

equation (2.3) corresponds to a stable (unstable) periodic resonance solution of period
2πp

p4q
in the

initial system.

When calculating the functions A(v, Ipq) and σ(v, Ipq), and also the quantity b, we distinguish

the following cases: 1) (x, y) ∈ G1; 2) (x, y) ∈ G±
2 . In this connection, we represent the function

A(v, Ipq) in the form Aj(v, Ipq) = Ãj(v, Ipq) + Bj(Ipq) and designate σ = σj , b = bj , j = 1, 2,
where the constant Bj is the Poincaré–Pontryagin generating function at the resonance value in

the corresponding region.

The following definition gives a classification of the resonance levels for the averaged equa-

tion of the first approximation [1].

Definition 2. A level I = Ipq is called splittable resonance level if the equation Aj(v, Ipq) = 0
has simple roots. The splittable resonance level I = Ipq is called partially passable, if

Bj(Ipq) 6= 0, and impassable, if Bj(Ipq) = 0. The nonsplittable resonance level I = Ipq, for

which |Aj(v, Ipq)| > 0, is called passable.

The first approximation of the averaged equation does not describe the behavior of the solu-

tions of the initial system, since it is conservative, while the perturbation in the initial system is

nonconservative. Therefore, it is natural to consider the averaged equation of the second approx-

imation, the phase portraits of which for q = 1 are shown in Fig. 5 in the case of passable (a),

partly passable (b) and impassable (c) resonances.
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Averaged equation for the oscillatory region G1

The averaged equation for the region G1 for odd p and q = 1 has the form

d2v

dτ 2
− b1(p3A1 cos pv +B1) = µσ1

dv

dτ
,

where

A1 = 4
ap/2

1 + ap
, a = exp

(
−π

K(
√
1− ρ)

K(ρ)

)
, b1 =

π2

16

(1− k2)K− E

k2(1− k2)K3
,

σ1 = −1− p2
(31− 144k2 + 128k4)K− (46− 256k2 + 256k4)E

15K
,

B1 is defined by formula (1.2), k2 = k2(hpq) = (1 + hpq)/2.
For even p and/or q > 1 we obtain the equation

d2v

dτ 2
− b1B1 = µσ1

dv

dτ
. (2.4)

Thus, in this case the resonance levels with odd p and q = 1 are split. Moreover, since

the natural frequency ω(I) is a monotonic function and ω(I) ∈ (0, 1), then it follows from the

resonance relation (2.2) that p > p4. Because of this, the splittable resonance levels are the

resonance levels I = Ip1 for which p > p4 and p is odd.

According to (2.4), for even p and/or q > 1, the resonance levels are passable, if B1(Ipq) 6= 0.

Averaged equation for the rotational regions G±
2

The averaged equation for the regions G±
2 for q = 1 has the form

d2v

dτ 2
− b2(p3A2 cos pv +B2) = µσ2

dv

dτ
,

A2 = A±
2 = ±2

ap

1 + a2p
, a = exp

(
−π

K(
√
1− ρ)

K(ρ)

)
, b2 =

π2

4

E

(1− k2)K3
,

σ2 = σ±
2 = −1± 2p1π

kK
+

p2((−256 + 384k2 − 158k4 + 15k6)K+ (256− 256k2 + 46k4)E)

15k6K
,

B2 is defined by formula (1.3), k2 = k2(hpq) = 2/(1 + hpq).
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For q > 1 we obtain the equation

d2v

dτ 2
− b2B2 = µσ2

dv

dτ
. (2.5)

Thus, in this case the resonance levels I = Ip1 (p is any number satisfying the resonance

condition (2.2)) are split. According to (2.5), for q > 1 and B2(Ipq) 6= 0, the resonance levels are

passable.

On the global behavior of solutions outside the neighborhood of unperturbed separatrices

The resonance condition (2.2) determines a countable set of resonance levels I = Ipq. There

are splittable (partially passable and impassable) and nonsplittable (passable) resonance levels.

In the neighborhood of passable resonance levels the qualitative behavior of the solutions of the

original system is analogous to the behavior of solutions of the autonomous system. According

to the results of investigations of an autonomous perturbed system, the number of impassable

resonance levels (for which Bj(Ipq) = 0, j = 1, 2) is finite. Namely, the number of such

levels in the region G1 is no more than three, and in each region G±
2 is no more than two.

