
VESTNIK UDMURTSKOGO UNIVERSITETA. MATEMATIKA. MEKHANIKA. KOMP’YUTERNYE NAUKI

MATHEMATICS 2025. Vol. 35. Issue 2. Pp. 169–187.

MSC2020: 76D07, 76M12, 65N12

© A. Boukabache

ON THE STABILITY OF COLLOCATED FINITE VOLUME METHOD

FOR THE GENERALIZED STOKES PROBLEM

In this paper, a symmetric stabilized collocated formulation of finite volume method is introduced and

analyzed for the stationary generalized Stokes problem. This method is based on the lowest-order ap-

proximation using piecewise constant functions for both velocity and pressure unknowns. Stabilization is

achieved by adding a discrete pressure term to the approximate formulation. The stability and convergence

properties are established. Two numerical examples are presented to confirm the stability and accuracy of

the proposed method.
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Introduction

Finite difference, finite element and finite volume methods are widely used in computational

fluid dynamics. Finite difference methods are simple and mass-conservative but lack flexibility

for complex geometries. Finite element methods offer flexibility for complex shapes but do not

conserve mass at the element level. Furthermore, the finite element approximation spaces for the

primitive variables (velocity and pressure) cannot be chosen independently of each other. There

is a compatibility condition, commonly called the inf-sup (or LBB) condition (see [1]), that needs

to be satisfied if the resulting approximation is to be effective. Finite volume methods (FVMs)

combine the advantages of both finite difference and finite element methods, offering the flexi-

bility of finite element methods while being as easy to implement as finite difference methods.

FVMs are also known as marker and cell methods [2, 3], finite volume element methods [4, 5],

cell-centered methods [6], or covolume methods in some literature [3].

FV approximation of generalized Stokes problems is a current research topic. Various FV

schemes have been developed by incorporating finite element concepts to achieve a more rig-

orous FV methodology. Among these new approaches, collocated FV schemes have attracted

the attention of CFD researchers for several reasons, including the collocated arrangement of

unknowns, computational efficiency, ease of coupling with additional conservation law solvers,

local conservation properties, and the ability to construct discrete operators that preserve prop-

erties of the continuous problem. Unfortunately, a crucial drawback was observed from the

beginning. When applied to incompressible flow problems, collocated FVM leads to inf-sup

unstable schemes, which are usually handled using a stabilization technique.

In [7], we introduced and analyzed a novel stabilized FVM for the Stokes equations. The

proposed method achieves stability by incorporating a pressure jump operator into the discrete

formulation. The main goal of this paper is to investigate the mathematical properties of this FVM

applied to the generalized Stokes problem. The generalized Stokes problem provides a broader

framework by incorporating additional terms that model more complex fluid behaviors, such

as heterogeneous material properties and variable density. This generalization leads to a more

accurate and comprehensive representation of physical phenomena, particularly in cases where

the classical Stokes equations may be too simplistic or inadequate. Regarding the stability issue,

we demonstrate a weaker form of the inf-sup condition based on the global stabilization term,

which ensures the stability of the scheme. Additionally, we establish first-order error estimates

https://doi.org/10.35634/vm250201
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in the energy norm. Numerical tests are presented to illustrate the efficiency and effectiveness of

the proposed method.

The rest of the paper is organized as follows. In Section 1, the generalized Stokes problem

is briefly introduced, along with its weak formulation. Section 2 is devoted to the derivation of

the approximate problem. A weaker form of the inf-sup condition, which holds for the spaces of

interest, is given in Section 3. The core of the paper is Section 4, in which we present a thorough

study of the proposed FV scheme, including stability and error estimation results. Numerical

results are presented in Section 5. Finally, certain conclusions are drawn in the closing section.

§ 1. The generalized Stokes problem

Let Ω ⊂ R
d (d = 2 or 3) be an open bounded domain with polygonal or polyhedral bound-

ary ∂Ω. We consider the generalized Stokes problem

αu− µ∆u+∇p = f in Ω,

divu = 0 in Ω, (1.1)

u = 0 on ∂Ω,

where u is the fluid velocity, p is the pressure, f is a given source term, µ > 0 is the kinematic

viscosity coefficient, and α > 0 is a real parameter that may arise from the time discretization of

the evolution term ∂u
∂t

in the unsteady Stokes equations (cf. [8]).

