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Introduction

The method of integral representations is one of the main constructive methods in the study of
holomorphic functions on several complex variables. The Bochner-Martinelli integral represen-
tation plays a particularly important role in multidimensional complex analysis (see, for example,
monographs [1-4]). Its kernel is universal (independent of the type of domain) and quite simple.
It has many properties of the Cauchy kernel on a complex plane, with the exception of holo-
morphicity. The Bochner—Martinelli integral is considered in detail in the monograph [5]. This
integral is also closely related to classical potential theory (see, for example, [6]). It is shown
in [5, Ch. 1] that it is an analog of the double layer potential. The Bochner—Martinelli integral
plays a particularly important role in the analytic continuation of functions of various classes of
smoothness (see [5, 7]).

Close to the Bochner-Martinelli representation is the Cauchy-Fantappie integral represen-
tation, the kernel of which consists of derivatives of the fundamental solution of the Laplace
equation. The aim of the work is to study the properties of this integral representation for inte-
grable functions. Namely, the paper considers an integral (integral operator) with this kernel for
integrable functions f on the boundary S of the unit ball B. Iterations of the integral of this inte-
gral operator of order k£ are considered. We prove that they converge to a function holomorphic
in B as k — oo.

§ 1. Preliminary information

Consider the n-dimensional complex space C", n > 1, of variables z = (z1,...,2,),
2j = Tj + 1%Tn4;, Where x; are real numbers, j = 1, ..., n. We introduce the module of the vector
1z = /]21]2 + . .. + |2n|? and the differential forms dz = dz A...Adz, and dz = dz; A. . . AdZ,,
and also dz[k] = dz; A ... Ndzi_1 Ndzgs1 A ... A dz,. The topology in C" is defined by the
metric |z — w].

Let B be a unit ball in C" with boundary 0B = S. This means that B = {z € C": p(z) < 0},
where p(z) = |2|? — 1. We introduce the ‘complex’ guiding cosines in the ball

1 dp 1 0Op
= Zk, p,;(z) = |gradp| a—zk =

Pi(2)

= — k=1,...,n. 1.1
\gradp\ aZk 2k ) y TV ( )
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We denote the Sobolev space, s € N, as W (B). Recall that this space consists of functions
f € L£2(B) for which all derivatives 9® f up to the order of s belong to £?(B), where

ollell

Dzt - Dzem 0z - Oz

o f =

and a = (aq,...,09,), [|a|| = a1+ ..., agp.
In the space £?(B), the scalar product (f,h).2(5) of functions from £?(B) is given by the
integral

(fh)e2y = [ f-hdv,
/

where dv is a volume element on B. Then the scalar product of the functions f,h € W5 (B) is
given by the formula

(f,hwssy = D (0°F,0%h) c2m)

lell<s

and the norm in W5 (B) has the form

Hwag(B) =/ ([, f)Wg(B)

In the space £?(S) the scalar product (f,h).2(s) of functions from L£3(S) is given by the
integral

(f,h)e2sy= [ [-hdo,
/

where do is a normalized Lebesgue measure on S.
Consider the space W5 (S) for 0 < A < 1. It consists of functions f € W;(S) for which

// Z ‘a\g_z‘2n+2>\(1g])| do(¢) do(z) < oo.

lall=s

We will use the following properties of these spaces (see [8]).

1. The restriction of the function f € W;5(B) to S belongs to the space w; Y *(S) and
restriction operator is continuous.

2. If we denote the subspace of harmonic functions from W (B) by G5(B), then the restriction
operator from G5(B) to Wzsfl/ ?(S) is a linear topological isomorphism. And the following
decomposition

W;(B) = G3(B) + N3 (B)
is also valid where the space N5 (B) consists of functions Wj(B) equal to 0 on S.

