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ON LIMIT CYCLES, RESONANCE AND HOMOCLINIC STRUCTURES
IN ASYMMETRIC PENDULUM-TYPE EQUATION

Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard
equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit
cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition
of the parameter plane into domains with different behavior of the phase curves is constructed. Basic
phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the
question of the structure of the resonance zones, to which the solution of the problem of synchronization
of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of
solutions of the original equation in individual resonance zones, are calculated and analyzed. The global
behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is
ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the
nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On
the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original
equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point,
is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the
saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
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Introduction

The problem of the effect of an external periodic perturbation on a self-oscillatory system is
one of the classical problems in the theory of oscillations. For systems close to linear conser-
vative ones, the main results were obtained already in the papers of A. A. Andronov, A. A. Witt,
N. N. Bogolyubov, Yu. A. Mitropolsky and others. For systems close to nonlinear conservative
ones, such a problem was first considered in the papers of A.D.Morozov and L. P. Shilnikov of
the 70-80-ies. There are many papers devoted to various issues in the study of such problems, by
now. However, many problems remain unsolved and require consideration of new examples.

In this paper we study both analytically and numerically the effect of an external periodic
force in an asymmetric pendulum-type equation

I+ sinx = €[(po + p1& + pe cosnx)i + ps cos pat], (0.1)

where pg, p1, P2, p3 > 0, py > 0 are parameters, ¢ is a small positive parameter, n € N.

The unperturbed equation (¢ = 0) is equivalent to the system © = y, y = —sinz that
corresponds to the integrable Hamiltonian system with the Hamiltonian function H(z,y) =
y*/2 — cos z. On phase cylinder {z(mod(27)),y} it has two equilibrium points: a center (0,0)
and a saddle (7,0) = (—,0).

Phase curves, which are defined by the energy integral H(z,y) = h, can be divided into two
classes:
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Fig. 1. Phase trajectories of the unperturbed system

e phase curves not covering phase cylinder (they correspond to the values h € (—1, 1));
e phase curves covering phase cylinder (they correspond to the values h > 1).

The set of phase curves (shown in blue in Fig. 1) not covering the phase cylinder forms the
region GG; of oscillatory motions of the pendulum. The set of phase curves (shown in red in Fig. 1)
covering the phase cylinder forms two regions of the rotational motions of the pendulum: G3
(on the upper half-cylinder) and G5 (on the lower half-cylinder). The oscillatory and rotational
regions are separated by two separatrix loops '™ =T'f |JTI'f and '™ =T T, (shown in black
in Fig. 1).

Solutions of the unperturbed system are known (see, for example, [1]):

x(k,0) = 2arcsin (ksn(2K0/7)), y(k,0) = 2k cn(2K6/7),
K =(1+h)/2, w=7/2K)e (0,1)

for the region G,

x(k,0) =2am(K0/7), y(k,0) ==+(2/k)dn(K6o/7),

K =2/(1+h), w=7/(kK)€ (0,+00) ©0-2)

for the regions G5. Here, w is the frequency of motion on closed phase curves y?/2 — cosz = h,
0 = wt € [0, 27] is the angular variable, K (k) is a complete elliptic integral of the first kind, & is
its module.

In view of the fundamental significance of pendulum-type equations in the theory of nonlinear
oscillations, many papers have been devoted to their study (see, e.g., [|-6] and references therein).
Estimates of the maximal number of limit cycles for perturbed pendulum equations were obtained
in [1-4]. In particular, equation (0.1) for py = p; = p3 = 0 was studied in [1-3], the main result
of which is the following theorem.

Theorem 1. There exists a sufficiently small ,.(n) > 0 such that for any ¢ € (0,¢,) the
equation:

T+ sinz = epyrcosnr, n €N,

has exactly n—1 rough limit cycles in the region of oscillatory motions. In the region of rotational
motions, there are no limit cycles.
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According to [1-3], equation (0.1) for p; = p3 = 0, py # O:
I+ sinx = e(pg + ppcosnx)i, n €N,

has exactly n limit cycles (n — 1 limit cycles are located in the region of oscillatory motions
and one limit cycle is on the boundary of the oscillatory and rotational regions (the saddle
limit cycle)) for py = pj = (—1)"(4n® — 1)"'py. Thus, we can obtain any number of self-
oscillatory modes by setting the corresponding n € N. In [I, 3] it was also shown that the
equations describing the topology of resonance zones in nonconservative systems close to the
two-dimensional Hamiltonian ones belong to the class of self-oscillatory pendulum equations.

