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Introduction

In this work, G is a finite and simple graph. Let P,, C, K, and O, be a path, a cycle,
a complete graph and a trivial graph on s vertices respectively. Let K, ; be a complete bipartite
graph of order  + s. A magic square involves arranging the integers in a square so that the
sums of each row, column and diagonal are equal. The word anti-magic refers to the graphs
relationship with magic labelings and magic squares. The terms in the context of graph theory,
with more specific notions such as anti-magic labeling and local anti-magic labeling, particularly
refer to certain labelings of the edges or vertices in a graph. Both concepts define the assignment
of labels, usually integers, on the edges or vertices in such a way that some conditions are met,
while they are different in details and restrictions.

Anti-magic labeling only requires that the sum of the labels incident to each vertex be distinct
across all vertices.

The local anti-magic labeling requires that the sums of the edge labels incident to adjacent
vertices be distinct from one another, adding a condition on adjacent vertices.

The local anti-magic labeling is a more restrictive property and may not be possible for certain
graphs that could otherwise have an anti-magic labeling.

Let f: E(G) — {1,2,...,|E(G)|} be a bijection. For y € V(G), the weight wt(y) =
= Y. f(e), where E(y) is the set of edges incident to y. If wt(y) # wt(z) for any two different

ecb(y)
vertices y and z € V(G), then f is called an anti-magic labeling [1] of G. It was introduced,

in [1], by Hartsfield and Ringel who posed the conjecture: any connected graph G(# Ks) is anti-
magic. Also, they showed that cycles, paths, complete graphs, and wheels are anti-magic. In [2],
Cranston obtained anti-magic labeling for s(> 3)-regular bipartite graph by using matchings of
graphs. Zhang and Sun [3] provided that: if G is an anti-magic regular graph, then the Cartesian
product GLJH admits anti-magic. The recent survey of graph labeling can be found in [4].

Vertex local anti-magic coloring (in short VLAC) is addressed in graph theory to investigate
and understand specific aspects of graphs, specifically those related to magic and antimagic
labeling. A bijection f: E(G) — {1,2,...,|FE(G)|} such that the induced vertex labeling
ft:V — N, given by fT(y) = > f(e), has the property that any pair of adjecent vertices have
different colors. The number of different induced vertex colors with f is represented by c(f),
and is called the color number of f. The vertex local anti-magic chromatic number of G, denoted
by Xuvea(G), is min {c(f): f is a vertex local anti-magic coloring of G} [5]. We can see many
variations of anti-magic labeling of a graph G. One of the variations is the vertex local anti-magic
chromatic number of GG introduced by Arumugam et al. in [5], also they determined the specific
value of vertex local anti-magic chromatic number of paths, cycles, wheels, complete graphs and
bipartite graphs. Also, they posed the following conjectures.
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Conjecture 0.1 (see [5]). All connected graphs except K are vertex local anti-magic.

Remark 0.1 (see [5]). For any graph G, x.w(G) > x(G), where x(G) is the chromatic number
of G.

Local anti-magic coloring is a concept in graph theory that helps understand properties of
graphs and their structures through unique labeling schemes. It has practical applications in graph
design, coding theory, and communication graphs. The study of labelings presents mathematical
challenges, and researchers often pursue the existence or non-existence of such labelings for
different graph classes. It can be used for scheduling tasks or resources, preventing conflicts
and optimizing resource allocation. This also aids in error detection and correction in coding
theory. Combinatorial optimization problems can also relate to local anti-magic labeling. For any
integer = < vy, [, y| represent the set of integers between x and y.

In 2017, Arumugam et al. [5] investigated the vertex local anti-magic chromatic number for a
complete bipartite graph K, 5, whenever r, s > 2 and r = s (mod 2) and they gave problems for
leftover cases. Also, they proved lower bound for every tree 7" with s leaves, X (1) > s + 1.

In 2020, Lau et al. [6] completely calculated the vertex local anti-magic chromatic number
for complete bipartite graphs.

Theorem 0.1 (see [5,6]). For s >r > 1and s > 2,

s+1, if s>r=1,
Xota (K7 5) = < 2, if s>r>2and r=s (mod 2),

3, otherwise.

In 2020, Premalatha et al. [9] showed that x ¢, (7)) = s+2, T is a tree with s pendent vertices,
and posed the following

Problem 0.1 (see [9]). Characterize trees 7" with s leaves, xu(T) = s+ 1 or s+ 2.

Very recently, Lau et al. [10] gave partial solutions of the above problem ¢-leg spider graph
has { + 1 < xua < £+ 2. Also, they provided a partial answer to the classification of s-pendant
trees T' with X, (T") equaling either s + 1 or s + 2. Later, Baca et al. [11] verified the above
problem for every complete full ¢-ary tree of s leaves having vertex local anti-magic chromatic
number s + 1. For some of the trees discussed by various authors, the vertex local anti-magic
chromatic number was either s + 1 or s + 2. Also, the characterization of the vertex local
anti-magic chromatic number of trees is still open.