It is well known [1] that in the case of a nonconservative system (which is our system under

consideration), there are a finite number of partially passable resonance levels in regions that

do not contain finite neighborhoods of impassable resonance levels, as well as a neighborhood

of unperturbed separatrices. It follows that for a sufficiently small ε, the neighborhoods of the

splittable resonance levels do not intersect. Knowledge of the qualitative behavior of solutions

in the neighborhood of individual splittable resonance levels allows us to establish the global

qualitative behavior of the solutions of the original system. According to [1], the separatrices of

resonance saddle periodic solutions corresponding to different splittable resonance levels intersect.

Numerical analysis

Using the WInSet software [9, 10], the Poincaré map for the system (0.3) was constructed. A

good correspondence of the numerical results with the theoretical study was established.

Figure 6 shows the structure of the neighborhood of the splittable resonance level I = I31 for

different values of the parameter p4 in the region G1. By changing the value of the parameter

p4 (for fixed values of the remaining parameters), we change the position of the resonance level

relative to the level generating the limit cycle in the autonomous system. The structure of the

partially passable resonance zone is shown in figures 6 (a) and (c). In addition to the separatrices

of saddle periodic points of period-3, a closed invariant curve of the Poincaré map is shown

here. Figure 6 (b) illustrates the case of synchronization of oscillations, when the resonance level

coincides with the level in the neighborhood of which the autonomous system has a limit cycle.

The dots correspond to stable periodic points of period-3, and also the unstable fixed point of the

Poincaré map. Stable (unstable) separatrices are shown in red (blue).

To illustrate the global behavior of solutions, we consider the region G+
2 . Let us fix the

parameter p2 = 120. From the system





B+
2 (k1; p1) = 0,

B+
2 (k2; p1) = 0,

p4 = 1ω(k1) = 2ω(k2),

we find p1 ≈ 0.3223, k1 ≈ 0.592494, k2 ≈ 0.9024395 and p4 ≈ 3.039. Here, according to (0.2),

ω = π/(kK). Under these conditions, the autonomous system has two limit cycles in region

G+
2 , generated by the levels k = k1 and k = k2. Moreover, the level k = k1 coincides with the
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(p2, p1) ∈ L+
2 ((p2, p1) ∈ L−

2 )1 for which the separatrix loop Γ+ (Γ−) is conserved in the perturbed

autonomous system. In addition, for the values of the parameters (p2, p1) ∈ L±
3 ((p2, p1) ∈ L∓

3 ;

L∓
3 : p2 = 35, p1 < 0) there exists the loop Γ± (Γ∓) when the separatrices Γ+

s and Γ−
u (Γ−

s and

Γ+
u ) coincide2.

It is well known that under the action of nonautonomous perturbations the separatrices of the

saddle fixed point of the Poincaré map can intersect, forming the so-called Poincaré homoclinic

structure. We denote by W s
+ and W s

− (W u
+ and W u

−) the stable (unstable) invariant curves (separa-

trices) of the saddle fixed point of the Poincaré map. We can distinguish two types of homoclinic

structures:

1. W s
+

⋂
W u

+ 6= ⊘ and/or W s
−

⋂
W u

− 6= ⊘;

2. W s
+

⋂
W u

− 6= ⊘ and/or W s
−

⋂
W u

+ 6= ⊘.

The occurrence of homoclinic structures of the first type is due to the presence of a separatrix

loop Γ+ and/or Γ−, the second type is due to the presence of a separatrix loop Γ± or Γ∓ in the

perturbed autonomous system.

Melnikov analytical method

The problem of the existence of first type homoclinic structure is solved using the Melnikov

formula [8] ∆(t0) = ε∆1(t0) + O(ε2), which is analogous to that used by us in determining

the magnitude of the splitting of unperturbed separatrices under the action of an autonomous

perturbation. Here the function ∆1(t0) determines (up to terms of order ε) the distance between

the stable and unstable separatrices of the saddle fixed point of the Poincaré map. Before applying

this formula, we transform the original system so that in the equilibrium state (π, 0) of the saddle

type of the unperturbed system the perturbation vanishes for any values of t. In system (0.3), we

make the substitution x = ξ + εx1(t) +O(ε2), where

x1(t) = − p3
1 + p42

cos (p4t),

replace ξ by x, as a result of which we obtain the system






ẋ = y,

ẏ = − sin x+ ε

[
(−1 + p1y + p2 cos 3x)y +

p3(1 + cosx)

1 + p42
cos p4t

]
.

(3.1)

Applying the Melnikov formula to this system, we obtain

∆1(t0) =

∫ ∞

−∞

[(−1 + p1ys(t− t0) + p2 cos (3xs(t− t0)))ys(t− t0) +

+
p3(1 + cos (xs(t− t0)))

1 + p24
cos p4t

]
ys(t− t0) dt, (3.2)

where the solution xs(τ), ys(τ) of the unperturbed equation on the separatrix has the form:

xs(τ) = 2 arcsin (th τ), ys(τ) = ± 2

ch τ
.