Phase synchronization problems lead to nonautonomous pendulum equations [5].

The nonautonomous equation (0.1) for p; = 0 (symmetric case), to which the problem of the
interaction of two coupled pendulums was reduced, was studied in [6]. In this paper, the structure
of the resonance zones was ascertained, and the conditions for the existence of Poincaré homo-
clinic structure were found. In addition, the problem of the passage of closed invariant curves
through the main resonance under variation of perturbation frequency was studied numerically at
n =o.

Equation (0.1) in the case when autonomous perturbations destroy the symmetry of the un-
perturbed equation (that is, when p; # 0) has not been considered until now. The asymmetric
term in the perturbation greatly complicates the study of both autonomous and nonautonomous
equations.

Without loss of generality, we assume that py = —1 in equation (0.1). Writing this equation
in the form of the system and setting n = 3, we have
T =y,
. Y . (0.3)
y = —sinz + e[(—1 + p1y + p2 cos 3x)y + p3 cos pyt].

In this paper it will be shown that system (0.3) has a very rich dynamics, many of the features of
which for systems close to Hamiltonian ones became known only recently.
An analysis of system (0.3) involves the solution of the following problems:

e ascertain the structures of resonance zones outside the neighborhood of unperturbed sepa-
ratrices;

e determine the conditions for the existence of Poincaré homoclinic structures in a small
neighborhood of unperturbed separatrices.

Solution of these problems rests upon the solution of the problem of limit cycles for the au-
tonomous system (p3 = 0). Therefore, we will start with a study of the dynamics of an au-
tonomous system.

§ 1. Investigation of an autonomous system
Poincaré-Pontryagin generating functions

The main problem in studying system (0.3) for p3 = 0 is the problem of limit cycles. Its
solution results in finding real zeros of the Poincaré-Pontryagin generating functions [1]:

1 2
B(h(I)) = B(k(h)) = Dy / (=1 + p1y + po cos 3x)yx), db, (1.1)
0
where © = z(h(]),0), y = (h([ ) 0) are solutions of the unperturbed system on closed phase

curves y?/2 — cos ¥ = ( ); I, 0 are “action—angle” variables.
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A simple real root of the equation B(k(h)) = 0 corresponds to a rough limit cycle of the
original autonomous system [1]. Calculating the integral in (1.1), we find

By = By(k(h)) = %{(1 — k%)(105 + (128%* — 80k? + 3)p2)K (k) + (1.2)

+ (=105 + (2k% — 1)(128k* — 128k + 3)p2)E(k)}

for the region G,

By = By (k(h)) = {2(1 — k*)(—27k* + 128K* — 128)p.K (k) +

(1.3)
1057Tp1 (2 _ ]{32)]{35}

1057k
+ (—105k° + (2 — k*)(3k* — 128k? + 128)py) E(k) +

for the regions G5. Here, E(k) is a complete elliptic integral of the second kind.
Solution of the problem of limit cycles. Oscillatory region GG

The roots of the characteristic equation
M —e(—=1+p)A+1=0

determine the type of the equilibrium state (0,0) of the perturbed system. We find A\, =
e(=1+ps) " (=1 +p2)?
2
equilibrium state (0, 0) is a structurally unstable focus.
Let us decompose the function B; in a neighborhood of £ = 0 in a power series up to terms
of order £°, using the known expansions:

— 1. Therefore, for sufficiently small ¢ # 0 and p; = 1, the

T k2 9okt s T kK?  3k* 5

As a result, we find
1
By (k) = 2(—1+ po)k? — 7+ 35py)k* 4+ O(KP).

Since under the condition p, = 1 (the condition for the focus (0,0) to be structurally unstable)
the first Lyapunov exponent /; = 1 4 35p, is nonzero, then no more than one limit cycle can be
generated from such a focus [7].