In 2023, Lau et al. [7] found the vertex local anti-magic chromatic number of even regu-
lar circulant bipartite graphs join with cycle and trivial graph. Also, they posed the following
conjecture and verified its partial results:

Conjecture 0.2. Let [ be a circulant graph.
(a) If s > 1, then xu(H V Os) = x(H) + 1.
(b) If s > 3, then X (H V C5) = x(H) + x(Cs).

In 2023, Lau and Shiu [8] gave a sufficient condition for a graph with one pendant to have
Xota(G) > 3. Also, they proved Theorem 0.2, considered the circulant graph of order 2r with
odd lengths 1, ¢y, (s, ... ¢, where ged(¢;,2r) = 1,1 <i < t.

Theorem 0.2 (see [8]). Let 1 < 1,05, ..., s < r, and, for every integer j € [1, s], ged({;, 2r) = 1.
Then, Xvﬁa(C(ZT; {17 El) cee 768})) =3
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Moreover, they discussed bipartite and tripartite graphs G with x,,(G) = 3. In addition, they
provided some interesting open problems:

Problem 0.2 (see [8]). Verify the vertex local anti-magic chromatic number for
Cr(]-a El) EQ) ce 7£8)7
where 7 is odd.

Problem 0.3 (see [8]). Identify the vertex local anti-magic chromatic number for bipartite graphs
equaling 2 or 3.

Problem 0.4 (see [8]). Identify the vertex local anti-magic chromatic number for complete tripar-
tite graphs equaling 3 or 4.

In 2024, Uma and Rajasekaran [12] proved the Theorem 0.3, which is a generalization of
Theorem 0.2 [8]. In Theorem 0.3, the circulant graph of order 2r with arbitrary odd lengths ¢,
Uy o ls (0 < Uy < --- < {y) is considered, where ged(¢;, 2r) is either 1 or d.

Theorem 0.3 (see [12]). Let {1 < (5 < ... < ly < r, and, for every integer j € [1,s],
ged(l,2r) =1 or d. Then, Xua(C(2r;{l1,l2,...,4s})) = 3.

Various authors discussed some bipartite graphs whose vertex local anti-magic chromatic
number is either 2 or 3. Also, the characterization of the vertex local anti-magic chromatic
number of bipartite graphs remains open. Hence, in this article, we are interested in calculating
the vertex local anti-magic chromatic number of some special bipartite graphs as Knddel and the
Fibonacci graphs which are non isomorphic to any other bipartite graphs.

Since the birth of the Internet, our world has become a global village where almost all com-
mercial, social, private, public, and research and development networks fall under the umbrella
of the Internet. Fast and reliable dissemination of information is the central issue of all types
of real networks, such as ad-hoc, wireless, satellite communications, supercomputers, Internet,
cloud-based infrastructure. Much effort, money, and time have been spent on improving the
information dissemination. Two ways exist to resolve this issue: compressing the amount of
data that is transferred and minimizing delay in the transmission of information. The approaches
found to be received well for using the latter methodology either design algorithms that are effi-
cient or establish robust network architectures at an optimal level of information diffusion time.
Network architecture means the logical as well as the structural layout of the network. Regular
network architectures provide the platform to implement powerful algorithms related to routing,
broadcasting and parallel as well as distributed computing [13].

Compared to all of the networks, Knddel graph is the only network that can be designed for
any even number of nodes. Moreover, the degree of every node in Knoddel graph on n nodes can
be any value between 2 and |log,(n)|. When the degree of Knddel graph is 2, then it becomes
the well-known cycle. When the degree is equal to [log,(n)], then Knodel graph is a broadcast
and gossip graph, in which the main communication tasks can be performed, theoretically in
minimum possible time. The above properties make the Knodel graph the largest possible unique
interconnection network, which could be sparse (when degree is constant) or dense (when degree
is logarithmic of n). This way Knddel graph can be suitable for all possible applications based
on communication time, network design or implementation cost.

The Knddel graph Wa ,, is a regular graph of even order n and degree A, where 1 < A <
< |logy(n)|. It was introduced by Austrian mathematician Walter Knddel for A = |log,(n)],
in 1975 and was used in an optimal gossiping algorithm [14]. This graph is considered as rather
unique because it is the smallest gossip graph. The main properties that need to be considered
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when dealing with the Knodel graph is gossiping and broadcasting. Start with gossiping, if there
is a group of n persons gossiping, then every single person has a chunk of information and tries
to communicate it to other with the help of binary cells and if every call lasts a specified period
of time, and the final aim is to find in total how much time is taken before every involved person
knows the entire information.

In a similar way, when the data is broadcast at time ¢ = 0, 2° person has the data; at time ¢ = 1,
2! people know the data; and at time ¢ = 2, 2% people know the data. Finally, total of n people
in the system have the needed least time. In this situation, individuals are denoted to as vertices.
Knddel proposed a two-way mode that allows two nodes in a call to exchange information in a
single round. David et al. [16] studied a one-way mode, where information can only go in one
direction during a call between = and y. This means that only y can get information from =z
or z can receive information from y but not both. In [14], it was proved that gossiping in a
two-way mode requires at least [log,(n)| rounds for even n. However, Knodel graphs permit
for gossiping in [log,(n)] rounds. Similarly, it was proved in [16] that, for even n, gossiping
cannot be executed in less than [log,(n)] rounds in the one-way mode, where p = (1 + V5)/2.
However, there are graphs, known as Fibonacci graphs, that permit gossiping to be executed in
that number of rounds.