3. Embedding theorems imply that there exists a compact continuous embedding of W5(.5)
into C*(S) for s > n + k — 3.
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We also recall that in the ball the Poisson’s kernel for harmonic functions has the form

S [2]?
PG 2) = (n27rn) |C—|ZZ||2"’

Consider the Bochner-Martinelli kernel U((, z), which is an exterior differential form of
type (n,n — 1) of the form (see, for example, [5, Ch. 1], [7, Ch. 1])

U(¢,2) = DS Cpyen S =2 ey g
k=1

(eSS, zeB.

(2mi)" [¢— 2> Z|

This kernel plays an important role in multidimensional complex analysis (see, for exam-
ple, [1-5]). It is a closed differential form with harmonic coefficients.
Let g((, z) be the fundamental solution of the Laplace equation, i.e.,

(n—2)! 1

g(Caz) = - (27Tl)n ‘C _ Z|2n72’ n > 17
e PCAIC AP
2)|C— 2
and

n

U, 2) =Y (-1 < T al[K A dc.

k=1
For the function f € £2(S), we introduce the Bochner-Martinelli integral (integral operator)

/f C2), 245,

as well as the simple layer potential (1ntegra1 operator)

ol7le) = -2 [ 1096 o) = U [ 10— 28
S S

It is clear that M|[f], ®[f] are harmonic functions outside of S.
We will denote the Bochner—Martinelli integral inside the ball B by M *(f), and the Bochner-
Martinelli integral outside B by M~ (f). Similarly, we will denote the functions ®* and ®~.
The jump theorems are well known for the Bochner—Martinelli integral (see, for exam-
ple, [5,7]). Here is one of them.

Theorem 1.1. Let f € C'(S), then the function M (f) extends continuously to the closure of the
ball B, and the function M~ () extends continuously to C" \ B and the equality

MT[f]=M~[f]=f on S

is fulfilled.
From Lemma 3.5 of [5, Ch. 1] we have
dCk] A d¢| g = (1) 271" prdo,

then using the guiding cosines (1.1), we get

U(,2)] = B g Gl = 20) do()
k=1

2 |¢ — =z|>
If we denote ((, z) = (121 + - - - + (n2n, then

- 1-(¢z
U(CaZMs - (n2ﬂ.n> ' 15 _<iv‘22n> do.

(1.3)
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§ 2. Setting of the problems

In the following, we will consider one Cauchy—Fantappi¢ integral representation that arises
when considering the following differential condition (see [5, § 23]).

Let f € CY(B) and w(-) = Zwk%, wy € CY(S), k=1,...,n, in addition, w(p) # 0 on S,
- k

i.e., the vector field w does not lie in the complex tangent space 7°(5) for any point z € S. Let
us formulate the following problem (see [5, § 23]). (In [5, § 23] it is formulated for any bounded
domain D.)

Problem 2.1. Let f € C'(B) and f be a harmonic in B. If

w(f) = Zwkg—i =0 on S, (2.1)
k=1

then will f be holomorphic in B?

Unlike the tangent Cauchy—Riemann conditions, in the problem 2.1 it is required that the
action of a non-tangent vector field w vanishes. This problem is an analog of the problem with
an oblique derivative for real-valued harmonic functions.

If the condition w(p) # 0 is not satisfied, then it is easy to give an example when the
condition (2.1) is fulfilled, but the function f will not be holomorphic in B (see [5, §23]).

For some very special cases, the problem 2.1 is solved in [5, §23].

This problem can be reformulated as follows (see [5, § 23]. Let f € C*(B) and f be harmonic
in B, and the differential form

n

s = Z(—l)"*“% d¢TK] A dC.

k=1 k

Problem 2.2. If

prlg = aka(z)df Adz[l K] Adzg, (2.2)
k>l
where ay; are some smooth functions on S, k,l = 1,...,n, and dz[l, k] is obtained from the

differential form dz by throwing away the differentials dz; and dZj, then will f be holomorphic
in B?

The problem 2.2 is related to the problem of holomorphicity of functions represented by the
Bochner—Martinelli integral (see [5, § 15]) (in this case, all functions a;; = 0).
Recall Green’s formula (in complex form) for the function f [5, Corollary 1.2].