From the system
dB (k)

dk

we find two bifurcation values p, ~ —8.481 and p, ~ 27.273, for each of which there is a double
limit cycle.

It is not difficult to prove the following theorem on estimating the number of limit cycles of
system (0.3) for p3 = 0 in region G.

Bl(k) — 0, = 0

Theorem 2. For sufficiently small € the number of limit cycles in region G, of system (0.3) for
p3 = 0 does not exceed three.

The proof of this theorem reduces (see [1]) to the proof of the estimate of the number of simple
zeros of the function B (k) on the interval (0, 1).
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Solution of the problem of limit cycles. Rotational regions G5

From the system
dBs (k)

dk
we find the curve of double cycles in parametric form

=0

Bz(k) =0,

Ak
pr = F=— ((1024 — 1536k" + 620k" — 54k°) KE + (128 + 256k” — 155" + 27k") K* +
™

+ (—896 + 896> — 161k*) E?) / ((512 — 1024k + 732k* — 220K° + 21k°) K +
+ (=512 + 768k> — 380k" + 62k°) E) ,

po =21k ((k* = 2) K+ 4E) / (512 — 1024k* 4 732k — 220k° + 21k%) K +
+ (—512 4 768k* — 380k" + 62k°) E) .

Note that the saddle value o0, = —(1 + py) can vanish to zero at p, = —1, so that the double
cycle can merge with the separatrix.

Estimating the number of simple zeros of the functions B (k) on the interval (0, 1), it is not
difficult to prove the following theorem.

Theorem 3. For sufficiently small € the number of limit cycles in each region G of sys-
tem (0.3) for ps = 0 does not exceed two.

Note that for functions B3 (k) at [p;| — 0, we have k& — 0 (the limit cycle in G5 goes to
infinity).

Solution of the problem of limit cycles. Neighborhood of the separatrix loops

The magnitude of the splitting of the unperturbed separatrices under the action of the per-
turbation can be represented in the form A = €A; + O(e?). Using Melnikov formula [8], we
find

o0

A = Aq(ty) = / [—1 4 prys(t — to) + pacos 3x,(t — to)]y2(t — o) dt, (1.4)

where z4(7) = 2arcsinth, ys(7) = £2/ch 7 are solutions of the unperturbed system on the
separatrix. Calculating the integral in (1.4), we find

2
AT =4|-24 o] .
1 { 7rp1+35p2

8 8 4 4 .
Note that By(1) = —— + T By(1) = BF(1) = —— £ 2p; + 3P Obviously, the
m s m T
expression for A} coincides with the expression for B3 (1) (up to a constant). From the equations

AF =0 (or B (1) = 0) we define the bifurcation set corresponding to the separatrix loop in the
perturbed system: 2(p, — 35) £ 357mp; = 0 (“plus” (“minus™) sign corresponds to a separatrix
loop on the upper (lower) half-cylinder).

When p; = 0 (symmetric case), we have B;(1) = 2B5(1) (there are two separatrix loops — on
the upper and lower half-cylinders). When p; # 0 (asymmetric case), this equality is not satisfied.
In this case, for p, = 35 (B;(1) = 0), there is a separatrix loop enclosing the equilibrium state
(0,0) of focus type.

From the equation 2(py — 35) & 357p; = 0, under the condition p; = —1 (when the saddle

72
value vanishes to zero) we find p; = if' As a result, we obtain the extreme point (if’ —1)
™ ™

of the double cycle curve in region G5, respectively.
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Fig. 2. Partition of the plane of parameters (p2, p1) into domains with different topological structures.
L1 : po = 1 — curve of structurally unstable focus in G1; Lgﬁ : 35mp1 £ 2(p2 — 35) = 0 — curves of separatrix
loops of a saddle in GQi; L;f : p2 = 35 — curve of separatrix loop enclosing the equilibrium state (0, 0) of focus
type; Ly : po = —8.481 and L5 : po = 27.273 — double cycle curves in G1; Lg — double cycle curve in G;“;

A+(375—27r, —1) € L} — extreme point of the double cycle curve Lg in G5

Global result. Bifurcation diagram on the plane of parameters (ps, p;)

Since the system (0.3) for p3 = 0 is invariant under the change of variables (p;,z,y) —
(—p1, —x, —y), the partition of the plane of the parameters (py, p;) is symmetric to the py axis.
Therefore, it suffices to construct a bifurcation diagram, for example, for the upper half-plane
p1 > 0.