To derive the weak formulation of the generalized Stokes problem (1.1), we introduce

some useful preliminaries and notations. We recall the classical definitions for the Sobolev

space Hm(Ω) = Wm,2(Ω) with the usual norm ‖ · ‖m,Ω and seminorm | · |m,Ω. In particular,

H0(Ω) = L2(Ω), the space of square integrable functions in Ω with inner product (·, ·)0,Ω and

norm ‖ · ‖0,Ω. Let Hm(Ω) be the space of vector-valued functions v = (v1, . . . , vd) with compo-

nents vi in Hm(Ω). The norm and seminorm on H
m(Ω) are given by

‖v‖m,Ω =

(
d∑

i=1

∥∥v(i)
∥∥2
m,Ω

)1/2

and |v|m,Ω =

(
d∑

i=1

∣∣v(i)
∣∣2
m,Ω

)1/2

.

We define the following function spaces for velocity and pressure

V := H
1
0(Ω) =

{
v ∈ H

1(Ω) : v = 0 on ∂Ω
}
,

and

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}
.

Then, the weak formulation of the generalized Stokes problem (1.1) is given as follows:

Find (u, p) ∈ V ×Q such that

α(u,v)0,Ω + µ(∇u,∇v)0,Ω − (p, div v)0,Ω = (f ,v)0,Ω ∀v ∈ V, (1.2)

−(q, divu)0,Ω = 0 ∀ q ∈ Q.

Note that the second equation in (1.2) has been multiplied by minus one to ensure a symmetric

formulation. Furthermore, we can take the right-hand side f in L
2(Ω) so that (1.2) is well-defined.

§ 2. Finite volume formulation

2.1. Spatial discretization and inequalities

We consider an admissible discretization for the FVM given in [7, 9]. In order to construct

such a discretization, let us assume that Th is a family of regular volumes of Ω. Hence, Th is a
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finite family of disjoint non-empty convex subdomains K of Ω (control volumes), such that K is

either a rectangle or a triangle with acute internal angles in the 2D case, and K is a rectangular

parallelepiped or a tetrahedron with acute internal angles in the 3D case. Let us denote by

∂K = K\K and |K|, respectively, the boundary and measure of any K ∈ Th.

On the other hand, let us denote by Eint and Eext the finite sets of volume boundaries σ
(edges or faces), with measures |σ|, which are respectively internal to the domain Ω and on ∂Ω.

Furthermore, we set E = Eint ∪ Eext and assume that, for all K ∈ Th, there exists a subset EK
of E such that ∂K = ∪σ∈EKσ.

Finally, P = (xK)K∈Th is the family of points of Ω, which are intersections of the perpendic-

ular bisectors of each edge in the 2D or intersections of the lines issued from the center of the

face and orthogonal to the face in the 3D case.

The obtained admissible finite volume mesh of Ω is denoted by D = (Th, E ,P).
Note that any internal edge σ separating two control volumes K and L is denoted by σ =

= K | L, and satisfies the condition:

xσ = [xK ,xL] ∩K | L.

We denote by dKL the distance between xK and xL, and by dKσ the distance between xK

and xσ.

Furthermore, let hK be the diameter of the control volume K, and let h denote the mesh size,

defined as the maximum of hK over all K ∈ Th, that is,

h = sup
K∈Th

hK .

We shall measure the regularity of the mesh D through the function regul(D), defined by

regul(D) = inf

({
dKσ

hK
;K ∈ Th, σ ∈ EK

}
∪

{
hK

h
;K ∈ Th

}
∪

{
1

card (EK)
;K ∈ Th

})
,

where card (EK) is the number of edges (i. e., the cardinality of the set EK). To ensure sufficient

regularity, we assume the existence of a constant θ > 0 such that regul (D) > θ.
Now, given an admissible mesh D, let us introduce the discrete space Vh ⊂ L2(Ω) of piecewise

constant functions on each control volume K ∈ Th. Likewise, we also make use of the discrete

space

Qh = Vh ∩ L2
0(Ω).

For all vh ∈ Vh, we denote by vh,K the value (constant) of vh in any K ∈ Th.

For (vh, wh) ∈ [Vh]
2, we define the following inner product called “discrete H1

0 inner product”,

[vh, wh]D =
∑

σ∈Eint

(σ=K|L)

|σ|

dKL
(vh,L − vh,K)(wh,L − wh,K) +

∑

σ∈Eext
(σ∈EK )

|σ|

dKσ
vh,Kwh,K .

A norm in Vh, called “discrete H1
0 norm”, is obtained as follows

‖vh‖D = [vh, vh]
1/2
D .

We also define the following bilinear form

〈vh, wh〉D =
∑

σ∈Eint

(σ=K|L)

|σ|

dKL
(vh,L − vh,K)(wh,L − wh,K),
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with the seminorm

|vh|D = 〈vh, vh〉
1/2
D .

