УДК 517.98

© Л. И. Маммадова, И. М. Набиев

СПЕКТРАЛЬНЫЕ СВОЙСТВА ОПЕРАТОРА ШТУРМА–ЛИУВИЛЛЯ СО СПЕКТРАЛЬНЫМ ПАРАМЕТРОМ, КВАДРАТИЧНО ВХОДЯЩИМ В ГРАНИЧНОЕ УСЛОВИЕ

В статье рассматривается оператор Штурма–Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.

Ключевые слова: оператор Штурма–Лиувилля, неразделенные граничные условия, собственные значения, бесконечное произведение.

DOI: 10.35634/vm200207

Введение

Математические модели, возникающие при изучении ряда прикладных задач (например, построение систем защиты приборов от ударного воздействия, колебания струны с грузом на конце, электрические колебания в проводе, замкнутом через сосредоточенные сопротивления, самоиндукции и емкости и др.), приводят к необходимости решения краевых задач со спектральным параметром в граничных условиях(см. [1–3]). В качестве конкретного примера можно привести механическую систему, описанную в [1, с. 45]. Там имеется схема для стержня, один конец которого связан с другим концом канатом с пружиной, и еще сами концы упруго закреплены. Для такой системы получается краевая задача с граничными условиями, содержащими спектральный параметр.

Наиболее известным объектом для изучения указанных задач служит оператор Штурма— Лиувилля. Хорошо известны (см. [3–9] и приведенную в них библиографию) результаты по решению прямых и обратных задач для этого оператора со спектральным параметром, линейно, квадратично и рационально входящим в разделенные граничные условия (т. е. когда граничные условия задаются отдельно в каждом конце рассматриваемого промежутка). Ссылки на некоторые применения этих результатов к решению различных задач математической физики имеются в работе [10].

В дальнейшем через $W_2^n[0,\pi]$ будем обозначать пространство С. Л. Соболева функций v(x) $(0 \le x \le \pi)$ с обычным определением нормы

$$\|v\|_{W_2^n} = \left(\sum_{k=0}^n \int_0^{\pi} |v^{(k)}(x)|^2 dx\right)^{\frac{1}{2}}.$$

Заметим, что $W_2^0[0,\pi]=L_2[0,\pi].$

Рассмотрим краевую задачу, порожденную на отрезке $[0,\pi]$ уравнением Штурма–Лиувилля

$$-y'' + q(x)y = \lambda^2 y \tag{0.1}$$

и граничными условиями вида

$$y(0) + \omega y(\pi) = 0, \bar{\omega}y'(0) + (m\lambda^2 + \alpha\lambda + \beta)y(\pi) + y'(\pi) = 0,$$
(0.2)

где q(x) — вещественная функция, принадлежащая пространству $L_2[0,\pi]$, λ — комплексный спектральный параметр, ω — комплексное число, α , β , γ , m — вещественные числа. Эту задачу будем обозначать через P.

При $\omega \neq 0$ граничные условия (0.2) оказываются неразделенными (граничные условия называются неразделенными, если граничные формы содержат комбинации значений искомой функции на концах отрезка). Характеристика спектра таких задач с граничными условиями без спектрального параметра ($m=\alpha=0$), в том числе с периодическими, антипериодическими, квазиперодическими и обобщеннными периодическими граничными условиями, подробно исследована в [11–19] и других работах. Имеется немного работ, относящихся к краевой задаче P в случае m=0, т. е. когда граничное условие линейно зависит от спектрального параметра. Подробную информацию и библиографию для этого случая можно найти в работах [20–23]. Отметим, что прямые и обратные задачи в случае $m\neq 0$ ранее не изучались.

В настоящей работе исследуются спектральные свойства краевой задачи P в случае $m\omega \neq 0$, т. е. когда в одно из неразделенных граничных условий (0.2) входит квадратичная функция спектрального параметра. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра задачи P и получено представление характеристической функции в виде бесконечного произведения.

§ 1. Простейшие спектральные свойства краевой задачи P

Определение 1. Комплексное число λ_0 называется собственным значением краевой задачи P, если уравнение (0.1) при $\lambda = \lambda_0$ имеет нетривиальное решение $y_0(x)$, удовлетворяющее граничным условиям (0.2); при этом $y_0(x)$ называется собственной функцией задачи P, соответствующей собственному значению λ_0 . Функции $y_1(x), y_2(x), \ldots, y_r(x)$ называются присоединенными функциями к собственной функции $y_0(x)$, если эти функции имеют абсолютно непрерывную производную, удовлетворяют дифференциальным уравнениям

$$y_{j}''(x) + [\lambda_{0}^{2} - q(x)] y_{j}(x) + 2\lambda_{0}y_{j-1}(x) + y_{j-2}(x) = 0$$