The resulting bifurcation curves divide the upper half-plane of the plane of the parameters
(p2, p1) into 15 domains with different phase portraits topology (see Fig. 2). An enlarged fragment
of this diagram is shown in Fig. 3. The introduced notation (7, j, k) means the existence of i = 0, 3
limit cycles in G, j = 0,2 in G5, and k = 0,2 in G

Fig. 3. Enlarged fragment of Fig. 2

Main phase portraits of the system (0.3) for p3 = 0 for the values of the parameters from
15 domains are shown in Fig. 4. They are obtained using the WInSet software [9, 10]. Stable
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(unstable) limit cycles are shown in blue (red) color, the separatrices of the saddle are shown in
black.

-1.6 0.0 1.6
x
P1 = 0.4,p2 =120

-1.6 0%0 1.6
pP1 = 0.55,]92 =120

Fig. 4. Phase portraits of the system (0.3) for p3 = 0 and different values of parameters p;, ps

§ 2. Investigation of a nonautonomous system. Resonances

First of all, in the regions separated from the unperturbed separatrices, we pass in the sys-
tem (0.3) from the variables = and y to the “I action—# angle” variables. As a result, we obtain
the system

I = e[(—1 4 p1y + p2 cos 3z)y + ps cos ¢z},
0 = w(I) — e[(—=1 + p1y + pa cos 3x)y + ps3 cos |z, (2.1
» = pa.
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Definition 1. It is said that in system (2.1) there is a resonance if the natural frequency w and
the perturbation frequency p, are commensurable:

w(l) = 4p,, (22)
p
where p and ¢ are coprime integer numbers.

The level I = I, found from condition (2.2), will be called the resonance level.
It is well known [1] that in the neighborhood

U,={(1,0): I, —Cu < I <I,+Cu, 0<0<2m, C=const>0}, p=-+/¢,

of the individual resonance level I = I, (it will be called the resonance zone) the system (2.1)
reduces to an equation of the form

d*v dv

7 9 bA(Uv ]pq> = MU(Uv IPQ)Ev

7 (2.3)

where

1 2mp
Av, Ly) = / [(—1 + p1y + p2 cos 3z)y + ps3 cos p|zy r=a(Ipgvtap/p) AP

2mp Jo y=y(Ipq,v+q¢/p)
1 27Tp
U(Ua ]pq) - 2— / ((_1 + 2p1y + P2 COS 3l‘)) xzﬂﬁ(lpqm‘f'qso/p) d(p’
™ Jo y=Y(Ipq,v+q/p)

0 =v+qp/p, T =put,b=dw(l,,)/dl.
It is equation (2.3) that will interest us, since it determines the topology of individual resonance
zones up to terms of order u. A simple stable (unstable) equilibrium state of the averaged
2
equation (2.3) corresponds to a stable (unstable) periodic resonance solution of period P iy the

o Pbaq
initial system.

When calculating the functions A(v, I,,,) and o(v, I,,), and also the quantity b, we distinguish
the following cases: 1) (z,y) € G1; 2) (z,y) € G5. In this connection, we represent the function
A(v, L) in the form A;(v, I,,) = A;(v, Iq) + B;(I,,) and designate o = o, b = bj, j = 1,2,
where the constant B; is the Poincaré-Pontryagin generating function at the resonance value in
the corresponding region.

The following definition gives a classification of the resonance levels for the averaged equa-
tion of the first approximation [1].

Definition 2. A level I = [, is called splittable resonance level if the equation A;(v, I,,) =0
has simple roots. The splittable resonance level I = 1I,, is called partially passable, if
B;(I,,) # 0, and impassable, if B;(l,,) = 0. The nonsplittable resonance level I = I, for
which |A;(v, I,;)| > 0, is called passable.