Theorem 2.1 (Green’s formula). Let D be a bounded domain with a piecewise smooth boundary,
the function f be harmonic in D and f € C'(D), then

[ r0vies) - [atcoms = {g S @3
oD oD ’ '

Using the equality (2.2), we get

16 = [ 10U - [9¢ A Y au(Odf AdiL AL, =€ B,
S

S k>l
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Using Stokes’ and Green’s formulas (2.3), it is obtained in [5, § 23] that for functions f € C!(B)
being harmonic in B the equality (2.2) is equivalent to the condition

/f U(C, 2) + /f Zd aei(Q)g(¢, 2)) NdC[L k] Ad¢, =z € B.

k>l

The second integral (integral operator) is denoted by

/f )Y d(ari(Q)g(¢,2)) ALl K AdC, = ¢ S,

k>l

Note that the integral G[f](z) is a harmonic function outside of S. In C! the integral G[f](z) = 0.
Introducing the kernel

2) = d(ari(Q)g(¢, 2)) Adlll k] AdC,

k>l

we obtain that the integral representation
- [1O@wEa+ W), zeB 2.4)
S

is valid for holomorphic functions f.
Thus, the problem 2.2 turns into the following problem.

Problem 2.3. Let a function f of class C(B) satisfy the equality (2.4) in the ball B. Will f be
holomorphic in B? (see [5, §23].)

In the monograph [5, § 23], this problem is solved with a positive answer for a ball if all
functions ay;(z) are holomorphic. In this paper, we will study the properties of the integral with
the kernel U((, z) + W((, z), calculate its iterations and find their limit.

Let us denote the integral operator M + G by @)

/f UC,2) +W((,2), z¢5. (2.5)

The integral Q[f](z) is a harmonic function outside of S.

We show that the integral representation (2.4) is the Cauchy—Fantappi¢ integral representation.
Let us recall the form of the Cauchy—Fantappie representation obtained by Leray in [9, 10] (see
also the monograph [4, Ch. 1]).

Let D be a bounded domain with a smooth boundary, and a continuously differentiable vector
function 1(¢, z) = (71(¢, 2), .. Ma(, 2)) is defined for a point z € D on 9D such that

n

S (G- 2m(C ) £0, ¢ €aD.

k=1

Theorem 2.2. For every function f € C(D) that is holomorphic in D, it satisfies the equation

f = n_l /f Z_Can(C7Z))7 zeD, (26)

where

32 (~1)¢ k] A dC
M(C—Z,?](C,Z)) = (n’C_z)n
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Leray called the integral representation (2.6) the Cauchy—-Fantappi¢ integral representation
and its kernel — the Cauchy—-Fantappi¢ kernel.
For k£ > [, consider the differential form

U(¢, 2) + d(a(¢)g(¢, 2)) AdCl, k] A d¢

for some smooth function a(¢) on S. It is also the kernel of the integral representation for
holomorphic functions.
Introduce a vector function

H(C,Z) = (El — Zl; .. .,El + (—1)k+lM — 5[, .. .,Ek + (—1)k+ll%<—:g) — Zk, .. .,En — Zn)
l

(1.6 =2 = Io = o+ (-1 = (G = 2 — G — a5 ) #0

for sufficiently small derivatives of the function a((). If, for example, the function a(() is
holomorphic then

(n.¢—2)=|¢— ="

The vector function 7 can be normalized to the vector function 7* so that n*(¢ — 2) = |¢ — z|*.
Then it is clear that for the vector function n* the Cauchy—Fantappie¢ kernel will coincide with the
kernel

U(¢, 2) +d(a(¢)g(C, 2)) AdC[l, k] A dC.
For the differential form U((, z) + W((, z), the reasoning is similar. Thus, we have
Lemma 2.1. The differential form
U(¢, 2) + W(¢ 2)
is the Cauchy—Fantappie kernel.

§ 3. Auxiliary results

Let us express the Bochner—Martinelli kernel U((, z) and the kernel W((, z) in terms of the
Poisson kernel.