и граничным условиям

$$y_{j}(0) + \omega y_{j}(\pi) = 0,$$

$$\bar{\omega}y'_{j}(0) + (m\lambda_{0}^{2} + \alpha\lambda_{0} + \beta) y_{j}(\pi) + y'_{j}(\pi) + (2m\lambda_{0} + \alpha) y_{j-1}(\pi) + my_{j-2}(\pi) = 0,$$

$$j = 1, 2, 3, \dots, r \quad (y_{-1}(x) \equiv 0).$$

В этом параграфе всюду будем предполагать, что m<0 и выполняется следующее условие: для всех функций $y(x)\in W_2^2[0,\pi],\ y(x)\not\equiv 0,$ удовлетворяющих условиям (0.2), имеет место неравенство

$$\beta |y(\pi)|^2 + \int_0^\pi \left(|y'(x)|^2 + q(x) |y(x)|^2 \right) dx > 0.$$
 (1.1)

Заметим, что неравенство (1.1) заведомо выполняется, если $\beta \geqslant 0, \ q(x) > 0.$

Лемма 1. Собственные значения краевой задачи P вещественны и отличны от нуля.

Д о к а з а т е л ь с т в о. Пусть λ_0 — собственное значение задачи P и $y_0(x)$ — соответствующая собственная функция. Умножая обе части равенства

$$-y_0''(x) + q(x)y_0(x) = \lambda_0^2 y_0(x)$$

на $\overline{y_0(x)}$ и интегрируя полученное тождество по x от 0 до π , имеем

$$-\int_{0}^{\pi} y_{0}''(x) \overline{y_{0}(x)} dx + \int_{0}^{\pi} q(x) |y_{0}(x)|^{2} dx = \lambda_{0}^{2} \int_{0}^{\pi} |y_{0}(x)|^{2} dx.$$

Применяя формулу интегрирования по частям, получим

$$y_0'(0) \ \overline{y_0(0)} - y_0'(\pi) \ \overline{y_0(\pi)} + \int_0^{\pi} \left(\left| y_0'(x) \right|^2 + q(x) \left| y_0(x) \right|^2 \right) dx = \lambda_0^2 \int_0^{\pi} \left| y_0(x) \right|^2 dx. \quad (1.2)$$

Согласно граничным условиям (0.2)

$$y_0(0) = -\omega y_0(\pi), y_0'(\pi) = -\bar{\omega}y_0'(0) - (m\lambda_0^2 + \alpha\lambda_0 + \beta) y_0(\pi).$$

Тогда

$$y_0'(0)\overline{y_0(0)} - y_0'(\pi)\overline{y_0(\pi)} =$$

$$-y_0'(0)\overline{\omega}\overline{y_0(\pi)} + \left[\overline{\omega}y_0'(0) + \left(m\lambda_0^2 + \alpha\lambda_0 + \beta\right)y_0(\pi)\right]\overline{y_0(\pi)} =$$

$$= \left(m\lambda_0^2 + \alpha\lambda_0 + \beta\right)\left|y_0(\pi)\right|^2.$$

Учитывая это соотношение, из равенства (1.2) получаем следующее квадратное уравнение относительно λ_0 :

$$M\lambda_0^2 - N\lambda_0 - K = 0,$$

где

$$M = -m |y_0(\pi)|^2 + \int_0^{\pi} |y_0(x)|^2 dx, \quad N = \alpha |y_0(\pi)|^2,$$
 (1.3)

$$K = \beta |y_0(\pi)|^2 + \int_0^{\pi} (|y_0'(x)|^2 + q(x) |y_0(x)|^2) dx.$$
 (1.4)

Отсюда

$$\lambda_0 = \frac{N \pm \sqrt{N^2 + 4MK}}{2M}.\tag{1.5}$$

В силу неравенства (1.1) имеет место K>0. Так как M>0, то из (1.5) следует, что λ_0 вещественно и отлично от нуля. Лемма доказана.

Лемма 2. Если $y_0(x)$ — собственная функция задачи P, соответствующая собственному значению λ_0 , то

$$2\lambda_0 M - N \neq 0, \tag{1.6}$$

zде M и N определяются равенствами (1.3). Более того, имеет место соотношение

$$sign (2\lambda_0 M - N) = sign \lambda_0. \tag{1.7}$$

Д о к а з а т е л ь с т в о. Из (1.3) и (1.4) следует, что $N^2 + 4MK > 0$. Тогда ввиду (1.5) получаем $2\lambda_0 M - N = \pm \sqrt{N^2 + 4MK} \neq 0$. Из (1.5) также видно, что при $\lambda_0 > 0$ перед корнем должен стоять знак «+», а при $\lambda_0 < 0$ — знак «—». Следовательно, знак левой части (1.6) совпадает со знаком λ_0 , т. е. имеет место (1.7). Лемма доказана.

Лемма 3. Краевая задача P не имеет присоединенных функций к собственным функциям.