These definitions extend naturally to vector valued functions as follows. For vh =

=
(
v
(i)
h

)
i=1,...,d

∈ Vh := [Vh]
d and wh =

(
w

(i)
h

)
i=1,...,d

∈ Vh, we set

[vh,wh]D =

d∑

i=1

[
v
(i)
h , w

(i)
h

]
D
, ‖vh‖D =

( d∑

i=1

[
v
(i)
h , v

(i)
h

]
D

)1/2

.

Proposition 2.1. The following discrete Poincaré inequalities hold

‖vh‖0,Ω ≤ diam (Ω)‖vh‖D ∀v ∈ Vh,

‖vh‖0,Ω ≤ C(Ω)|vh|D ∀v ∈ Qh,
(2.1)

where C(Ω) depends only on Ω (cf. [9]).

As in [10], let us define the interpolation operator πh : L
2(Ω) → Vh by setting (πDu)K =

= ∅K(xK) for all K ∈ Th and u ∈ L2(Ω), where ∅K being the orthogonal projection of L2(Ω)
on P1.

It has a natural extension to vector-valued functions. We will keep the same notation.

The operator πh satisfies the following proposition.

Proposition 2.2. Let u ∈ V. Assume that regul(D) > θ. Then

‖πhu‖D ≤ C|u|1,Ω

where C only depends on Ω and θ.

2.2. The finite volume scheme

Let D, as defined above, be a discretization of Ω. In order to construct a finite volume scheme,

we begin by defining a discrete Laplace operator ∆huh ∈ Vh, which is expressed for any K ∈ Th

as follows

(∆huh)K =
1

|K|

(
∑

σ=K|L

|σ|

dLK
(uh,L − uh,K) +

∑

σ∈Eext∩EK

|σ|

dKσ
(−uh,K)

)
∀uh ∈ Vh.

Next, we consider a discrete divergence operator divh, mapping Vh to Vh, which is defined by

(divh uh)K =
1

|K|

∑

σ=K|L

|σ|
uh,L + uh,K

2
· nσ ∀K ∈ Th,

where nσ is an orthogonal unit vector to σ.

The adjoint of this discrete divergence operator, with respect to the discrete L2 inner product,

defines a discrete gradient ∇h. Thus, for any p ∈ Vh, we define its discrete gradient ∇hph ∈ Vh

by

(∇hph)K =
1

|K|

∑

σ=K|L

|σ|
ph,L − ph,K

2
nσ ∀K ∈ Th.

Since for all K ∈ Th,
∑

σ∈EK
|σ|nσ = 0, this discrete gradient can equivalently be expressed as

(∇hph)K =
1

|K|

(
∑

σ=K|L

|σ|
ph,L + ph,K

2
nσ +

∑

σ∈Eext∩EK

|σ|ph,Knσ

)
.
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Based on the above notations, the finite volume approximation of (1.2) is defined as:

Find (uh, ph) ∈ Vh ×Qh such that

α(uh,vh)0,Ω + µ[uh,vh]D − (ph, divh vh)0,Ω = (f ,vh)0,Ω ∀vh ∈ Vh,

−(qh, divh uh)0,Ω = 0 ∀qh ∈ Qh.

(2.2)

For a stable and accurate approximation of (2.2), the discrete spaces Vh and Qh must satisfy the

discrete inf-sup condition. That is, there exists a constant β̃ > 0 independent of h such that for

the pair Vh and Qh, we have

sup
vh∈Vh

(ph, divh vh)0,Ω
‖vh‖ D

≥ β̃‖ph‖0,Ω, ∀ph ∈ Qh. (2.3)

As noted earlier, the finite volume space pair Vh and Qh does not satisfy the discrete inf-sup

condition (2.3).

§ 3. Weak inf-sup condition

In this section, we show that the unstable velocity–pressure pair Vh and Qh satisfies a weaker

form of the inf-sup condition, which can be employed in the stabilization procedure. This condi-

tion introduces the so-called global jump stabilization term [11]

J(ph, qh) = β
∑

K∈Th

∫

∂K\∂Ω

h∂K [ph][qh] ds, (3.1)

where β > 0 is the global stabilization parameter and [·] is the jump operator across interior edges

or faces.

Lemma 3.1. Let Vh and Qh be the spaces defined above. Then, there exist positive constants δ1
and δ2 independent of h, such that

sup
vh∈Vh

(ph, divh vh)0,Ω
‖vh‖D

≥ δ1‖ph‖0,Ω − δ2J(ph, ph)
1/2.

P r o o f. Let ph ∈ Qh be given. We apply a classical property of the divergence operator [1].