For smaller A, the family of Knddel graphs has been defined formally by Fraigniaud and
Peters [15]. Since 1994 a lot of research has been done on Knddel graphs, especially because
some subfamilies of the Knodel graph tend to have good properties in terms of broadcasting
and gossiping [17]. Many graphs introduced as minimum broadcast (resp. gossip) graphs, such
as in [18-20], were in fact isomorphic to Knddel graphs [21].

Knédel graphs [17] and Fibonacci graphs [22] are bipartite graphs G of 2n vertices. Each
partition has n vertices labeled from 0 to n — 1. The Knédel graph on n > 2 vertices and of
maximum degree 1 < A < |log,(n)], is represented by Wa ,. The vertices of W, are the
pairs (7,7), fori =1,2and 0 < j < (n —2)/2. For each j, 0 < j < (n — 2)/2, there is an edge
between vertex (1, ) and each vertex (2, (j + 2F — 1) (mod n/2)), for k=0,1,...,A — 1.

The Fibonacci graph [22], on n > 2, and of maximum degree A, where 1 < A < k; where
k = F~'(n) — 1, is represented by Fa ,,. The vertices of F ,, are couples (i, j), for i = 1,2 and
0<j<(n—2)/2. Forevery j, 0 < j < (n—2)/2, there is an edge between vertex (1, j) and
each vertex (2, (j + F(k+ 1) —1) (mod n/2)), for k =0,1,2,...,A — 1, where F'(k) denotes
the kth Fibonacci number (F'(0) = F(1) = 1, and F(k) = F(k— 1)+ F(k —2) for k > 2 and
F~1(n)—1 represents the number k for which F/(k) < n < F(k+1)). See Fig. 1 and Fig. 2, they
show the examples of a Knddel graph and a Fibonacci graph. Specifically, there exist graphs that
are not isomorphic to Knddel graph (resp. Fibonacci graph), and permit gossiping in the 2-way
mode (resp. 1-way mode) in an optimal manner.

wp(63) w1(71) w2(71) w3(63) w4(63) w5(63) we(63) wr(71)

Fig. 1. nga(W4716) =3

The join graph G vV H [23] of two graphs G and H, is defined as follows: V(G V H) =
=V(G)UV(H)and E(GVH) = FE(G)UE(H)U{zy: x € V(G), y € V(H)}. For more results
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8) 58)

22

wo(54) w1(61) w2(54) w3(54) w4(61) ws(61) we(61)

Fig' 2. Xvﬁa(F4,14) =3

on the vertex local anti-magic chromatic number of join graphs, see refs. [24-27]. Terminologies
and notations are not described here and can be found in [23].

The results of this article support Conjecture 0.1, Problem 0.3 and Conjecture 0.2. In the
following Sections we concentrate on the vertex local anti-magic chromatic number of Knddel
graphs and Fibonacci graphs. Also, we provide the vertex local anti-magic chromatic number
of disjoint union Knodel graphs. Additionally, we discuss the vertex local anti-magic chromatic
number of some join graphs. The Theorems listed below will be applied.

Theorem 0.4 (see [27]). Let H be a graph of size e. Assume there is a vertex local anti-magic
chromatic number of H inducing a two-coloring of H with colors a and b where a < b. Let A
and B be the numbers of vertices of colors a and b, respectively. Then, H is a bipartite graph
whose sizes of parts are A and B with A > B, and Aa = bB =e(e +1)/2.

Theorem 0.5 (see [26]). Let G be a graph of order p and size e. Let s > 2 and p = s (mod 2).
Suppose G admits a vertex local anti-magic k-coloring h. Then, X, (G V Og) < k + 1 if either
s—p>0o0rp—s>2and2ht(u) # s(p?> — ps — 2e — 1) + p(1 — s?) for every u € V(G).

§ 1. Results

For simplicity, we re-lable the vertices of a Knddel graph as follows: the vertices {(1,0),
(1,1),...,(1,(n — 2)/2)} are labelled as V' = {vo,v1,...,Vnm_2)/2}, While the other vertices
{(2,0),(2,1),...,(2,(n—2)/2)} are labelled as W = {wo, w1, ..., wxn_2)/2}. Then two vertices
of v; and w; are adjacent & j € {i +2° —1,i+2' —1,... i +21 -1} (j—i e {2°—1,
21 —1,...,2%°1 —1}). Here V U W is the vertex set of Wy, and we use subscript addition
modulo n/2. Clearly, W5, = Cy and Wy = Cg. Since s > 3, xwa(Cs) = 3 [5]. Hence,
Xota(Wa,4) = Xvea(Waye) = 3.

Fori € {0,1,...,29° — 1}, if d > 2 is even and n = 2¢ + 2i, then the Knddel graph Wy, is
even regular; if d > 1 is odd and n = 2% + 2i, then the Knddel graph W, is odd regular.