Lemma 3.1. The following equalities are true

U(¢,2)|g = %ﬁd? P((,2)do(¢), (€S, z€B,
and also
dg(¢,2) A dCll, K] A dC| = (—1)k+lp(g,z)@f%$ do(¢), C€S, zeB, l<Fk

Proof The first equality easily follows from the form of the Poisson kernel and the for-
mula (1.3).
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Since
k 09 1-199
dg(C, 2) NdC[l, k] A dC = (- )%dé[]/\dCH 1) agldd | A dC,
again using the guiding cosines (1.1), Lemma 3.5 from [5], and formulas for derivatives
99(¢,2) _ (n = DG — =)
G (2mi)"[¢ — 2[*"
_ ) 0
Aol Nt k] ] =2 1) (g - gy ) o =

(=1 (n — G— 2 Gk — 2k

n—1,n 1)'
= o <—1>’f+’(<8—g—€za@) ST (g’“m EET T z|2">d“

k+1 _ | _
7 G-

1 2n" P
Thus, since = ™ (¢, 2) , then

=2 (n =D —|z?)

dg(C,2) NdC[L K] A dC|g = (1) P(¢, 2)

, we get

Gz — Cez
1—z]?

do. O

Transform the kernel W ((, z) as follows:

= d(a(Q)g(¢, 2)) AdC[l k] A dC =

k>l

= ap(Q)dg(¢, 2) AdCILE] AdC+ > g, 2))dag(C) A dllL k] A dC.

k>l k>l
Then, by Lemma 3.1,

> 0ka(€)a(6.2) A dClLH A = Y1) o (OP(C2) - S o

1—|z[?
k>l k>l

3.1)

At the same time, similarly to the previous step and using the formula (1.2), we get

Zg 2))day1(¢) A dC[L k] AdC | = Q(Caz)zdak,l(o AdC[L k] A dC| g =
k>l k>1

=9(¢.2) ) 2 (=) (@% % ; ) do =

k>l

P(C,Z)|C—Z‘2 k+1 % 8akl . (32)
pre e N O

1+ 2> = (C,2) = (¢, 2) ket [ - Oag Oay,
SRR T e D (65e -a )

So the following statement is true.

Lemma 3.2. The restriction of the kernel W ((, z) onto the sphere S is expressed by the formula

W(c, Z)’s = P(C,2) Z(—l)k“ak,l(g) G2k — Ch2 do +

1—|zf?
k>l

AL =G 2) =6 2) >y (Ot Oy
R e e M Gl
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§4. Homogeneous harmonic polynomials

We write the Laplace operator A in the following form:

O ( » )
A= S N AR
— 02,0z, 4 kz oxy a2,

=1

Consider the set of homogeneous harmonic polynomials { P ;(2)}, s,t € NU{0}, of the form

P, (z) = Z o322,

lall=s, lI8ll=t
where o = (a1, ..., an), 8= (b1, ..., Bn) are multi-indices, 2* = 201 . z0n 70 = 2. .50
are monomials, and ||| = ag + ... + oy, |8l = f1 + ... + B, The polynomials Ps,(z) are
harmonic homogeneous polynomials of degree s in z and degree ¢ in z. We denote the set of all

such polynomials by P ;.

In the R™ space, they are discussed in sufficient detail in S.L. Sobolev’s monograph [11,
Ch. 11] and are called ball valve there. Here we take into account the complex structure and
therefore consider the homogeneity of the polynomial separately in z and in z in accordance
with [5, Ch. 1].

Since the set of harmonic polynomials is dense in £2(S) (even in L£(S)) (see, for exam-
ple, [11, Ch. 11]), Us,t Ps is dense in £?(S). Moreover, the scalar products (P 4, Pim)r2s) =0
if s # [ or t # m (see, for example, [5, § 5]). Therefore, we can always choose an orthonormal
basis in the space £2(S) from the polynomials P, ;.

Let us denote by Pro the operator of projection from the space W5 (B) onto the subspace
of holomorphic functions in W5 (B). The following statement is proved in [12, 13], as well as
in [5, Ch. 1].