Thus, there exists v ∈ V such that

divv(x) = ph(x) and ‖v‖1,Ω ≤ C1‖ph‖0,Ω. (3.2)

We set vh = πhv ∈ Vh with

v
(j)
h,K =

1

|K|

∫

K

v(j)(x) dx, ∀K ∈ Th, j = 1, . . . , d, (3.3)

and

v
(j)
h,σ =

1

|σ|

∫

σ

v(j)(x) dγ(x), ∀σ ∈ E , j = 1, . . . , d. (3.4)

Then, v
(j)
h,σ = 0 for all σ ∈ Eext and j = 1, . . . , d.

Using classical arguments [9, pp. 777–779], we can show the existence of a constant C2 > 0
such that

∀K ∈ Th, ∀σ ∈ EK , |vh,K − vh,σ|
2 ≤ C2

hK

|σ|

∫

K

|∇v(x)|2 dx. (3.5)
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In addition, by the continuity of the interpolation operator πh (Proposition 2.2), there exists

another constant C3 > 0 such that

‖vh‖D ≤ C3‖ph‖0,Ω. (3.6)

Next,

(ph, divh vh)0,Ω =
∑

K∈Th

ph,K
∑

σ=K|L

|σ|
(vh,L + vh,K)

2
· nσ = A +B,

where

A =
∑

K∈Th

ph,K
∑

σ=K|L

|σ|vh,σ · nσ =
∑

K∈Th

ph,K

∫

∂K

v(x) · n∂K dγ(x)

=
∑

K∈Th

ph,K

∫

K

div v(x) dx = ‖ph‖
2
0,Ω,

and

B =
∑

K∈Th

ph,K
∑

σ=K|L

|σ|

(
vh,L + vh,K

2
− vh,σ

)
· nσ

=
∑

σ∈Eint

σ=K|L

|σ|(ph,K − ph,L)

(
vh,L + vh,K

2
− vh,σ

)
· nσ.

Applying the Cauchy–Schwarz inequality gives

|B|2 ≤ C4J(ph, ph)



∑

σ∈Eint

σ=K|L

|σ|

h∂K

(
vh,L + vh,K

2
− vh,σ

)2


.

Applying (3.5) and the obvious inequality

(
vh,L + vh,K

2
− vh,σ

)2

≤
1

2

(
(vh,K − vh,σ)

2 + (vh,L − vh,σ)
2
)

yields

|B|2 ≤ C5J(ph, ph)
∑

σ∈Eint

σ=K|L

|σ|

h∂K

(
hK

|σ|

∫

K∪L

|∇v(x)|2 dx

)
≤ C6J(ph, ph)‖v‖

2
1,Ω.

Using (3.2), we get

|B| ≤ C7J(ph, ph)
1/2‖ph‖0,Ω.

Collecting all estimated terms, we obtain

(ph, divh vh)0,Ω
‖ph‖0,Ω

≥ ‖ph‖0,Ω − C7J(ph, ph)
1/2 (3.7)

which, combined with relation (3.6), concludes the proof. �
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§ 4. Stability and convergence analysis

Based on Lemma 3.1, the discrete problem (2.2) can be stabilized by introducing the global

jump stabilization term (3.1) into the discrete incompressibility constraint. This leads to the

following stabilized scheme:

Find (uh, ph) ∈ Vh ×Qh such that

α(uh,vh)0,Ω + µ[uh,vh]D − (ph, divh vh)0,Ω = (f ,vh)0,Ω ∀vh ∈ Vh,

−(qh, divh uh)0,Ω − J(ph, qh) = 0 ∀qh ∈ Qh.

(4.1)

The proposed scheme (4.1) may be recast in the following “flux form” obtained by rewriting it

for each control volume K ∈ Th:

Find (uh, ph) ∈ Vh ×Qh such that

α

∫

K

uh,K − µ

∫

K

(∆huh)K +

∫

K

(∇hph)K =

∫

K

f ,

−

∫

K

(divh uh)K − β
∑

σ=K|L

∫

σ

hσ[ph] = 0.

(4.2)

We also need to introduce the following bilinear form on which we will base our FVM

B
[
(uh, ph), (vh, ph)

]
= α(uh,vh)0,Ω+µ[uh,vh]D− (ph, divh vh)0,Ω− (qh, divh uh)0,Ω−J(ph, qh)

(4.3)

in such a way that our proposed FV formulation reads:

Find (uh, ph) ∈ Vh ×Qh such that

B
[
(uh, ph), (vh, ph)] = (f ,vh)0,Ω ∀(vh, ph) ∈ Vh ×Qh. (4.4)

We now state the following main inf-sup result, which ensures the well-posedness of our FV

scheme (4.4).