The first approximation of the averaged equation does not describe the behavior of the solu-
tions of the initial system, since it is conservative, while the perturbation in the initial system is
nonconservative. Therefore, it is natural to consider the averaged equation of the second approx-
imation, the phase portraits of which for ¢ = 1 are shown in Fig. 5 in the case of passable (a),
partly passable (b) and impassable (c) resonances.
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Fig. 5. Phase portraits for equation (2.3)

Averaged equation for the oscillatory region GG,

The averaged equation for the region (G; for odd p and ¢ = 1 has the form

d*v dv
a2 bi(p3Ai cospv + By) = :u0-1%7
where p ) )
P K(/1— 1-kK-E
A1:4a ,  a=exp —WM , blzﬂ—( ) ,
14 a? K(p) 16 k%2(1 — k?)K3
(31 — 144k? 4+ 128k")K — (46 — 256k> + 256k*)E
or=—1—ps

15K ’

By is defined by formula (1.2), k% = k?(hyy) = (1 + hyy) /2.
For even p and/or ¢ > 1 we obtain the equation

d*v dv
W — blBl = MO’lE.

(2.4)

Thus, in this case the resonance levels with odd p and ¢ = 1 are split. Moreover, since
the natural frequency w(/) is a monotonic function and w(I) € (0, 1), then it follows from the
resonance relation (2.2) that p > p,. Because of this, the splittable resonance levels are the
resonance levels I = I,,; for which p > p, and p is odd.

According to (2.4), for even p and/or ¢ > 1, the resonance levels are passable, if B;(1,,) # 0.

Averaged equation for the rotational regions G5

The averaged equation for the regions G5 for ¢ = 1 has the form

d*v dv
a2 ba(p3 Az cospu + By) = MO-QEu
P K(v1—p) w2 E
Ay— A =42 L 4= EWl-p o T B
2= =T ¢ exP( "TKp ) 7T 10-BKY
. oo pa((—256 + 384k2 — 158k* + 15k%)K + (256 — 256k + 46k*)E)
2o Tl Y I5K0K |

By is defined by formula (1.3), k% = k?(h,,) = 2/(1 + hy,).
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For ¢ > 1 we obtain the equation

—_— — bQBQ = o9 —. (25)

Thus, in this case the resonance levels I = I,; (p is any number satisfying the resonance
condition (2.2)) are split. According to (2.5), for ¢ > 1 and Bs(1,,) # 0, the resonance levels are
passable.

On the global behavior of solutions outside the neighborhood of unperturbed separatrices

The resonance condition (2.2) determines a countable set of resonance levels I = I,,. There
are splittable (partially passable and impassable) and nonsplittable (passable) resonance levels.
In the neighborhood of passable resonance levels the qualitative behavior of the solutions of the
original system is analogous to the behavior of solutions of the autonomous system. According
to the results of investigations of an autonomous perturbed system, the number of impassable
resonance levels (for which B;(1,,) = 0, j = 1,2) is finite. Namely, the number of such
levels in the region G is no more than three, and in each region G is no more than two.
It is well known [1] that in the case of a nonconservative system (which is our system under
consideration), there are a finite number of partially passable resonance levels in regions that
do not contain finite neighborhoods of impassable resonance levels, as well as a neighborhood
of unperturbed separatrices. It follows that for a sufficiently small ¢, the neighborhoods of the
splittable resonance levels do not intersect. Knowledge of the qualitative behavior of solutions
in the neighborhood of individual splittable resonance levels allows us to establish the global
qualitative behavior of the solutions of the original system. According to [1], the separatrices of
resonance saddle periodic solutions corresponding to different splittable resonance levels intersect.

Numerical analysis

Using the WInSet software [9, 10], the Poincaré map for the system (0.3) was constructed. A
good correspondence of the numerical results with the theoretical study was established.