Theorem 4.1. For homogeneous harmonic polynomials P, the equality

n+s—1
M[Py,](2) = mps,t(z)

holds.

Thus, the polynomials F;, are eigenfunctions of the Bochner-Martinelli operator. Every
rational number in the interval (0, 1] is an eigenvalue of the operator M of infinite multiplicity.
Moreover, in [12] and [13] the following statement is proved.

Theorem 4.2. The property
MF*[f] = Prolf] as k — oo
holds in the strong operator topology of the space W5 (B), s > 1.
In particular,
MF*[f] — Prolf] as k — oo

according to the norm of space W (B).

Let us calculate the action of the operator G' on the polynomials P;,;. Based on the formu-
las (3.1) and (3.2) for the kernel W of the operator G, the action of the operator G is the sum of
the actions of the operators G,; of the form

Gralel(2) = / o(O)dg(C,2) A dTlL, K] A dC

S
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and the operator .
Consider the integral (integral operator)

GuilPoil(z) = / Poo(C) dg(C. =) A dC[l, k) A dC.

S

Obviously, it is a harmonic function outside of S. Then, from Lemma 3.1, we get

GuilP.al(:) = (-0 [ PP ) S do0), 2 B

1 —|zf?
s

To calculate this integral, we need to harmonically extend the functions (i Ps;(¢) into the ball B.
It is not difficult to verify that this continuation is given by the function

L= [¢? 9P

MO = GPualQ) + o T o (“.0)
Indeed,
~~  0*h
Ah — — =
2 5,06,
. 8P37t _ n 3Ps,t _ 1 ié_ i(apsﬂg _
9G, nts+t—1 9, nts+t—14=2"90, \ A
1 ~ . 0 (0P,
e ()
_8P57t_ n 8P57t_ S aPS,t_ t—1 aPS,t —0
06 nts+t—109G nts+t—10G nt+s+t—1096
Here we used the formula
v ou Ov
Alu-v)=v-Au+u-Av+ Z((’?zm 52 + 5 8zm)
and also the homogeneity of the polynomials P, ; in ¢ and (.
Thus, we have
(_l)k-i-l
GralPsd(2) = 1—7|z\2 / P(¢, 2) ((Clzk — Goz) Pst(C) +
5

L 0= kP)a 0P (=[P LAY 4y -
n+s+t—1 09¢ n+s+t—1 0¢

DR A=) (L 0Pu)  0Pu(2) _

T 1l—|22 nds+t—1 g ¢, : ICy B

(—1)k+t OP; () O0P; ()
= Zke = — Z = .
n+s+t—1 ¢ OCk

Hence, we get the statement.
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Lemma 4.1. The equality

GrilPoil(2) = (=1 (ZkﬁPs,t(Z) . 8Ps,t<z))'

n+s+t—1 ¢ "0G
holds.

Note that on the right side of this equation there is a homogeneous harmonic polynomial of
degree s+ 1 in z and degree t — 1 in Z.

If we consistently apply the operator Gy ; to the polynomials P;;(z) (i.e., consider iterations
of the operator G ), we get that G} ;[Ps,] = 0 for ¢ > ¢, and for ¢ =  the iteration G} ;[P ,] is
a holomorphic polynomial of degree s+ 1.

Now calculate ®[P;,]. Using the formula (1.2), we get

B[P.(2) = / P.y(0)9(¢.2) do(¢) =

S

- = | PP 2 () -

S

1 2 - z) —{((, 2)) do
G PO PO+ - (63 - G

Applying the formula (4.1) and a similar one for conjugate derivatives, we obtain that

1
(n = 1)(1 —[z[?)

1—|2]? - OP;(2) 0P (2)\|
_n+t+s—1;<zk 0z, TR 0z, N

P[Py (2) = (14 [2*) Pes(2) = 2|2 Po(2) —

= ! — |22 z) — —z2—8+t (2) ) =
- e (A DR - - P pa)
1
- (n+s+t— 1)Ps’t<z)'

Thus, we obtain the statement

Lemma 4.2. The simple layer potential is calculated by the formula

1
(n+s+t—1)

Q[P 4|(2) = P 4(2).