Д о к а з а т е л ь с т в о. Допустим противное. Предположим, что существует функция $y_1(x)$, присоединенная к собственной функции $y_0(x)$ задачи P, соответствующей собственному значению λ_0 . Тогда будут выполняться равенства

$$y_0''(x) + \left[\lambda_0^2 - q(x)\right] y_0(x) = 0, \tag{1.8}$$

$$y_1''(x) + \left[\lambda_0^2 - q(x)\right] y_1(x) + 2\lambda_0 y_0(x) = 0.$$
 (1.9)

Переходим сначала в равенстве (1.8) к комплексно сопряженному, затем умножим полученное равенство на $y_1(x)$, а соотношение (1.9) — на $\overline{y_0(x)}$ и вычтем второй результат из первого. В результате получим

$$2\lambda_0 |y_0(x)|^2 = \frac{d}{dx} \left[\overline{y_0'(x)} y_1(x) - y_1'(x) \overline{y_0(x)} \right].$$

Интегрируя это равенство по x от нуля до π и принимая во внимание граничные условия (0.2) для $y_0(x)$ и $y_1(x)$, находим

$$2\lambda_{0} \int_{0}^{\pi} |y_{0}(x)|^{2} dx = \overline{y'_{0}(\pi)} y_{1}(\pi) - y'_{1}(\pi) \overline{y_{0}(\pi)} - \overline{y'_{0}(0)} y_{1}(0) + y'_{1}(0) \overline{y_{0}(0)} =$$

$$= -\left[\omega \overline{y'_{0}(0)} + \left(m\lambda_{0}^{2} + \alpha\lambda_{0} + \beta\right) \overline{y_{0}(\pi)}\right] y_{1}(\pi) +$$

$$+ \left[\bar{\omega}y'_{1}(0) + \left(m\lambda_{0}^{2} + \alpha\lambda_{0} + \beta\right) y_{1}(\pi) + (2m\lambda_{0} + \alpha) y_{0}(\pi)\right] \overline{y_{0}(\pi)} +$$

$$+ \omega \overline{y'_{0}(0)} y_{1}(\pi) - \bar{\omega}y'_{1}(0) \overline{y_{0}(\pi)} = (2m\lambda_{0} + \alpha) |y_{0}(\pi)|^{2}.$$

Отсюда получаем $2\lambda_0 M - N = 0$, что противоречит неравенству (1.6). Лемма доказана. \square

§ 2. Асимптотика собственных значений

Обозначим через $c(x,\lambda)$, $s(x,\lambda)$ фундаментальную систему решений уравнения (0.1), определяемую начальными условиями $c(0,\lambda)=s'(0,\lambda)=1$, $c'(0,\lambda)=s(0,\lambda)=0$. Для каждого фиксированного x функции $c(x,\lambda)$, $s(x,\lambda)$, $c'(x,\lambda)$, $s'(x,\lambda)$ являются целыми функциями (экспоненциального типа) переменного λ . Общее решение уравнения (0.1) имеет вид

$$y(x, \lambda) = A_1 c(x, \lambda) + A_2 s(x, \lambda),$$

где A_1 , A_2 — произвольные постоянные. Подставляя правую часть этого соотношения в граничные условия (0.2), получаем следующую систему уравнений относительно коэффициентов A_1 , A_2 :

$$A_{1}\left[1 + \omega c\left(\pi, \lambda\right)\right] + A_{2}\omega s\left(\pi, \lambda\right) = 0,$$

$$A_{1}\left[\left(m\lambda^{2} + \alpha\lambda + \beta\right)c\left(\pi, \lambda\right) + c'\left(\pi, \lambda\right)\right] + A_{2}\left[\bar{\omega} + \left(m\lambda^{2} + \alpha\lambda + \beta\right)s\left(\pi, \lambda\right) + s'\left(\pi, \lambda\right)\right] = 0.$$

Значит, краевая задача P имеет нетривиальное решение тогда и только тогда, когда эта система имеет ненулевое решение. Поэтому собственные значения рассматриваемой краевой задачи совпадают с нулями функции

$$\Delta\left(\lambda\right) = \left| \begin{array}{l} 1 + \omega c\left(\pi, \lambda\right) & \omega s\left(\pi, \lambda\right) \\ \left(m\lambda^{2} + \alpha\lambda + \beta\right)c\left(\pi, \lambda\right) + c'\left(\pi, \lambda\right) & \bar{\omega} + \left(m\lambda^{2} + \alpha\lambda + \beta\right)s\left(\pi, \lambda\right) + s'\left(\pi, \lambda\right) \end{array} \right|,$$

которая называется характеристической функцией задачи P. Раскрывая этот определитель и учитывая тождество $c(x,\lambda)$ $s'(x,\lambda) - c'(x,\lambda)$ $s(x,\lambda) = 1$, находим

$$\Delta(\lambda) = 2\operatorname{Re}\omega + |\omega|^2 c(\pi, \lambda) + (m\lambda^2 + \alpha\lambda + \beta) s(\pi, \lambda) + s'(\pi, \lambda). \tag{2.1}$$