In the following Subsections 1.1, 1.2 and 1.3, the Knédel graph W,,, = G, where both n > 8
and d > 2 (1 < d < |logy(n)]) are even.

1.1. Knodel graphs

In this Subsection, we find the vertex local anti-magic chromatic number of Knoddel graphs.
Theorem 1.1. For the Knddel graph G, xvi(G) = 3.
Proof LetV(G) = {v;, w;j: 0<4, j<(n—2)/2} and

B(G) = {vw;: 0<i<(n—2)/2, je{i+2°—1,i+2"—1,...,i+29"—1}}.
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Clearly, |V(G)| = n and |E(G)| = nd/2. Define ¢: E(G) — {1,2,...,nd/2} as follows. For
i€f{0,1,....n/2—1},je{i—1+2*:0<i<n/2—1 and 0<k<d—1},

1) — 2i
%, if ke{l,3,...,d—1},
p(viw;) = :
w, if ke{0,2,....d—2).

Thus, ¢ is a VLAC of G with vertex colors
ot (v;) =d(nd+2)/4 for i € {0,1,...,(n—2)/2}. (1.1)
For j € {0,1,...,n/2 — 1},

dind+2) 2¢—1

+ , if 28— 1<j<21 92 and ke {1,3,...,d— 1},

&) = S gnd ’

! dind+2) n 2¢-1 _
—_— ==+ , otherwise.
4 2 3

(1.2)
Hence, ¢ induces a proper vertex coloring ¢ of G with 3 colors and x.,.(G) < 3. By Theo-
rem 0.4, X,0a(G) > 3. Thus, X, (G) = 3 (for example, see x,ea(Wi416) in Fig. 1). O

1.2. Union of Knoédel graphs

In this Subsection we discuss the vertex local anti-magic chromatic number for disjoint union
of Knddel graphs.

Remark 1.1. For r € N, X0 (rH) > Xoea(H).

For r € N, the disjoint union of r copies of G is a disconnected graph which is denoted by rG
with V(rG) = {vf,wf: 0<i475<(n-2)/21<1¢< 'r’} and E(rg) = {vfwf: 1<e<r,
0<i<(n—-2)/2, je{i+2°—1i+2"—1,...,i+271 -1} }.

Theorem 1.2. For r € N, y,,(rG) = 3.

Proof Define : E(rG) — {1,2,...,nrd/2} as follows. For i € {0,1,...,(n — 2)/2},
je{i+2"-1:0<i<(n—2)/2 and 0<k<d—1},and1 <<,

n(r(k+1)— (0 —1)) — 2
5 ;
n(rk+¢—1)+2(i+1)
5 )

if kef{l,3,...,d—1),
p(vjws) =

if ke{0,2,...,d—2}

Thus, ¢ is a VLAC of rG with vertex colors as follows: pT(vf) = d(nrd +2)/4, 4 € {0,1,...,
...,n/2—=1}. Forje€{0,1,...,n/2—1}and 1 < /¢ <,

dnrd+2) 21-1
+ (gl 4 T3
o (wy) = dinrd+2)  2¢—1 on

1 + 5 > otherwise.

if 28 —1<j<21_2 and ke {1,3,...,d— 1},

Hence, ¢ induces a proper vertex coloring ¢t of rG with 3 colors and Y. (rG) < 3. By Re-
mark 1.1, Xy (rG) > 3. Thus, Xy (rG) = 3. O
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1.3. Knodel graphs join with some graphs

This Subsection describes the vertex local anti-magic chromatic number of Knddel graph join
with trivial graph (isolated vertices), complete graphs, cycles and complete bipartite graphs.

Let O;, s > 1, be the trivial graph with V(Oy) = {z: 1 <t < 3} and let G V Oy be the
join graph. Clearly, V(G V O;) = V(G) UV (0Os) and E(G V Oy) = YU {viz, wiz: 0 < i <
(n—2)/2, 1<t<s, and 28 -1 <j <212 < (n—-2)/2, where ke{0,1,...,d—1}}.
Note that, [V(GV O5)| = n+ s and |E(G V Oy)| = nd/2 + ns. Hereafter, p = n + s and
q =nd/2+ ns.

Lemma 1.1. For s > 2 even, X (G V Oy) =

Proof Letv: E(GV Oy) — [1,q] be an edge labeling of G V O, and let ¢ be the vertex local
anti-magic chromatic number of G defined by Theorem 1.1. First we label the edges of G by
using [1,nd/2] labels such that ¥(e) = p(e) for all e € E(G).