Figure 6 shows the structure of the neighborhood of the splittable resonance level I = I3 for
different values of the parameter p, in the region (G;. By changing the value of the parameter
p4 (for fixed values of the remaining parameters), we change the position of the resonance level
relative to the level generating the limit cycle in the autonomous system. The structure of the
partially passable resonance zone is shown in figures 6 (a) and (c). In addition to the separatrices
of saddle periodic points of period-3, a closed invariant curve of the Poincaré map is shown
here. Figure 6 (b) illustrates the case of synchronization of oscillations, when the resonance level
coincides with the level in the neighborhood of which the autonomous system has a limit cycle.
The dots correspond to stable periodic points of period-3, and also the unstable fixed point of the
Poincaré map. Stable (unstable) separatrices are shown in red (blue).

To illustrate the global behavior of solutions, we consider the region G5. Let us fix the
parameter p, = 120. From the system

B;(kl;pl) =0,
B;(kb;pl) =0,
P4 = 1w(k1) = 2&](]4]2),

we find p; ~ 0.3223, k; ~ 0.592494, ky ~ 0.9024395 and p, =~ 3.039. Here, according to (0.2),
w = 7/(kK). Under these conditions, the autonomous system has two limit cycles in region
G5, generated by the levels k = k; and k = k,. Moreover, the level & = k; coincides with the
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Fig. 6. The behavior of invariant curves of the Poincaré map for the system (0.3) at £ = 0.001, p; = 0.3, p2 = 5,
p3 = 400 and (a) ps = 2.65; (b) ps = 2.8; (¢) pa = 2.9
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Fig. 7. The behavior of trajectories of the Poincaré map for system (0.3) in the case of two impassable resonances
with p =1 and p = 2 in region G; Here, £ = 0.001, p; = 0.3223, po = 120, p3 = 400, p4 = 3.039

resonance level I = I;;, and the level k = ko with the resonance level I = I5;. Thus, we have
two impassable resonance zones, the structure of which is shown in Fig. 7. There exist stable
periodic points of period-2 (corresponding to a stable periodic solution of period 27 /p, in the
original system) and an unstable fixed point (corresponding to an unstable periodic solution of
period 7/p,). All other resonance levels between these two levels in region G will be passable.
Figure 7 also shows a fragment of a closed invariant curve of the Poincaré¢ map and an impassable
resonance (with p = 5 and ¢ = 1) in region Gj.

§ 3. Investigation of a nonautonomous system. Poincaré homoclinic structures

In this section we study the behavior of the solutions of system (0.3) in a small neighborhood
of unperturbed separatrices. A key role in this study is played by the analysis of the relative
position of the separatrices of the saddle fixed point of the Poincaré map.

As already noted, the unperturbed system has two separatrix loops of the saddle (7,0): ['" =
I'fYTy and '™ = T'; UT';,. Under the action of an autonomous perturbation, the separatrices
of the saddle (7, 0) split in the general case. However, there exist values of the parameters
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(p2,p1) € Ly ((p2,p1) € Ly)! for which the separatrix loop I'" (I'") is conserved in the perturbed
autonomous system. In addition, for the values of the parameters (py,p1) € L ((p2,p1) € LT;
L3 : ps = 35, p1 < 0) there exists the loop I'* (I'F) when the separatrices I'} and ', (I'; and
['}) coincide?.

It is well known that under the action of nonautonomous perturbations the separatrices of the
saddle fixed point of the Poincaré map can intersect, forming the so-called Poincaré homoclinic
structure. We denote by W3 and W (W and W) the stable (unstable) invariant curves (separa-
trices) of the saddle fixed point of the Poincaré map. We can distinguish two types of homoclinic
structures:

1. Wi W # @ and/or W2 (W # @;

2. Wi W % @ and/or W2 W # @.

The occurrence of homoclinic structures of the first type is due to the presence of a separatrix
loop I'* and/or I'~, the second type is due to the presence of a separatrix loop I'* or I'F in the
perturbed autonomous system.