Theorem 4.1. There exists a positive constant γ independent of h such that

sup
(vh,qh)∈Vh×Qh

B
[
(uh, ph), (vh, qh)

]

‖vh‖D + ‖qh‖0,Ω
≥ γ

(
‖uh‖D + ‖ph‖0,Ω

)
∀(uh, ph) ∈ Vh ×Qh. (4.5)

P r o o f. First, setting (vh, qh) = (uh,−ph) in (4.3) yields

B
[
(uh, ph), (uh,−ph)

]
≥ µ‖uh‖

2
D + J(ph, ph). (4.6)

Second, for a given arbitrary but fixed ph ∈ Qh, let w and wh be the functions that sat-

isfy (3.2)–(3.4). Taking (vh, qh) = (−wh, 0) in (4.3) and using the Cauchy–Schwarz inequality,

(3.6), and (3.7) yields

B
[
(uh, ph), (−wh, 0)

]
≥ −C1‖uh‖D‖ph‖0,Ω + ‖ph‖0,Ω

(
‖ph‖0,Ω − C2J(ph, ph)

1/2
)
.

By using Young’s inequality to the right-hand side and by summing the resulting inequalities,

we obtain

B
[
(uh, ph), (−wh, 0)

]
≥

−C1l1
2

‖uh‖
2
D +

(
1−

C1

2l1
−

C2l2
2

)
‖ph‖

2
0,Ω −

C2

2l2
J(ph, ph), (4.7)
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where l1 and l2 are any positive constants. Choose l1 = 2C1 and l2 =
1

2C2

in (4.7), then we get

B
[
(uh, ph), (−wh, 0)

]
≥ −C2

1‖uh‖
2
D +

1

2
‖ph‖

2
0,Ω − C2

2J(ph, ph). (4.8)

Finally, by setting (vh, qh) = (uh − λwh,−ph) in (4.3), where λ is a positive constant, and

using (4.6) and (4.8), yields

B
[
(uh, ph), (vh, qh)

]
≥ (µ− λC2

1)‖uh‖
2
D +

λ

2
‖ph‖

2
0,Ω + (1− λC2

2)J(ph, ph).

By taking λ = min
{

µ
2C2

1

, 1
2C2

2

}
, we get

B
[
(uh, ph), (vh, qh)

]
≥

µ

2
‖uh‖

2
D +

λ

2
‖ph‖

2
0,Ω +

1

2
J(ph, ph),

which implies that

B
[
(uh, ph), (vh, qh)

]
≥ C3

(
‖uh‖D + ‖ph‖0,Ω

)2
, (4.9)

where C3 =
1
4
min{µ, λ}.

On the other hand, it is easy to see that

‖vh‖D + ‖ph‖0,Ω = ‖uh − λwh‖D + ‖ph‖0,Ω

≤ ‖uh‖D + λ‖wh‖D + ‖ph‖0,Ω

≤ ‖uh‖D + C4‖ph‖D + ‖ph‖0,Ω

≤ C5

(
‖uh‖D + ‖ph‖0,Ω

)
.

(4.10)

Finally, combining (4.9) and (4.10) establishes the desired inequality (4.5) with γ = C3

C5

. �

Remark 4.1. From (4.5), we can obtain an a priori estimate for (uh, ph) by using the Cauchy–

Schwarz inequality and the discrete Poincaré inequalities (2.1) as follows

‖uh‖D + ‖ph‖0,Ω ≤
1

γ
sup

(vh,qh)∈Vh×Qh

(f ,vh)0,Ω
‖vh‖D + ‖qh‖0,Ω

≤ C‖f‖0,Ω.

Next, we state an important result that is required below.

Proposition 4.1. Let (u, p) ∈ (H2(Ω) ∩ V) × (H1(Ω) ∩ Q) and (uh, ph) ∈ Vh × Qh be the

respective solutions of (1.1) and (4.4). Then, there exists a positive constant C, independent of h,

such that

‖πhu− uh‖D ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω), (4.11)

J(ph, ph)
1

2 ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω), (4.12)

‖πhp− ph‖0,Ω ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω). (4.13)

P r o o f. First, let (ûh, p̂h) ∈ Vh × Qh be defined by ûh = πhu and p̂h = πhp. Integrating the

first equation of (1.1) over K ∈ Th gives

α

∫

K

u− µ
∑

σ∈EK

∫

σ

∇u · nσ +
∑

σ∈EK

∫

σ

pnσ =

∫

K

f .
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Now, let us introduce for K ∈ Th the following consistency residuals

Ru = ûh,K −
1

|K|

∫

K

u;

R∆ =





ûh,L − ûh,K

dKL

−
1

|σ|

∫

σ

∇u · nσ if σ ∈ Eint ∩ EK (σ = K | L),

−ûh,K

dKσ

−
1

|σ|

∫

σ

∇u · nσ if Eext ∩ EK ;

R∇ =





p̂h,L + p̂h,K
2

−
1

|σ|

∫

σ

p if σ ∈ Eint ∩ EK (σ = K | L),

p̂h,K −
1

|σ|

∫

σ

p if Eext ∩ EK .