Next label the edges of v;z;, as shown in the table below:

Z1 E) Z3 Z4 Zs—2 Zs—1 Zs
Vo 2oins |Yins—1)+1 L+n(s—1) "7'14-“(5—2)—&-1‘“w+n,3+1 M-ﬁ-ns "(d'Tfs)-‘rns-‘rl
o | Zans—1 |Zin(s—1) 42/ +n(s—1)— 1|2 +n(s—2)+ 2...M+n9+2w+n571 %2_5)+n5+2

v | Wins—2 [Z4n(s—1)+3|% +n(s—1)— 2’”’+n(s—2)+3...w+ns+3w+ns—2 @-&-715-&-3

vy | Mns—3 |2 4n(s—1)+4[% +n(s—1)—3|% +n(s—2) +4|... M+ns+4w+n573 n(d S)d+ns+4

Uns @JrnerS "(d md=) | s — 2 @Jrnsdrii @+n/<972 ...ernszMJrnerSMJrnsz
Vna ”(2—7U+YL5+2 ”(d md=l) 4 ops—1 @—i—ns-&-? @-‘rns—l A“M-‘rns—l@—l—ns-‘r?@-ﬁ-ns—l
Uns2 @Jrnerl @+ns @Jrnerl "(d 3 4 ns nid— SH) +ns "(d;Hl) +ns+1 erns

Table 1. The edge labeling of v; 2,

From the above table, the first column is the series of numbers in [1 + ¢ — n/2, ¢ in reverse
natural order; the second column is the series of numbers in [1 + ¢ — n, ¢ — n/2] in natural order;
the third column is the series of numbers [1 + ¢ —3n/2, ¢ — n| in reverse natural order; the fourth
column is the series of numbers in [1 + ¢ — 2n,q — 3n/2] in natural order; the fifth column is
the series of numbers in [1 + ¢ — 5n/2,¢ — 2n] in reverse natural order; continuing the above
process we obtain that odd columns are the series of numbers in reverse natural order and even
columns are the series of numbers in natural order. Finally, (s — 2)th column is the series of
numbers [¢ + 1 —n(s —2)/2,q — n(s — 3)/2] in natural order; then (s — 1)th column is the series
of numbers [¢ + 1 —n(s — 1)/2,q — n(s — 2)/2] in natural order; and sth column is the series of
numbers [¢ + 1 — sn/2,q — n(s — 1)/2] in natural order. Easily, we see that each row sum is

ns(2d +3s)+2s nd+2 ns(2d+3s) + 2s
g (vi) = fT(vs) + : 4 : == " : 4 !
nd + ns(2d + 3s) + 2(s + 1)

4
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Next we label the edges of w;z; as follows:
( (k—1)/2
nd + 2 ok 2i-1, .

S G-+ § 2 if ke{l,3,...,d—1},

I (wjz1) =  n(d+1) — 24 + 4 Rl el

5 +E-2" 41 +2 Y 4+ Z 2%,

=0
it ke{0,2,...,d—2

\

Moreover, we label the edges of w2z, t € {2,3,...,s} and k € {0,2,...,d — 2},

nd+t) (j—2"+1) - (k_ZZ)/Q 2% if ¢ is even,
9 (w2 — =0
(s) n(d + t2— 1)+2 Y241+ (kzz)n 2% if ¢ is odd.
i=0
For k € {1,3,...,d — 1},
nA+Y) gk gy - d§2 . (k_zw 921, if ¢ is even,
t(ap. — i= i=1
oy n(d + t2— 1)+ 2 (-2 1) (dz2/2 44 (kzlw 9221 if tis odd.
=1
Hence, the induced vertex colors of 1} are as follows:
I (v;) = " (i) + ns(2d +438) T2 for 0 <i< n?—27 (1.3)
9 (w;) = ot (w;) + p ; 2 n ns(s: 2d) 24=1 4 9 (diwzﬂ for k€{0,2,...,d—2}, (1.4)
=0
9 (w;) = ¢t (w;) + s ; 2 n nS(SZ 2d) 2d-1 4 2(d§/24i for ke {1,3,...,d—1}.
i=0
From the equations (1.2) and (1.4), we have
5 (wy) = d(nd4+ 2) +2d3_ 1+s+g+2+n5(sz 2d) _2d1+2(d§):/24z’ for 0 <k <d—1.

i=0
From the equations (1.1) and (1.3),

dind+2) ns(2d+ 3s) + 2s
4 + 4

Then the leftover colors of G VV O, are as follows:

O (v;) =

for 0<i<(n—2)/2.

I (z) =n(nd+ns+1)/2 for 0 <t <s.