Известно [11, с. 38], что для функций $c\left(\pi,\lambda\right)$, $s\left(\pi,\lambda\right)$ и $s'\left(\pi,\lambda\right)$ справедливы следующие представления:

$$c(\pi, \lambda) = \cos \lambda \pi + A \frac{\sin \lambda \pi}{\lambda} + \frac{f_1(\lambda)}{\lambda},$$

$$s(\pi, \lambda) = \frac{\sin \lambda \pi}{\lambda} - A \frac{\cos \lambda \pi}{\lambda^2} + \frac{f_2(\lambda)}{\lambda^2},$$

$$s'(\pi, \lambda) = \cos \lambda \pi + A \frac{\sin \lambda \pi}{\lambda} + \frac{f_3(\lambda)}{\lambda},$$

где $A = \frac{1}{2} \int_0^{\pi} q(x) dx$, $f_m(\lambda)$ (m = 1, 2, 3) — целая функция экспоненциального типа не выше π , суммируемая с квадратом на вещественной оси. Учитывая эти представления и используя теорему Пели–Винера [24, с. 47], из (2.1) получаем

$$\Delta(\lambda) = 2\operatorname{Re}\omega + m\lambda\sin\lambda\pi + (|\omega|^2 + 1 - mA)\cos\lambda\pi + \alpha\sin\lambda\pi + f(\lambda), \qquad (2.2)$$

где
$$f(\lambda) = \int_{-\pi}^{\pi} \tilde{f}(t) e^{i\lambda t} dt, \ \tilde{f}(t) \in L_2[-\pi, \pi].$$

Теорема 1. Краевая задача P имеет счетное множество собственных значений μ_k , $k=\pm 0,\ \pm 1,\ \pm 2,\ \dots$ Для этих собственных значений при $|k|\to\infty$ имеет место следующая асимптотическая формула:

$$\mu_k = k + \frac{2(-1)^{k+1} \operatorname{Re} \omega - |\omega|^2 - 1 + mA}{\pi \, m \, k} + \frac{\tau_k}{k}, \{\tau_k\} \in l_2. \tag{2.3}$$

Д о к а з а т е л ь с т в о. Обозначим через Γ_n контур, ограничивающий квадрат

$$K_n = \left\{ \lambda \colon |\text{Re}\lambda| \leqslant n + \frac{1}{2}, \quad |\text{Im}\lambda| \leqslant n + \frac{1}{2} \right\}.$$

В силу соотношения (2.2) имеем

$$\Delta(\lambda) = F(\lambda) + G(\lambda),$$

где
$$F(\lambda) = m\lambda \sin \lambda \pi$$
, $G(\lambda) = 2\text{Re}\omega + (|\omega|^2 + 1 - mA)\cos \lambda \pi + \alpha \sin \lambda \pi + f(\lambda)$.

Стандартным методом (см., например, [11, с. 43]) можно показать, что при достаточно больших n на Γ_n выполняется неравенство $|F(\lambda)| > |G(\lambda)|$. Тогда по теореме Руше [25, с. 263] в квадрате K_n лежит одинаковое число нулей функций $\Delta(\lambda)$ и $F(\lambda)$, т. е. 2n+2 нулей. Обозначим эти нули в порядке неубывания их модулей через

$$\mu_{-n}, \mu_{-n+1}, \ldots, \mu_{-1}, \mu_{-0}, \mu_{+0}, \mu_{1}, \ldots, \mu_{n-1}, \mu_{n}.$$

Таким образом, задача P имеет счетное число собственных значений. При использовании представления (2.2) и теоремы Руше, легко устанавливается, что корни μ_k ($k=\pm 0,\,\pm 1,\,\pm 2,\,\ldots$) уравнения $\Delta\left(\lambda\right)=0$ при $|k|\to\infty$ подчиняются асимптотике

$$\mu_k = k + \varepsilon_k,\tag{2.4}$$

где $\varepsilon_k = O(k^{-1})$. Принимая во внимание асимптотику (2.4) и разложения $\cos x = 1 + O(x^2)$, $\sin x = x + O(x^3)$ ($x \to 0$), имеем

$$\sin \mu_k \pi = (-1)^k \sin \pi \varepsilon_k = (-1)^k \pi \varepsilon_k + O\left(\frac{1}{k^3}\right), \tag{2.5}$$

$$\cos \mu_k \pi = (-1)^k \cos \pi \varepsilon_k = 1 + O\left(\frac{1}{k^2}\right), \tag{2.6}$$

Кроме того, воспользовавшись леммой 1.4.3 книги [11], получаем асимптотику

$$f(\mu_k) = f(k) + \frac{g(k)}{k},$$
 (2.7)

в которой $\{f(k)\}$, $\{g(k)\}\in l_2$. Подставляя (2.4) в $\Delta(\mu_k)=0$ и учитывая соотношения (2.5)–(2.7), получим асимптотику

$$\varepsilon_k = \frac{2(-1)^{k+1} \operatorname{Re} \omega - |\omega|^2 - 1 + mA}{\pi \, m \, k} + \frac{\tau_k}{k}.\tag{2.8}$$

Тогда из (2.4) в силу (2.8) следует асимптотическая формула (2.3). Теорема доказана.