Melnikov analytical method

The problem of the existence of first type homoclinic structure is solved using the Melnikov
formula [8] A(ty) = eAi(tg) + O(g?), which is analogous to that used by us in determining
the magnitude of the splitting of unperturbed separatrices under the action of an autonomous
perturbation. Here the function A;(ty) determines (up to terms of order ¢) the distance between
the stable and unstable separatrices of the saddle fixed point of the Poincaré map. Before applying
this formula, we transform the original system so that in the equilibrium state (7, 0) of the saddle
type of the unperturbed system the perturbation vanishes for any values of ¢. In system (0.3), we
make the substitution z = £ + ex(t) + O(e?), where

D3
)= ——" t
l’l( ) 1+p42 COS(p4 )7
replace £ by x, as a result of which we obtain the system
T =1y,
p3(1 + cosz) 3.1

)= —si . 3
Y sinz + ¢ | (=14 p1y + pacos3x)y + 15,2

COoS p4t} .
Applying the Melnikov formula to this system, we obtain

But) = [ 1=+ pugelt = t0) + pacos (Ba.(t = t0)uelt —t0) +

p3(1 + cos (zs(t —to)))
+ 2
I +pi

cos p@} ys(t —to) dt, (3.2)

where the solution z4(7), ys(7) of the unperturbed equation on the separatrix has the form:
2
xs(T) = 2arcsin (th7), ys(7) = j:h—.
chr
Calculating the integral in (3.2), we find

8 2Tp3
A (ty) = AT(ty) = -8+ 4 — Py — to).
1(to) 1 (to) 1+ 5P h(rpa/2) cos (pato)

'See Fig. 2.
2Such loops are absent in the unperturbed system.
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Fig. 8. Bifurcation diagram for the Poincaré map for system (3.1) at ¢ = 0.001, p3 = 15, py = 3

If AF(to) is an alternating function, then there is a transversal intersection of the stable and
unstable separatrices of the saddle fixed point. From the system A7 (ty) = 0, (dAT /dto) (to) = 0
we find condition

1 4 TP3
—t (4 gy B
= ( 3512 ch(ﬂp4/2))

under which the quadratic tangency of the corresponding separatrices of the saddle fixed point
takes place.

Numerical results. Bifurcation diagram

Using the WInSet and Maple 13 software, we constructed a bifurcation diagram for the
Poincaré map induced by system (3.1), which describes the main cases of the relative position
of the separatrices of the saddle fixed point (see Fig. 8). The bifurcation curves in this diagram
are shown in bold color, the remaining lines are auxiliary. Around the auxiliary lines (on which
the structurally unstable structures of the autonomous equation take place), certain regions arise
which we call homoclinic zones.

The behavior of the separatrices of the saddle fixed point of the Poincaré map for system (3.1)
on different curves of this bifurcation diagram are shown in Fig. 9. Homoclinic structures on
curves L3, Lj;, L3, are not shown here, since they can be obtained by rotating angle 7 of the
corresponding structure on curves LT, LI, Li,. This is due to the inherited symmetry of the
partition of the parameters plane for the autonomous case.

Of particular interest is the homoclinic zones with piecewise smooth boundaries. For the
first time the structure of such zones and its boundaries for a two-parameter family of mappings
with the figure-eight of a dissipative saddle was described in [11]. Then in [12] similar results
were obtained for an asymmetric Duffing—Van-der-Pol equation, close to an integrable one with
a homoclinic figure-eight. In this paper, the structure of such homoclinic zones was studied in
detail using numerical analysis. Such features of the dynamics of systems close to Hamiltonian
ones have not been known before. Comparing the results obtained here with the results of
papers [11, 12], we conclude that for an asymmetric pendulum-type equation, the structure of
homoclinic zones with piecewise smooth boundaries is similar.
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Fig. 9. Behavior of the separatrices of the saddle fixed point of the Poincaré map for system (3.1) on different
curves of the bifurcation diagram in Fig. 8

Namely, the boundaries of such zones are formed by an infinite number of bifurcation curves with
different quadratic homoclinic tangencies, which accumulate to the bold points on the bifurcation
diagram. The points of the transversal intersection of these curves, that is, the points at which
the smoothness of the boundaries of homoclinic zones under study is violated, correspond to
double quadratic tangencies. After crossing, these curves continue into the homoclinic zone and
terminate at points of cubic homoclinic tangencies (for details, see [11,12]).
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0. C. Kocmpomuna
O npeaeabHBIX IUKJIAX, PE30HAHCHBIX H TOMOKJIMHHUYECKHX CTPYKTYpax B aCHMMETPHUYHOM ypaBHe-
HHUHM MAsITHUKOBOI'O THIA

Hurara: BectHuk Yamyprckoro yHuBepcurera. Maremaruka. Mexanuka. Kommnberorepasie Hayku. 2019.
T. 29. Bemm. 2. C. 228-244.