Thus, ¢ induces a proper vertex coloring 9% of GV O, with 3 colors. Hence, . (GVO;) < 3
and X, (G V Os) > x(G V Oy) = 3 (Table 2 shows the example of vertex local anti-magic
chromatic number of Wy 16 V Os.) O
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21 2 23 2y z 26 27 zg | @t (vi) | R (v)
o 160 145 144 129 128 113 112 97 66 1094
U1 159 146 143 130 127 114 111 98 66 1094
V9 158 147 142 131 126 115 110 99 66 1094
V3 157 148 141 132 125 116 109 100 66 1094
V4 156 149 140 133 124 117 108 99 66 1094
U5 155 150 139 134 123 118 107 102 66 1094
Vg 154 151 138 135 122 119 106 103 66 1094
VU7 153 152 137 136 121 120 105 104 66 1094
wo 36 48 49 64 65 80 81 96 63 582
w3 37 47 50 63 66 79 82 95 63 582
Wy 38 46 51 62 67 78 83 94 63 582
ws 39 45 52 61 68 77 84 93 63 582
wWe 40 44 53 60 69 76 85 92 63 582
w; 33 | 43 | 54 | 59 | 70 | 75 | 86 | 91 71 582
Wy 34 | 42 | 55 | 58 | 71 | 74 | 87 | 90 71 582
wry 35 41 56 57 72 73 88 89 71 582
g+(zt) 1544 | 1544 | 1544 | 1544 | 1544 | 1544 | 1544 | 1544
Table 2. nga(W4716 V Og) =3
Lemma 1.2. For s > 3 odd, X.(G V Os) =
P roo f Label the edges of GV O;_5 by
nd+1n(d+s—2) U nd+ n(s—2)+1nd+
— _ —+ns— —= — +ns
2 ’ 2 2 2 T2
as in the Lemma 1.1. Next, we label the remaining edges w;z;—; and w;z; as follows.
Let2F —1<j <2l —2< (n—2)/2and 0 <i < (n—2)/2. Fork € {0,2,...,d — 2},
(k—2)/2
n(d+s—2)+2 ‘ & 2%
I(w;zs-1) = 5 +(j -2+ 1)+ 2; 2%
(k—2)/2
nd+s+1)—2
D(w;z,) = ( 5 ) —2(j—2"4+1) -2 Z 2%,
For k € {1,3,...,d — 1},
(d—2)/2 (k—1)/2
n(d+s—2)+2 . ok %1
D(w;jzs_1) = 5 +(G-24+1)+ ZO Z 2
(d—2)/2 (k 1)/2
_n(d+s+1)—2 k i 2@1
D(w;z,) = 5 —2(j —2 +1—2Z4—222
Further, label the edges of v;z,_; and v;z, as shown in the table below:
Hence, the induced vertex colors of ¢} are as follows:
2d + 3 2 1) —
I () = ot (o) + PERAEB) FAsFD =0 i 22, (1.5)

4
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Vo U1 (%] U3 N Un,T—z
; n(2+d+s) n(2+d+s)_1 n(2+d+s)_2 n(2+d+s)_3 n(1+d+s)+1
- 2 2 2 2 2
. n(s+d—1)+4 n(s+d—1)+4+2 n(s+d—1)+4+4 n(s+d—1)+4+6 n(s+d+1)
2 2 2 2 2
Table 3. The edge labeling of v;z,_1 and v;z,
For2F —1<j <21 -2 < (n—2)/2
(d—4)/2
2d) + 2 1 3 <
I (w;) = o+ (w;) + " )ﬁﬁs+)+_n—2d3+2§:4ﬁifke{aznwd—Qh
i=0
(d—1)/2
2d) + 2 1 ,
I (wy) = o+ wy) + P2 )+4 BEDIN gat 9 S 4 if ke {13, .d—1}.
i=0
(1.6)
From (1.2) and (1.6),
(d—4)/2
d(nd+ 2 2¢ 1 2d) + 2 1 ,
5 (1;) = (n4+ ) + 2 +ns(s+ )+4(s+ )+ 3n _gd1 g Z i

=0

if ke{0,1,...,d—1},
From (1.1) and (1.5),

d(nd + 2) N ns(2d+3s)+2(s+1) —n

o) —
97 (v;) 1 1

L if0<i < (n—2)/2.

Then, the leftover colors of G VV O, are as follows:

d 1
I (2) = n(n +2n8 +1) for 0 <t <s.

Thus, ¥ induces a proper vertex coloring 9" of GV O, with 3 colors. Hence, X, (GVOs) < 3
and X, (G V Os) > x(G V Oy) = 3 (Table 4 shown the example of vertex local anti-magic
chromatic number of W 16 V O7.) O

Due to the proof of Lemma 1.1 and 1.2, we have the following
Theorem 1.3. For s > 2, xua(G V O;) = 3.
Theorem 1.4. For s > 3, xuwa(G V Cs) = 5.

Proof Letdisa VLAC as in the proof of Lemma 1.2. Since 0: F(C,) — [1,s] is a VLAC
of C; by
t/2, if ¢t is even,

9 —
(ZtZtJrl) {s _ (t _ 1)/2’ if ¢ 1is odd.

Next, define edge labeling function 7: E(G V C,) — [1, ¢ + s] as follows:

(¢) = I(e), if e€ E(GV Oy),
TN g+ 0(e), if ec E(C),
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21 22 23 24 25 26 2z | () | g7 (v)
U 144 129 128 113 112 104 82 66 878
U1 143 130 127 114 111 103 84 66 878
) 142 131 126 115 110 102 86 66 878
V3 141 132 125 116 109 101 88 66 878
Uy 140 133 124 117 108 100 90 66 878
V5 139 134 123 118 107 99 92 66 878
Vg 138 135 122 119 106 98 94 66 878
U7 137 136 121 120 105 97 96 66 878

wo 36 48 49 64 65 73 95 63 493
w3 37 47 50 63 66 74 93 63 493
Wy 38 46 51 62 67 75 91 63 493
W 39 45 52 61 68 76 89 63 493
We 40 44 53 60 69 77 87 63 493

w1 33 43 54 59 70 78 85 71 493
Wa 34 42 55 58 71 79 &3 71 493
wy 35 41 56 57 72 80 81 71 493

g (z) | 1416 1416 1416 1416 1416 1416 1416

Table 4. nga(W4716 V 07) =3

and
q+t/2, if t is even,
qg+s+(1—1t)/2, if t isodd.