§ 3. Представление характеристической функции в виде бесконечного произведения

В этом параграфе получено представление характеристической функции (2.1) краевой задачи P в виде бесконечного произведения с помощью собственных значений. Такое представление играет важную роль при решении обратных задач спектрального анализа для дифференциальных операторов (см., например, [11, 13, 21]).

Теорема 2. Задание спектра $\{\mu_k\}$ $(k=\pm 0,\pm 1,\pm 2,\ldots)$ и числа m однозначно определяет характеристическую функцию $\Delta(\lambda)$ краевой задачи P по формуле

$$\Delta(\lambda) = m\pi \left(\mu_{-0} - \lambda\right) \left(\mu_{+0} - \lambda\right) \prod_{k=-\infty, \ k\neq 0}^{\infty} \frac{\mu_k - \lambda}{k}.$$
 (3.1)

Д о к а з а т е л ь с т в о. Поскольку функция $\Delta(\lambda)$ является целой функцией класса C (класса Картрайт), то по известному факту (см. [24, с. 94]) она однозначно определяется своими нулями с точностью до некоторого постоянного множителя Q:

$$\Delta(\lambda) = Q(\mu_{-0} - \lambda) (\mu_{+0} - \lambda) \prod_{k=-\infty, k \neq 0}^{\infty} \left(1 - \frac{\lambda}{\mu_k}\right) =$$

$$= Q(\mu_{-0} - \lambda) (\mu_{+0} - \lambda) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\mu_k}\right) \left(1 - \frac{\lambda}{\mu_{-k}}\right).$$
(3.2)

Используя известную формулу

$$\sin \lambda \pi = \lambda \pi \prod_{k=-\infty, \ k\neq 0}^{\infty} \left(1 - \frac{\lambda}{k}\right)$$

(см., например, [24, с. 22]) и (3.2), имеем

$$\frac{\Delta(\lambda)}{\lambda \sin \lambda \pi} = \frac{Q(\mu_{-0} - \lambda)(\mu_{+0} - \lambda) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\mu_{k}}\right) \left(1 - \frac{\lambda}{\mu_{-k}}\right)}{\pi \lambda^{2} \prod_{k=-\infty, k \neq 0}^{\infty} \left(1 - \frac{\lambda}{k}\right)} = \frac{Q(\mu_{-0} - \lambda)(\mu_{+0} - \lambda) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\mu_{k}}\right) \left(1 - \frac{\lambda}{\mu_{-k}}\right)}{\prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\mu_{k}}\right) \left(1 - \frac{\lambda}{\mu_{-k}}\right)} = \frac{Q(\mu_{-0} - \lambda)(\mu_{+0} - \lambda) \prod_{k=1}^{\infty} \frac{-k^{2}}{\mu_{k}\mu_{-k}} \prod_{k=1}^{\infty} \frac{(\mu_{k} - \lambda)(\lambda - \mu_{-k})}{(k - \lambda)(k + \lambda)}}{\prod_{k=1}^{\infty} \frac{-k^{2}}{\mu_{k}\mu_{-k}} \prod_{k=1}^{\infty} \frac{(\mu_{k} - \lambda)(\lambda - \mu_{-k})}{(k - \lambda)(k + \lambda)}} = \frac{Q(\mu_{-0} - \lambda)(\mu_{+0} - \lambda) \prod_{k=1}^{\infty} \frac{-k^{2}}{\mu_{k}\mu_{-k}} \prod_{k=1}^{\infty} \left(1 - \frac{\mu_{-k} + k}{k + \lambda}\right) \prod_{k=1}^{\infty} \left(1 + \frac{\mu_{k} - k}{k - \lambda}\right)}{\prod_{k=1}^{\infty} \left(1 + \frac{\mu_{k} - k}{k - \lambda}\right)}.$$

Обозначим $t = \operatorname{Im} \lambda$. Легко устанавливается, что

$$\lim_{t \to \infty} \frac{(\mu_{-0} - \lambda) (\mu_{+0} - \lambda)}{\lambda^2} = 1, \quad \lim_{t \to \infty} \prod_{k=1}^{\infty} \left(1 - \frac{\mu_{-k} + k}{k + \lambda} \right) = 1,$$

$$\lim_{t \to \infty} \prod_{k=1}^{\infty} \left(1 + \frac{\mu_k - k}{k - \lambda} \right) = 1.$$

С другой стороны, из (2.2) следует, что

$$\lim_{t \to \infty} \frac{\Delta(\lambda)}{\lambda \sin \lambda \pi} = m.$$

Тогда, переходя к пределу в равенстве (3.3) при $t \to \infty$, имеем

$$m = \frac{Q}{\pi} \prod_{k=1}^{\infty} \frac{-k^2}{\mu_k \mu_{-k}}.$$

Отсюда находим

$$Q = m\pi \prod_{k=1}^{\infty} \frac{\mu_k \mu_{-k}}{-k^2}.$$

Подставляя это значение в (3.2), получим (3.1). Теорема доказана.