Kniouesvie cnosa: ypaBHEeHHE MasTHUKOBOTO THIA, MPEAEIbHBIE IUKJIbI, PE30HAHCHI, TOMOKINHUYECKHE
cTpykTyphl Ilyankape.

VIK 517.925.42
DOI: 10.20537/vm190207

PaccMarpuBaroTcs mepuoHYecKre Mo BPEMEHH BO3MYIICHHS aCHMMETPHYHOTO YPAaBHEHUSI MasTHUKOBOTO
TUNa, ONM3KOr0 K MHTETPUPYEMOMY CTaHAAPTHOMY YPaBHEHHIO MaTeMaTH4ecKOro MasTHHKa. [[ns aBro-
HOMHOTO YpaBHEHUS pelaercsi mpoblieMa MpesiebHbIX IHKIOB, KOTOpas CBOIUTCS K MCCIICIOBAHHUIO T10-
poxaatommx ¢ynkumid [Tyankape-Ilontpsaruna. CtpouTcs pazdrueHHe MIOCKOCTH MapaMeTpoB Ha 00JIacTH
C pa3HbIM MoBeZicHUEeM (a30BbIX KpUBBIX. JlatoTcs oCHOBHBIC (ha30BbIe TOPTPETHI Uil KaXJOW oOnactu
MOJTy4eHHOro pa3oueHus. s HeaBTOHOMHOTO YpaBHEHMS H3y4aeTcsl BOIPOC O CTPYKType PE30HAHCHBIX
30H, K KOTOPOMY TPHBOJUT PEIICHHUE 33/1a4ud O CHHXPOHU3AIUH KoJieOaHWH. BBIYHCISIOTCS yCpeHEeHHbIC
ypaBHEHHsI MasiTHUKOBOTO THUIIa, ONUCHIBAIOIIME [TOBEACHUE PEIICHUH HCXOMHOTO YPaBHEHUS B MHIUBHIY-
QTBHBIX PE30HAHCHBIX 30HAX, H TIPOBOJIUTCS UX aHAIH3. YCTaHABIMBACTCS TIIO0ATLHOE MOBEACHUE PEIICHHH
B sYelikax, HE COAEPIKaIX MaJbIX OKPECTHOCTEH HEBO3MYLICHHBIX cenaparpuc. C MOMOIIBIO aHaUTH-
Yeckoro MeToga MenbHUKOBA M YHCIEHHOTO MOIESIMPOBAaHMs W3y4aloTCsl OCHOBHbIE OM(ypKalliu HEaBToO-
HOMHOTO ypaBHEHHUsI, CBSI3aHHbIC C BOSHUKHOBEHHEM HErpyObIX TOMOKIMHHYECKHX KpUBBIX. Ha minockocTu
OCHOBHBIX MApaMETPOB CTPOHUTCS OMdypKaroHHAs auarpamma ais oroOpaxenus [lyaHkape, mOpoxIeH-
HOTO UCXOJHBIM YPaBHEHHEM, OMHCHIBAIOIIAs PA3JIMYHBIC TUIBI TOMOKIMHAYECKAX KAaCaHUIl cemaparpuc
CEIUIOBOM HETMOABMKHON ToukH. OOHApYKMBAIOTCA TOMOKIMHHYECKHE 30HbI (T€ 00J1acTH apaMeTpoB, IS
KOTOPBIX CYIIECTBYIOT TOMOKIMHUYECKAE TPACKTOPHU K CEIJIOBOM HEMOJBMKHOW TOYKH) C HEMIAKUMU
On(ypKaIMOHHBIMH TPAaHULIAMH.

dunancupoBanue. Pabora BemonHena npu nomnaepxkke PODU (rpant Ne 18-01-00306).
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