Using these notations and the relation
∑

σ∈EK
|σ|nσ = 0, we get

α|K|ûh,K − µ

( ∑

σ=K|L

|σ|
ûh,L − ûh,K

dKL
+

∑

σ∈Eext∩EK

|σ|
−ûh,K

dKσ

)
+
∑

σ=K|L

|σ|
p̂h,L − p̂h,K

2
nσ =

=

∫

K

f + |K|RK ,

with

RK = αRu − µ
1

|K|

∑

σ∈EK

|σ|R∆ +
1

|K|

∑

σ∈EK

|σ|R∇nσ.

Set eh = ûh − uh and ǫh = p̂h − ph. Subtracting the first equation of (4.2) from the above

equation, we then get

α|K|eh,K − µ
∑

σ=K|L

|σ|
eh,L − eh,K

dKL
− µ

∑

σ∈Eext∩EK

|σ|
−eh,K

dKσ
+
∑

σ=K|L

|σ|
ǫh,L − ǫh,K

2
nσ = |K|RK .

For all vh ∈ Vh, we get

α(eh,vh)0,Ω + µ[eh,vh]D − (ǫh, divh vh)0,Ω = (R,vh)0,Ω. (4.14)

By setting vh = eh in the last relation, we get

α‖eh‖
2
0,Ω + µ‖eh‖

2
D − (ǫh, divh eh)0,Ω = (R, eh)0,Ω. (4.15)

Now, let us integrate the second equation of (1.1) on K ∈ Th. This gives

∑

σ∈EK

∫

σ

u · nσ = 0.

Since u vanishes on the boundary of Ω, we obtain

∑

σ=K|L

|σ|

2
(ûh,L + ûh,K) · nσ =

∑

σ=K|L

|σ|Rdiv ∀K ∈ Th

with

Rdiv =

(
1

2
(ûh,L + ûh,K)−

1

|σ|

∫

σ

u

)
· nσ.



178 On the stability of collocated finite volume method

Then, subtracting the second equation of (4.2) from the above equation gives

∑

σ=K|L

|σ|

2
(eh,L + eh,K) · nσ =

∑

σ=K|L

|σ|Rdiv + δ
∑

σ=K|L

|σ|hσ[ph].

For all qh ∈ Qh, this yields

(qh, divh eh)0,Ω =
∑

σ∈Eint

(σ=K|L)

|σ|Rdiv(qh,K − qh,L) + J(ph, qh),

and setting qh = ǫh in this relation gives

(ǫh, divh eh)0,Ω =
∑

σ∈Eint

(σ=K|L)

|σ|Rdiv(ǫh,K − ǫh,L) + J(ph, ǫh). (4.16)

Gathering (4.15) and (4.16), we get

α‖eh‖
2
0,Ω + µ‖eh‖

2
D + J(ph, ph) = (R, eh)0,Ω +

∑

σ∈Eint

(σ=K|L)

|σ|Rdiv(ǫh,K − ǫh,L) + J(ph, p̂h). (4.17)

Next, let us study the terms at the right-hand side of (4.17). From [7], we derive the following

result

(R, eh)0,Ω ≤ α‖eh‖
2
0,Ω + C1

h2

ε
‖u‖22,Ω + 2ε‖eh‖

2
D + C2

h2

ε
‖p‖21,Ω, (4.18)

∑

σ∈Eint

(σ=K|L)

|σ|Rdiv(ǫh,K − ǫh,L) ≤ C3h
2

(
1

ε
‖u‖22,Ω + ε‖p‖21,Ω

)
+ C4

h2

ε
‖u‖22,Ω + εJ(ph, ph), (4.19)

J(ph, p̂) ≤ εJ(ph, ph) + C5
h2

ε
‖p‖21,Ω, (4.20)

where ε is any positive constant.

Gathering (4.18), (4.19) and (4.20) yields the control error inequality

(µ− 2ε)‖eh‖
2
D + (1− 2ε)J(ph, ph) ≤ C6h

2 max

{
1

ε
, ε

}
(‖u‖22,Ω + ‖p‖21,Ω).