Финансирование. Данная работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики. Грант № EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/05/1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Коллатц Л. Задачи на собственные значения (с техническими приложениями). М.: Наука, 1968.
- 2. Ахтямов А. М. Теория идентификации краевых условий и ее приложения. М.: Физматлит, 2009.
- 3. Möller M., Pivovarchik V. Spectral theory of operator pencils, Hermite–Biehler functions, and their applications. Cham: Birkhäuser, 2015. https://doi.org/10.1007/978-3-319-17070-1

- 4. Керимов Н. Б., Мамедов Х. Р. Об одной краевой задаче со спектральным параметром в граничных условиях // Сиб. матем. журн. 1999. Т. 40. № 2. С. 325–335. http://mi.mathnet.ru/smj153
- 5. Эткин А. Е., Эткина Г. П. О единственности решения обратной задачи Штурма-Лиувилля со спектральным параметром, рационально входящим в граничное условие // Известия Иркутского государственного университета. Сер. Математика. 2011. Т. 4. Вып. 3. С. 158–170. http://mi.mathnet.ru/iigum126
- 6. Алиев З.С., Дуньямалиева А.А. Дефектная базисность системы корневых функций задачи Штурма–Лиувилля со спектральным параметром в граничных условиях // Дифференциальные уравнения. 2015. Т. 51. № 10. С. 1259–1276. https://doi.org/10.1134/S0374064115100015
- 7. Shukurov A. Sh. On the number of non-real eigenvalues of the Sturm-Liouville problem // Eurasian Math. J. 2017. Vol. 8. No. 3. P. 77-84. http://mi.mathnet.ru/emj268
- 8. Шкаликов А. А. О базисных свойствах корневых функций дифференциальных операторов, содержащих спектральный параметр в краевых условиях // Дифференциальные уравнения. 2019. Т. 55. № 5. С. 647–659. https://doi.org/10.1134/S0374064119050066
- 9. Guliyev N. J. Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter // Journal of Mathematical Physics. 2019. Vol. 60. Issue 6. 063501. https://doi.org/10.1063/1.5048692
- 10. Мегралиев Я. Т., Велиева Б. К. Обратная краевая задача для линеаризованного уравнения Бенни– Люка с нелокальными условиями // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2019. Т. 29. Вып. 2. С. 166–182. https://doi.org/10.20537/vm190203
- 11. Марченко В. А. Операторы Штурма-Лиувилля и их приложения. Киев: Наукова думка, 1977.
- 12. Плаксина О.А. Обратные задачи спектрального анализа для оператора Штурма-Лиувилля с неразделенными граничными условиями // Математический сборник. 1986. Т. 131 (173). № 1 (9). С. 3–26. http://mi.mathnet.ru/msb1897
- 13. Гусейнов И.М., Набиев И.М. Решение одного класса обратных краевых задач Штурма—Лиувилля // Математический сборник. 1995. Т. 186. № 5. С. 35–48. http://mi.mathnet.ru/msb35
- 14. Набиев И. М. Кратность и взаимное расположение собственных значений квадратичного пучка операторов Штурма–Лиувилля // Математические заметки. 2000. Т. 67. Вып. 3. С. 369–381. https://doi.org/10.4213/mzm850
- 15. Джаков П. Б., Митягин Б. С. Зоны неустойчивости одномерных периодических операторов Шрёдингера и Дирака // УМН. 2006. Т. 61. Вып. 4 (370). С. 77–182. https://doi.org/10.4213/rm2121
- 16. Садовничий В. А., Султанаев Я. Т., Ахтямов А. М. Обратная задача Штурма–Лиувилля с обобщенными периодическими краевыми условиями // Доклады Академии наук. 2008. Т. 421. № 5. С. 599–601. https://elibrary.ru/item.asp?id=11033016
- 17. Yurko V. An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions // Tamkang Journal of Mathematics. 2012. Vol. 43. No. 2. P. 289–299. https://doi.org/10.5556/j.tkjm.43.2012.1100
- 18. Nabiev I.M. Determination of the diffusion operator on an interval // Colloquium Mathematicum. 2014. Vol. 134. No. 2. P. 165–178. https://doi.org/10.4064/cm134-2-2
- 19. Баскаков А. Г., Поляков Д. М. Метод подобных операторов в спектральном анализе оператора Хилла с негладким потенциалом // Математический сборник. 2017. Т. 208. № 1. С. 3–47. https://doi.org/10.4213/sm8637
- 20. Садовничий В. А., Султанаев Я. Т., Ахтямов А. М. Обратная задача для пучка операторов с нераспадающимися краевыми условиями // Доклады Академии наук. 2009. Т. 425. № 1. С. 31–33. https://elibrary.ru/item.asp?id=11714202