T(2241) = {

7(2) =9 (%) + s, forodd ¢, (1.7)
7(z) =97 (2) + s+ 1, for even t, (1.8)
7(21) = 97 (21) + (3s + 1) /2, for even t. (1.9)
Furthermore,
7 (wy) = 97 (wy), (1.10)
7 (vs) = 97 (vy). (1.11)

Clearly, (1.7) < (1.8) < (1.9) and (1.10) < (1.11).
Next, we show that
(1.9) — (1.11) = 7% (21) — 7 (vy)
_nnd+ns+1)+3s+1 (d(nd+2) N ns(3s+ 2d) + 2(s + 1) —n)

2 4 4
B 2n%d + 2n%s 4+ 2n + 6s + 2 — nd*> — 2d — 3ns® — 2nsd — 2s — 2+ n
N 4
B nd(2n — d — 2s) + ns(2n — 3s) + 3n + 4s — 2d 20
— 7 ]
Therefore, 7 is a VLAC that induces 5 distinct vertex colors. Hence, X (G V C5) < 5 and
Xvﬁa(g V CS) Z X(g V CS) =5. U

Theorem 1.5. For s > 3, Xwa(GV K;) = s+ 2.
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Proof Recall that: ¥ isa VLAC of G V O, (by Theorem 1.3).
Let 7: E(K;) — [1,s(s — 1)/2] be the VLAC of K, that induces the vertex coloring of 7 as
2t3 +6t3(1 — s) + 2t(3s*> — 35 — 4) + 35(3 — )
6

Observe that 7 induces ¢ distinct vertex colors. Next we define edge labeling function
(: E(GVK,) —[l,g+s(s—1)/2] as

(o) = I(e), if ec E(GVK,),
"\ r(e)+gq, if ee E(K,).

T (2) = for 1 <t <s.

Note that (*(z;) = 07 (z) + 77 (2) + q¢(s — 1). Easily, we see that ¥ induces same vertex
labels and 7, ¢ induce distinct vertex labels. Furthermore, we consider two cases.
Case 1. s is even. We know that ¥} is the VLAC of G V O, (by Lemma 1.1).

d(nd + 2) N ns(2d + 3s) + 2s

(@ CtH(v) =9 (v;) = for0 <i < (n—2)/2;

4 4
(d—4)/2
dind+2) 2¢9—1 p+2 ns(s+2d) _ ;
(b) ¢F(w;) = 9" (w;) = Tttt 7 —2tp 2 Y4
i=0

for0 <k <d-1;

(© ¢"(z) = 07 (z0) + 77 (20) + q(s — 1)
_ n(nd +ns + 1) N 263 + 6t%(1 — s) + 2t(3s* — 35 — 4) + 3s(3 — 5)

—1).
5 G +q(s—1)
Finally, we see that (a)>(b) for 1 <i <j<n/2—1.
Thus,
n(nd +ns + 1 23 + 6t%(1 — s) + 2t(3s> —3s —4) + 3s(3 — s
C+(Zt)_C+(Ui): ( 5 )+ ( ) ( ; ) ( )
d(nd + 2 2d 2
tals—1) - ("; ) el +433)+ )

Case 2. s is odd. We know that ¥ is the VLAC of G V O, (by Lemma 1.2).
d(nd + 2) N ns(2d+3s) +2(s+1) —n

@ (T(v) =9 () = for0 <i<(n—2)/2

4 4
dind+2) 2¢—1 ns(s+2d)+2(s+1)+3n iy
(b) ¢ (w;) = V¥ (wy) = et —242 )4
1 3 1 £
for0 <k <d-—1;

© CF(z) =07 (20) +77(z) + q(s — 1)

_ n(nd+ns + 1) N 2t3 + 6t2(1 — s) + 2t(3s5> — 35 — 4) + 35(3 — 5) (s —1).
2 6
Finally, see that (a)>(b) for 1 <i < j <n/2—1.

Thus,

n(nd +ns + 1) N 2t3 +6t%(1 — s) + 2t(3s* — 35 — 4) + 35(3 — )
2 6
d(nd + 2 2d 2 1) —
Fgls—1)— (n4+ )+ns( +3s)t1 (s+1)—n

¢"(2) = T wi) =

> 0.
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Clearly, in both cases, (" (2:) # (" (v;). Thus, (*(w;) < (T(v;) < (T(2). Therefore, ¢ is
a VLAC of GV K that induces s+ 2 distinct vertex colors. It concludes that x,u,(GV K) < s+2.
Since Xua(G V Ks) > x(G V K) = s+ 2, we obtain (G V K;) = s + 2. O

Theorem 1.6. Let s,{ > 2 and s # {, where s and ( are even (s and { are odd). If (a) p+ s > {
and (b) l< S, then Xvéa([g \ Os] \ OZ) = Xvﬁa(g \% Ks,f) =4.