It is clear that choosing ε sufficiently small, e. g. ε < 1
2
min{µ, 1} the latter implies (4.11)

and (4.12).

To conclude we need control ‖ǫh‖
2
0,Ω. For that, we again follow the methodology already used

in the proof of Lemma 3.1. Since
∫
Ω
ǫh(x) = 0 from

∫
Ω
p̂(x) dx = 0, let w ∈ V be given such

that

divw(x) = ǫh(x) and ‖w‖1,Ω ≤ C7‖ǫh‖0,Ω.

We again define wh as in (3.3) and (3.4). In addition, we have

‖wh‖D ≤ C8‖ǫh‖0,Ω. (4.21)

Like in (3.7), this gives

‖ǫh‖
2
0,Ω ≤ (ǫh, divhwh)0,Ω + J(ǫh, ǫh)

1/2C9‖ǫh‖0,Ω. (4.22)
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We now use wh as a test function in (4.14) to have

(ǫh, divhwh)0,Ω = µ[eh,wh]D − (R,wh)0,Ω.

Taking into account (4.22) and using Young’s inequality, (4.18), (4.20), and (4.21), we get

‖ǫh‖
2
0,Ω ≤

C10

ε
‖eh‖

2
D + C11ε‖ǫh‖

2
0,Ω +

C12h
2

ε

(
‖u‖22,Ω + ‖p‖21,Ω

)
+

1

ε
J(ph, ph).

So,

(1− C11ε)‖ǫh‖
2
0,Ω ≤

C10

ε
‖eh‖

2
D +

C12h
2

ε

(
‖u‖22,Ω + ‖p‖21,Ω

)
+

1

ε
J(ph, ph). (4.23)

Substituting (4.11) and (4.12) into (4.23) gives

(1− C11ε)‖ǫh‖
2
0,Ω ≤

C13h
2

ε

(
‖u‖22,Ω + ‖p‖21,Ω

)
.

The claim now follows by taking ε sufficiently small, e. g. ε < 1
C11

. �

The convergence of the proposed stabilization scheme is established by the following error

estimate.

Theorem 4.2. Let (u, p) ∈ (H2(Ω)∩V)×(H1(Ω)∩Q) and (uh, ph) ∈ Vh×Qh be the respective

solutions of (1.1) and (4.4). Then, there exists a positive constant C, independent of h, such that

‖u− uh‖D + ‖p− ph‖0,Ω ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω). (4.24)

P r o o f. (4.24) is straightforwardly deduced from (4.11) and (4.13) by applying the triangular

inequality and a classical interpolation result (cf. [10]). �

§ 5. Numerical tests

This section presents numerical experiments to evaluate the accuracy and efficiency of the

proposed stabilized FVM. Two numerical examples are presented to study the accuracy of the

discrete solution and the convergence rates for generalized Stokes flows. The computational

domain is Ω = ]0, 1[× ]0, 1[ and the problem (1.1) is to be discretized and solved using uniform

partitionings of Ω into n × n equal squares, where n = 10, 20, . . . , 100. To ensure a unique

pressure field, a zero-mean pressure constraint is imposed on Ω. Many fixed values of the

stabilization parameter β were considered; however, we present only the representative cases

β = 0.1 and β = 0.01. In all numerical tests, the kinematic viscosity coefficient µ is set to 1,
while the parameter α takes values 10n for n ∈ {0, 1, 10}, covering a wide range of magnitudes.

The source term f is chosen to satisfy the first equation in (1.1).

The velocity and pressure errors are defined as

e
(i)
h,K = u

(i)
K (xK)− u

(i)
h,K, ǫh,K = pK(xK)− ph,K.

The following discrete error norms are used to investigate convergence rates

‖eh‖D =

√√√√
2∑

i=1

[
e
(i)
h , e

(i)
h

]
D

and ‖ǫh‖0,Ω =

√∫

Ω

ǫ2h dΩ.
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5.1. Example 1

The first numerical example is as follows (see [12])

u1(x, y) = − sin2(πx) sin(πy) cos(πy),

u2(x, y) = sin(πy) cos(πx) sin2(πy),

p(x, y) = sin(πx) cos(πy).