- 21. Yurko V. Inverse problems for non-selfadjoint quasi-periodic differential pencils // Analysis and Mathematical Physics. 2012. Vol. 2. P. 215–230.
 - https://doi.org/10.1007/s13324-012-0030-9
- 22. Nabiev I. M., Shukurov A. Sh. Properties of the spectrum and uniqueness of reconstruction of Sturm–Liouville operator with a spectral parameter in the boundary condition // Proceedings of the Institute of Mathematics and Mechanics. 2014. Vol. 40. Special issue. P. 332–341. http://proc.imm.az/volumes/40-s/40-s-29.pdf
- 23. Ibadzadeh Ch. G., Mammadova L. I., Nabiev I. M. Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition // Azerbaijan Journal of Mathematics. 2019. Vol. 9. № 1. P. 171–189. http://azjm.org/volumes/0901/pdf/11.pdf
- 24. Левин Б. Я. Целые функции. М.: Изд-во МГУ, 1971.
- 25. Сидоров Ю. В., Федорюк М. В., Шабунин М. И. Лекции по теории функции комплексного переменного. М.: Наука, 1982.

Поступила в редакцию 07.11.2019

Маммадова Лейла Ибрагим кызы, доктор философии по математике, старший преподаватель, кафедра общей и прикладной математики, Азербайджанский государственный университет нефти и промышленности, AZ1010, Азербайджан, г. Баку, пр. Азадлыг, 20.

E-mail: leylaimae@yahoo.com

Набиев Ибрагим Маил оглы, д. ф.-м. н., профессор, кафедра прикладной математики, Бакинский государственный университет, AZ1148, Азербайджан, г. Баку, ул. 3. Халилова, 23; главный научный сотрудник, отдел функционального анализа, Институт математики и механики НАН Азербайджана, AZ1141, Азербайджан, г. Баку, ул. Б. Вахабзаде, 9; профессор, кафедра математики, университет Хазар, AZ1096, Азербайджан, г. Баку, ул. Махсати, 11. E-mail: nabievim@yahoo.com

Цитирование: Л. И. Маммадова, И. М. Набиев. Спектральные свойства оператора Штурма—Лиувилля со спектральным параметром, квадратично входящим в граничное условие // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2020. Т. 30. Вып. 2. С. 237–248.

MATHEMATICS

2020. Vol. 30. Issue 2. Pp. 237-248.

L. I. Mammadova, I. M. Nabiev

Spectral properties of the Sturm-Liouville operator with a spectral parameter quadratically included in the boundary condition

Keywords: Sturm-Liouville operator, non-separated boundary conditions, eigenvalues, infinite product.

MSC2010: 34A30

DOI: 10.35634/vm200207

The article considers the Sturm–Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.

Funding. This work was supported by the Science Development Fund of the President of the Azerbaijan Republic. Grant No. EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/05/1.

REFERENCES

- 1. Collatz L. Eigenwertaufgaben mit technischen Anwendungen, Leipzig: Geest & Portig, 1963. Translated under the title Zadachi na sobstvennye znacheniya (s tekhnicheskimi prilozheniyami), Moscow: Nauka, 1968.
- 2. Akhtyamov A. M. *Teoriya identifikatsii kraevykh uslovii i ee prilozheniya* (Identification theory of boundary value problems and its applications), Moscow: Fizmatlit, 2009.
- 3. Möller M., Pivovarchik V. Spectral theory of operator pencils, Hermite-Biehler functions, and their applications, Cham: Birkhäuser, 2015. https://doi.org/10.1007/978-3-319-17070-1
- 4. Kerimov N.B., Mamedov Kh.R. On one boundary value problem with a spectral parameter in the boundary conditions, *Siberian Mathematical Journal*, 1999, vol. 40, no. 2, pp. 281–290. https://doi.org/10.1007/s11202-999-0008-5
- 5. Atkin A. E., Atkina G. P. A uniqueness theorem for Sturm-Liouville equations with a spectral parameter rationally contained in the boundary condition, *Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya Matematika*, 2011, vol. 4, issue 3, pp. 158–170 (in Russian). http://mi.mathnet.ru/eng/iigum126
- 6. Aliev Z.S., Dun'yamalieva A.A. Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions, *Differential Equations*, 2015, vol. 51, issue 10, pp. 1249–1266. https://doi.org/10.1134/S0012266115100018
- 7. Shukurov A. Sh. On the number of non-real eigenvalues of the Sturm-Liouville problem, *Eurasian Math. J.*, 2017, vol. 8, no. 3, pp. 77-84. http://mi.mathnet.ru/eng/emj268
- 8. Shkalikov A. A. Basis properties of root functions of differential operators with spectral parameter in the boundary conditions, *Differential Equations*, 2019, vol. 55, issue 5, pp. 631–643. https://doi.org/10.1134/S0012266119050057
- 9. Guliyev N.J. Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, *Journal of Mathematical Physics*, 2019, vol. 60, issue 6, 063501. https://doi.org/10.1063/1.5048692
- 10. Megraliev Ya. T., Velieva B. K. Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions, *Vestnik Udmurtskogo Universiteta*. *Matematika*. *Mekhanika*. *Komp'yuternye Nauki*, 2019, vol. 29, issue 2, pp. 166–182 (in Russian). https://doi.org/10.20537/vm190203
- 11. Marchenko V. A. *Operatory Shturma–Liuvillya i ikh prilozheniya* (Sturm–Liouville operators and their applications), Kiev: Naukova Dumka, 1977.