So the homogeneous harmonic polynomials P ; are eigenfunctions of the operator .

Proposition 4.1. For functions f € W.(B), the sequence ®*[f] — 0 according to the norm of
space W(B) as k — oo.

§ 5. Main results

Consider the integral
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Using Lemmas 3.1 and 3.2, we obtain that

/ FORZE PG 2) do¢ / FOP(G2) TN sl o +
Lo = (€)= (62) g )

For holomorphic functions f, we obtain that Q[f] = f.

Let now the function f € Wj(B) be non-holomorphic, i.e., we assume that ¢ > 0 in the
decomposition of the function f into a series of polynomials P, ;. Decomposing the integrand
functions into series of polynomials P;;, we obtain

=D PulQ), f(Qara(¢ ZPftZ
_7 K-+ % _ &lkl
FOY (D¢ 3~ ZP”

k>l

Moreover, there are no holomorphic components in these series, i.e., all £ > 0.
From Theorem 4.1 and Lemmas 4.1 and 4.2, we obtain

B n+s—1 (— 1)k oPL!(2) oPL!(2)
Q[fKZ)—;(mP” +Zn+s+t—1 TTon T Tom )T

1 _
C(nts+t— 1)Z’n2n1P37t('Z)> . (5.

In particular, let f = P, and a;;(¢) be homogeneous harmonic polynomials of some degrees,
then their product (of the total degree m) by S can be represented by the Gauss formula (see, for
example, [11, Ch. 11]) as a restriction by .S of a homogeneous harmonic polynomial of the form

Ps,t(z> ak:l ZZm 2p z € Su
p=0
where
-2 — 1 -2 2)! o
Tyopl) = A2 A0 AN 2| piady(2),
pl(m+n—p —l'j>0 4!

A similar formula is also valid for the expression

Oa Oa
P e (Z LI k,l).
i );( ) om g

It should be noted here that the total degree of this polynomial is still equal to m, and the
expression

Oa Oa
_1\k+l k,l_ k,l
S (-1 (zl—agk G %)

k>l
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is a homogeneous harmonic polynomial.

Thus, the formula (5.1) applied to the function P, shows that Q[P;,](z) is the sum of the
same number of homogeneous harmonic polynomials of the previous form multiplied by a number
strictly less than 1.

If we consistently apply the operator () to the polynomial F;; (i.e., considering the itera-
tions Q"' [Ps ], t > 0), we get that Q™[Ps ;] — 0 as [ — oo, since the coefficients of the resulting
polynomials tend to zero.

If ay;(z) are not homogeneous harmonic polynomials, then we can decompose them into a
system of functions { P ;} and apply the resulting statements to each term.

Therefore, the property is valid.

Lemma 5.1. The equality

Q'[Pso)(2) = Pio(2)
holds for the polynomial Py, and if t > 0, then Q'[P,](z) — 0 as | — oo in the metric G3(B).
From Lemma 5.1, we obtain the statements.
Theorem 5.1. Let function f € G5(B). The properties are true:
(1) Q™[f] = f for any m € N, if f is holomorphic in B;
(2) Q™[f] = 0 as m — oo, if the decomposition f has all P;, = 0.
Theorem 5.2. For function f € G5(B), the property
Q™[f] = Prolf] as m — o
holds in the topology of space G3(B).
As a consequence, we have

Corollary 5.1. Let B be a unit ball, the function [ € G5(B), the functions a;;, € C'(9),
k,l=1,...,n, and the condition (2.4) be fulfilled in the ball B (i.e., Q|f] = f in B). Then, the
function f is holomorphic in B.

Proof Since Q[f] = f in B, then Q*[f] = Q[Q[f]] = Q[f], etc. We obtain that Q*[f] = f
in B. On the other hand, by Theorem 5.2, iterations of Q*[f] tend to the holomorphic function f
in B. O

Thus, Problem 2.3 is solved positively.