Proof According to Theorem 1.3, p = n + s, ¢ = ns + nd/2, and r = ¢. Recall that by the
proof of Theorem 1.3, 97 (w;) < 97 (v;) < V7 (2).

(a) Using Theorem 0.5, we get x,0 (G V Ksp) < 4.

(b) Consider

p—l=n<n+s—L0=1+p+29)(p—10)—29"(z)

:("+5—€Xﬂn+s)+%w+7m+1)—2<ﬂl+”d+n@)

2
=(s+n—0)(l(s+n)+2ns+nd+1) —n(nd +ns+1)
=(n® — Pn+n’s+0s® — (*s +2ns* + nds — Ind — { + s
=ln(n—{)+ns(n+2s) +ls(s—L4) +nd(s—¥{)+s—{
=/In(n—{)+ns(n+2s)+ (s—0)(ls+nd+1) > 0.

Thus, 29%(z) < (p — €)(¢p + 2qg + 1). By Theorem 0.5, we have X, (G V K;¢) < 4 and
Xv[a(g V Ks,[) > X(g V Ks,é) = 4. O

For simplicity, we relabel the vertices of a Fibonacci graph as follows. The vertices
{(1,0),(1,1),...,(1,(n — 2)/2)} are labelled as V = {vg, vy, ... ,'UnT—Q}, while the other ver-
tices {(2,0), (2,1),...,(2,(n — 2)/2)} are labelled as W = {wo,wl, e ,wanz}. Then, two
vertices of v; and w; are adjacent < j € {i+ F(1) — 1,i+ F(2) —1,...,i+ F(d+ 1) — 1}
G—ie{F1)-1,F@2)—1,...,F(d+1) —1}). Here V. UW are the vertices of F, and
we utilise the subscript addition modulo n/2. Clearly, Fby = C4 and F36 = Ks3. Since
Xota(K33) = 3 and X (Cs) = 3 [5,6], we get Xora(Fo,4) = Xota(F36) = 3. Also, F33 = Cy x Py
and . (Cy X P) = 4 [28]. Hence, Xy (F35) = 4.

Fori e {0,1,...,d—1},if d > 2 is even and n = 2(F'(d) + i), then the Fibonacci graph F},,
is even regular; if d > 3 is odd and n = 2(F(d)+1), then the Fibonacci graph F;,, is odd regular.

§ 2. Fibonacci graphs
In this Section, we find the vertex local anti-magic chromatic number of Fibonacci graphs.
Theorem 2.1. For bothn > 10 and d > 2 (1 < d < F~'(n) — 1) even, Xuvea(Fun) = 3.
Proof Let|V(Fy,)|=nand |E(Fy,) =nd/2. Clearly,
V(Fun) ={vi,w;: 0<1i,5 <(n—2)/2}, and
E(Fu,) ={vw;: 0<i<(n—2)/2,j€{i+F(1)—1,i+F(2)—1,...,i+ F(d+1)—1}}.

Define ¢: E(Fy,) — {1,2,...,nd/2} as follows.
Fori e {0,1,...,(n—2)/2},je{i+ F(k+1)—-1:0<i<(n—2)/2and 0 < k < d},

n(k+1) —2i

o) — 2 ’

PO =9 96 4 1) 4 nk
2

if ke{l,3,...,d—1},

, otherwise.



310 The vertex local antimagicness for Knddel and Fibonacci graphs

Thus, ¢ is a VLAC of I, with vertex colors as follows:

2
ot (v;) = %, if i e{0,1,...,n/2 —1}.

For j € {0,1,...,n/2 — 1}, we have

2
%JrF(d—l), if Flk+1)—1<j<F(k+1)+k—1,
ot (wy) = ke{l,3,...,d—1},
d(nd + 2
% —g—l—F(d— 1), otherwise.

Thus, ¢ induces a proper vertex coloring ¢ of Fy,, with 3 colors and . (Fu,) < 3. By
Theorem 0.4, X (Fun) > 3. Hence, X (Fun) = 3 (for example, see Xyeq(Fy14) in Fig. 2). O

Conclusion

In this article, we discussed the vertex local anti-magic chromatic number of some Knoddel
graphs and Fibonacci graphs. Also we determined the vertex local anti-magic chromatic number
of disjoint union of Knddel graphs and obtained the vertex local anti-magic chromatic number of
some join graphs. Further, the following problems naturally arise.

Problem 2.1. Determine X, (Wy,,) for even n > 8 and odd d > 1 (1 < d < [logy(n) ).
Problem 2.2. Determine Y.z, (Fy,) for evenn > 10 and odd d > 3 (1 < d < F~(n) — 1).

In addition, our aim is to find the vertex local anti-magic chromatic number of generalized
Knodel graphs.
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Kntouesvie cnoea: nokanbHas aHTUMarndeckass MApKHPOBKa BEPIIHH, MOJHbIC Tpadbl, TPHBHATBHBIC rpadbl,
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