- 12. Plaksina O. A. Inverse problems of spectral analysis for Sturm-Liouville operators with nonseparated boundary conditions, *Mathematics of the USSR Sbornik*, 1988, vol. 59, no. 1, pp. 1–23. https://doi.org/10.1070/SM1988v059n01ABEH003121
- 13. Guseinov I. M., Nabiev I. M. Solution of a class of inverse boundary-value Sturm-Liouville problems, *Sbornik: Mathematics*, 1995, vol. 186, no. 5, pp. 661–674. https://doi.org/10.1070/SM1995v186n05ABEH000035
- 14. Nabiev I. M. Multiplicities and relative position of eigenvalues of a quadratic pencil of Sturm–Liouville operators, *Mathematical Notes*, 2000, vol. 67, issue 3, pp. 309–319. https://doi.org/10.1007/BF02676667
- 15. Djakov P., Mityagin B. S. Instability zones of periodic 1-dimentional Schrödinger and Dirac operators, *Russian Mathematical Surveys*, 2006, vol. 61, no. 4, pp. 663–766. https://doi.org/10.1070/RM2006v061n04ABEH004343
- 16. Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M. The inverse Sturm-Liouville problem with generalized periodic boundary conditions, *Doklady Mathematics*, 2008, vol. 78, no. 1, pp. 582–584. https://doi.org/10.1134/S1064562408040303
- 17. Yurko V. An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions, *Tamkang Journal of Mathematics*, 2012, vol. 43, no. 2, pp. 289–299. https://doi.org/10.5556/j.tkjm.43.2012.1100
- 18. Nabiev I. M. Determination of the diffusion operator on an interval, *Colloquium Mathematicum*, 2014, vol. 134, no. 2, pp. 165–178. https://doi.org/10.4064/cm134-2-2
- 19. Baskakov A. G., Polyakov D. M. The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential, *Sbornik: Mathematics*, 2017, vol. 208, no. 1, pp. 1–43. https://doi.org/10.1070/SM8637
- 20. Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M. Inverse problem for an operator pencil with nonseparated boundary conditions, *Doklady Mathematics*, 2009, vol. 79, no. 2, pp. 169–171. https://doi.org/10.1134/S1064562409020069
- Yurko V. Inverse problems for non-selfadjoint quasi-periodic differential pencils, *Analysis and Mathematical Physics*, 2012, vol. 2, pp. 215–230. https://doi.org/10.1007/s13324-012-0030-9
- 22. Nabiev I. M., Shukurov A. Sh. Properties of the spectrum and uniqueness of reconstruction of Sturm–Liouville operator with a spectral parameter in the boundary condition, *Proceedings of the Institute of Mathematics and Mechanics*, 2014, vol. 40, special issue, pp. 332–341. http://proc.imm.az/volumes/40-s/40-s-29.pdf
- 23. Ibadzadeh Ch. G., Mammadova L. I., Nabiev I. M. Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition, *Azerbaijan Journal of Mathematics*, 2019, vol. 9, no. 1, pp. 171–189. http://azjm.org/volumes/0901/pdf/11.pdf
- 24. Levin B. Ya. Tselye funktsii (Entire functions), Moscow: Moscow State University, 1971.
- 25. Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I. *Lektsii po teorii funktsii kompleksnogo peremennogo* (Lectures on the theory of functions of a complex variable), Moscow: Nauka, 1982.

Mammadova Leyla Ibrahim, Senior Lecturer, Doctor of Philosophy in Mathematics, Department of General and Applied Mathematics, Azerbaijan State Oil and Industry University, pr. Azadlig, 20, Baku, AZ1010, Azerbaijan.

E-mail: leylaimae@yahoo.com

Nabiev Ibrahim Mail, Professor, Doctor of Physics and Mathematics, Department of Applied Mathematics, Baku State University, ul. Z. Khalilova, 23, Baku, AZ1148, Azerbaijan;

Chief Researcher, Department of Functional Analysis, Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, ul. B. Vahabzadeh, 9, Baku, AZ1141, Azerbaijan;

Professor, Department of Mathematics, Khazar University, ul. Mahsati, 11, Baku, AZ1096, Azerbaijan.

E-mail: nabievim@yahoo.com

Citation: L. I. Mammadova, I. M. Nabiev. Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition, *Vestnik Udmurtskogo Universiteta*. *Matematika*. *Mekhanika*. *Komp'yuternye Nauki*, 2020, vol. 30, issue 2, pp. 237–248.