The elevation of the discrete solution (uh, ph), along with the approximate velocity vectors and

pressure isolines, are illustrated in Figures 1 and 2 for β = 0.1 and α = 1. The presented graphs

exhibit excellent agreement with the exact solution. The computed convergence rates, shown

in Figure 3, indicate that for all considered values of α, the obtained results exceed theoretical

predictions, with convergence rates approaching 3/2 for ‖eh‖D, and nearly 1 for ‖ǫh‖0,Ω. Ad-

ditionally, the error magnitudes remain relatively stable as α increases, further underscoring the

robustness of the numerical method.
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Fig. 1. Elevation of the velocity and the pressure
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Fig. 2. Approximate velocity vectors and pressure isolines

5.2. Example 2

The second numerical example considers the following functions (see [7])

u1(x, y) = 2000(x− x2)2(y − y2)(1− 2y),

u2(x, y) = −2000(y − y2)2(x− x2)(1− 2x),

p(x, y) = 100(x2 + y2 − 2/3).
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Fig. 3. Convergence history as α increases

For β = 0.01 and α = 1, Figure 4 shows the elevation of the discrete solution, while Figure 5

displays the approximate velocity vectors and pressure isolines, demonstrating the high accuracy

of the method. Additionally, the convergence error history, presented in Figure 6, confirms that

the observed convergence rates consistently surpass the theoretical predictions for all considered

values. Here again, we observe that the error magnitudes remain relatively stable as α increases.
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Fig. 5. Approximate velocity vectors and pressure isolines

5.3. Sensitivity with respect to the stabilization parameter

We present a graph illustrating how convergence is affected by the stabilization parameter β
for a 100× 100 grid. Figure 7 shows the variation of velocity and pressure errors in the discrete

H1
0 norm and the L2(Ω) norm, respectively, as functions of β. For simplicity, we fix α = 1.

It is observed that as β increases, the errors also increase. Furthermore, the results in Figure 7

suggest that a good value for β lies between 10−2 and 100. Notably, the numerical errors in

velocity and pressure remain relatively stable even as β varies across several orders of magnitude,

demonstrating the robustness of the method.

Conclusion

In this paper, we introduced and analyzed a symmetric stabilized collocated FVM for solving

the generalized Stokes problem. The proposed method is based on a low-order approximation

that employs piecewise constant functions for both velocity and pressure. Stability was achieved

by incorporating a discrete pressure stabilization term into the formulation. Through rigorous

mathematical analysis, we demonstrated the well-posedness and convergence of the method.

A key contribution of this work is the proof that the method satisfies a weaker form of the

inf-sup condition, which ensures the stability of the discrete system.
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Fig. 6. Convergence history as α increases
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Fig. 7. Sensitivity of errors with respect to β

Additionally, we derived first-order error estimates in the energy norm, confirming the the-

oretical convergence rate of the method. The numerical results demonstrate the stability and

accuracy of the proposed method. Notably, the observed convergence rates in our simulations

exceeded the theoretical a priori estimates derived in Section 3. While similar behavior has been

reported for the Stokes problem [6, 7, 10], its theoretical justification remains an open question.

We hypothesize that this enhanced performance may be due to factors such as the regularity of

the mesh and the specific structure of the stabilization term, which not only ensures stability but

also reduces numerical oscillations in the pressure field, thereby improving accuracy. This dual

role of the stabilization term-ensuring stability and enhancing convergence by mitigating spurious

pressure oscillations-highlights its importance in collocated FVMs. Future research directions in-

clude optimizing the performance of the method through an informed selection of the stabilization

parameter β, extending the method to time-dependent problems, and applying it to nonlinear flow

models and three-dimensional domains. These extensions will further demonstrate the versatility

and applicability of the proposed stabilized collocated FVM in a wide range of fluid dynamics

problems.
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А. Букабаше

Об устойчивости коллокационного метода конечных объемов для обобщенной задачи Стокса

Ключевые слова: задача Стокса, условие инф-суп, методы конечных объемов, стабилизированные

методы.

УДК 519.6

DOI: 10.35634/vm250201

В данной работе представлена и проанализирована симметричная стабилизированная коллокацион-

ная формулировка метода конечных объемов для стационарной обобщенной задачи Стокса. Этот

метод основан на аппроксимации наинизшего порядка (кусочно-постоянные функции) для обеих

неизвестных величин: скорости и давления. Стабилизация достигается за счет добавления в фор-

мулировку дискретного слагаемого, связанного с давлением. Установлены свойства устойчивости

и сходимости метода. В заключение представлены два численных примера, подтверждающие устой-

чивость и точность предложенного метода.
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9. Eymard R., Gallouët T., Herbin R. Finite volume methods // Handbook of numerical analysis. Vol. 7.

Solution of equation in R
n (part 3), techniques of scientific computing (part 3). Elsevier, 2000. P. 713–

1018. https://doi.org/10.1016/S1570-8659(00)07005-8
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