Corollary 5.2. Let B be a unit ball, the function f € C(S), the functions a;; € C'(9),
k.l=1,...,n, and the condition

Q[f](z) = 0 outside the ball B,

be fulfilled. Then, the function f extends holomorphically into B as the function F' € C(B).

Proof From the formula (2.5), we have

Q[f1(z) = M[f](2) + G[f](z) Z/f(C)(U(C,ZHW(C,Z)), z¢5S.
S
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The jump of the integral M|f] is equal to f (see Theorem 1.1),1i.e., MT[f](z)—M~[f](z) = f(2)
on S. The jump of the integral G[f] is 0, since it is the potential of a simple layer (see, for
example, [6]).

From this, we get that if Q[f](z) = 0 outside the closure of the ball B, then QT [f](z) is
the harmonic continuation of the function f in the ball B. By the previous corollary, Q*[f](z) is
holomorphic in B. 0

Corollary 5.3. Let B be a unit ball, the function f € C(B), the functions a;; € CL(9),
k,l =1,...,n and for some natural number s, the condition

Q*[fl(z) = f(2), ze€B,
be fulfilled. Then, f is holomorphic in B.

Proof Consider the iterations of Q**°[f](z). By Theorem 5.2, they tend to a holomorphic
function in B. On the other hand, they are all equal to f(z). O

In conclusion, we present the theorem.

Theorem 5.3. Let f € CY(B) and f be harmonic in B, w(p) # 0 on OB. If
_ “~ _ Of
w(f) = ;wka—zk =0 on 0B,

then f is holomorphic in B.

Thus, Problem 2.1 is solved positively for smooth functions.
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BECTHUK YIMYPTCKOI'O YHUBEPCUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKHN
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A. M. Keiemmanos, C. I. Mviciueey
O HEeKOTOPBIX YCIOBHUAX CYLIECTBOBAHUS r0JOMOP(PHOro npoaokennss GyHKIHUA B map

Kniouesvie cnosa: WHTETrpalbHOE TNpEACTaBIcHHE boxHepa—MapTHHEIUIN, WHTETpaabHOE MPEICTaBICHUE
Komm—®anTanmee, map, UTEpalMd HHTETPAIBLHOIO OIepaTopa, roJIoMopdHOE MpogomkeHue (QyHKUIUi
B 1Iap.

YK 517.55
DOI: 10.35634/vm250205

B pabore paccMoTpeHO ONHM3KOE K MHTETPAILHOMY MpeAcTaBieHui0 boxHepa—MapTHHE HHTErpajibHOe
npenctapienne Konm—®anrarniibe, Sp0o KOTOPOTO COCTOUT U3 MPOU3BOMHBIX (YHIaMEHTATEHOTO PEIICHHSI
ypaBHeHust Jlamaca. Llensio paGoThl siBIsieTCsl MCCIENOBAaHUE CBOMCTB 3TOT0 MHTETPajbHOTO IMPEACTaB-
JICHUs ISl UHTETPUPYEMBIX QYHKIMHA. A MMEHHO, B paboTe paccMaTpHBaeTCs MHTErpai (MHTErpaIbHbIH
OIepaTop) C 3TUM SAPOM IJIsl HHTETpUPYeMbIX QyHKUUN f Ha rpaHuue S exuHU4YHOTrO mapa B. Paccmot-
PEHBI UTEpallMK WHTErpalia JAHHOTO MHTETPANLHOTO oreparopa mopsjaka k. Jloka3aHo, 4TO OHH CXOMISATCS
K QyHKIWH, ToToMopdHOH B B, pu k — oo.

dunancupoBanue. Pabora nongepkana KpacHOSpCKMM MaTeMaTHYECKHM LEHTPOM, (UHAHCHPYEMBIM
Muno6paayku P® (Cormamenne 075-02-2025-1606), a Ttakke GyHIaMEHTAIBHBIM MPOCKTOM Y30EKCKO-
rO HaIlMOHAJIBHOTO yHUBepcuTeTa no. 1L-5421101746.
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