Calculating the integral in (3.2), we find

∆1(t0) = ∆±
1 (t0) = −8± 4πp1 +

8

35
p2 ±

2πp3
ch(πp4/2)

cos (p4t0).

1See Fig. 2.
2Such loops are absent in the unperturbed system.



240 O. S. Kostromina

MECHANICS 2019. Vol. 29. Issue 2

PSfrag replacements

1

0.5

0

-0.5

-1

-20 0 20 40 60 80 100

p1

p2

L+
21

L+
2

L+
22 L±

32 L±
3 L±

31 L−
21 L−

2

L−
22

L∓
31L∓

3L∓
32

Fig. 8. Bifurcation diagram for the Poincaré map for system (3.1) at ε = 0.001, p3 = 15, p4 = 3

If ∆±
1 (t0) is an alternating function, then there is a transversal intersection of the stable and

unstable separatrices of the saddle fixed point. From the system ∆±
1 (t0) = 0,

(
d∆±

1 /dt0
)
(t0) = 0

we find condition

p1 = ± 1

2π

(
4− 4

35
p2 ±

πp3
ch(πp4/2)

)

under which the quadratic tangency of the corresponding separatrices of the saddle fixed point

takes place.

Numerical results. Bifurcation diagram

Using the WInSet and Maple 13 software, we constructed a bifurcation diagram for the

Poincaré map induced by system (3.1), which describes the main cases of the relative position

of the separatrices of the saddle fixed point (see Fig. 8). The bifurcation curves in this diagram

are shown in bold color, the remaining lines are auxiliary. Around the auxiliary lines (on which

the structurally unstable structures of the autonomous equation take place), certain regions arise

which we call homoclinic zones.

The behavior of the separatrices of the saddle fixed point of the Poincaré map for system (3.1)

on different curves of this bifurcation diagram are shown in Fig. 9. Homoclinic structures on

curves L∓
3 , L∓

31, L
∓
32 are not shown here, since they can be obtained by rotating angle π of the

corresponding structure on curves L±
3 , L±

31, L
±
32. This is due to the inherited symmetry of the

partition of the parameters plane for the autonomous case.

Of particular interest is the homoclinic zones with piecewise smooth boundaries. For the

first time the structure of such zones and its boundaries for a two-parameter family of mappings

with the figure-eight of a dissipative saddle was described in [11]. Then in [12] similar results

were obtained for an asymmetric Duffing–Van-der-Pol equation, close to an integrable one with

a homoclinic figure-eight. In this paper, the structure of such homoclinic zones was studied in

detail using numerical analysis. Such features of the dynamics of systems close to Hamiltonian

ones have not been known before. Comparing the results obtained here with the results of

papers [11, 12], we conclude that for an asymmetric pendulum-type equation, the structure of

homoclinic zones with piecewise smooth boundaries is similar.
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Fig. 9. Behavior of the separatrices of the saddle fixed point of the Poincaré map for system (3.1) on different

curves of the bifurcation diagram in Fig. 8

Namely, the boundaries of such zones are formed by an infinite number of bifurcation curves with

different quadratic homoclinic tangencies, which accumulate to the bold points on the bifurcation

diagram. The points of the transversal intersection of these curves, that is, the points at which

the smoothness of the boundaries of homoclinic zones under study is violated, correspond to

double quadratic tangencies. After crossing, these curves continue into the homoclinic zone and

terminate at points of cubic homoclinic tangencies (for details, see [11, 12]).
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О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравне-

нии маятникового типа

Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2019.

Т. 29. Вып. 2. С. 228–244.

Ключевые слова: уравнение маятникового типа, предельные циклы, резонансы, гомоклинические

структуры Пуанкаре.

УДК 517.925.42

DOI: 10.20537/vm190207

Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового

типа, близкого к интегрируемому стандартному уравнению математического маятника. Для авто-

номного уравнения решается проблема предельных циклов, которая сводится к исследованию по-

рождающих функций Пуанкаре–Понтрягина. Строится разбиение плоскости параметров на области

с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области

полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных

зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные

уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивиду-

альных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений

в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналити-

ческого метода Мельникова и численного моделирования изучаются основные бифуркации неавто-

номного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости

основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожден-

ного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис

седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для

которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими

бифуркационными границами.

Финансирование. Работа выполнена при поддержке РФФИ (грант № 18–01–00306).
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