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Introduction

In this work, G is a finite and simple graph. Let Ps, Cs, Ks and Os be a path, a cycle,

a complete graph and a trivial graph on s vertices respectively. Let Kr,s be a complete bipartite

graph of order r + s. A magic square involves arranging the integers in a square so that the

sums of each row, column and diagonal are equal. The word anti-magic refers to the graphs

relationship with magic labelings and magic squares. The terms in the context of graph theory,

with more specific notions such as anti-magic labeling and local anti-magic labeling, particularly

refer to certain labelings of the edges or vertices in a graph. Both concepts define the assignment

of labels, usually integers, on the edges or vertices in such a way that some conditions are met,

while they are different in details and restrictions.

Anti-magic labeling only requires that the sum of the labels incident to each vertex be distinct

across all vertices.

The local anti-magic labeling requires that the sums of the edge labels incident to adjacent

vertices be distinct from one another, adding a condition on adjacent vertices.

The local anti-magic labeling is a more restrictive property and may not be possible for certain

graphs that could otherwise have an anti-magic labeling.

Let f : E(G) → {1, 2, . . . , |E(G)|} be a bijection. For y ∈ V (G), the weight wt(y) =
=

∑

e∈E(y)

f(e), where E(y) is the set of edges incident to y. If wt(y) 6= wt(z) for any two different

vertices y and z ∈ V (G), then f is called an anti-magic labeling [1] of G. It was introduced,

in [1], by Hartsfield and Ringel who posed the conjecture: any connected graph G( 6= K2) is anti-

magic. Also, they showed that cycles, paths, complete graphs, and wheels are anti-magic. In [2],

Cranston obtained anti-magic labeling for s(> 3)-regular bipartite graph by using matchings of

graphs. Zhang and Sun [3] provided that: if G is an anti-magic regular graph, then the Cartesian

product G�H admits anti-magic. The recent survey of graph labeling can be found in [4].

Vertex local anti-magic coloring (in short VLAC) is addressed in graph theory to investigate

and understand specific aspects of graphs, specifically those related to magic and antimagic

labeling. A bijection f : E(G) → {1, 2, . . . , |E(G)|} such that the induced vertex labeling

f+ : V → N, given by f+(y) =
∑

f(e), has the property that any pair of adjecent vertices have

different colors. The number of different induced vertex colors with f is represented by c(f),
and is called the color number of f . The vertex local anti-magic chromatic number of G, denoted

by χvℓa(G), is min {c(f) : f is a vertex local anti-magic coloring of G} [5]. We can see many

variations of anti-magic labeling of a graph G. One of the variations is the vertex local anti-magic

chromatic number of G introduced by Arumugam et al. in [5], also they determined the specific

value of vertex local anti-magic chromatic number of paths, cycles, wheels, complete graphs and

bipartite graphs. Also, they posed the following conjectures.

https://doi.org/10.35634/vm250209
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Conjecture 0.1 (see [5]). All connected graphs except K2 are vertex local anti-magic.

Remark 0.1 (see [5]). For any graph G, χvℓa(G) ≥ χ(G), where χ(G) is the chromatic number

of G.

Local anti-magic coloring is a concept in graph theory that helps understand properties of

graphs and their structures through unique labeling schemes. It has practical applications in graph

design, coding theory, and communication graphs. The study of labelings presents mathematical

challenges, and researchers often pursue the existence or non-existence of such labelings for

different graph classes. It can be used for scheduling tasks or resources, preventing conflicts

and optimizing resource allocation. This also aids in error detection and correction in coding

theory. Combinatorial optimization problems can also relate to local anti-magic labeling. For any

integer x < y, [x, y] represent the set of integers between x and y.

In 2017, Arumugam et al. [5] investigated the vertex local anti-magic chromatic number for a

complete bipartite graph Kr,s, whenever r, s ≥ 2 and r ≡ s (mod 2) and they gave problems for

leftover cases. Also, they proved lower bound for every tree T with s leaves, χvℓa(T ) ≥ s+ 1.
In 2020, Lau et al. [6] completely calculated the vertex local anti-magic chromatic number

for complete bipartite graphs.

Theorem 0.1 (see [5, 6]). For s ≥ r ≥ 1 and s ≥ 2,

χvℓa(Kr,s) =











s+ 1, if s > r = 1,

2, if s > r ≥ 2 and r ≡ s (mod 2),

3, otherwise.

In 2020, Premalatha et al. [9] showed that χvℓa(T ) = s+2, T is a tree with s pendent vertices,

and posed the following

Problem 0.1 (see [9]). Characterize trees T with s leaves, χvℓa(T ) = s+ 1 or s+ 2.

Very recently, Lau et al. [10] gave partial solutions of the above problem ℓ-leg spider graph

has ℓ+ 1 ≤ χvℓa ≤ ℓ + 2. Also, they provided a partial answer to the classification of s-pendant

trees T with χvℓa(T ) equaling either s + 1 or s + 2. Later, Baca et al. [11] verified the above

problem for every complete full t-ary tree of s leaves having vertex local anti-magic chromatic

number s + 1. For some of the trees discussed by various authors, the vertex local anti-magic

chromatic number was either s + 1 or s + 2. Also, the characterization of the vertex local

anti-magic chromatic number of trees is still open.

In 2023, Lau et al. [7] found the vertex local anti-magic chromatic number of even regu-

lar circulant bipartite graphs join with cycle and trivial graph. Also, they posed the following

conjecture and verified its partial results:

Conjecture 0.2. Let H be a circulant graph.

(a) If s ≥ 1, then χvℓa(H ∨Os) = χ(H) + 1.

(b) If s ≥ 3, then χvℓa(H ∨ Cs) = χ(H) + χ(Cs).

In 2023, Lau and Shiu [8] gave a sufficient condition for a graph with one pendant to have

χvℓa(G) ≥ 3. Also, they proved Theorem 0.2, considered the circulant graph of order 2r with

odd lengths 1, ℓ1, ℓ2, . . . , ℓt, where gcd(ℓi, 2r) = 1, 1 ≤ i ≤ t.

Theorem 0.2 (see [8]). Let 1 < ℓ1, ℓ2, . . . , ℓs < r, and, for every integer j ∈ [1, s], gcd(ℓj, 2r) = 1.
Then, χvℓa(C(2r; {1, ℓ1, . . . , ℓs})) = 3.
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Moreover, they discussed bipartite and tripartite graphs G with χvℓa(G) = 3. In addition, they

provided some interesting open problems:

Problem 0.2 (see [8]). Verify the vertex local anti-magic chromatic number for

Cr(1, ℓ1, ℓ2, . . . , ℓs),

where r is odd.

Problem 0.3 (see [8]). Identify the vertex local anti-magic chromatic number for bipartite graphs

equaling 2 or 3.

Problem 0.4 (see [8]). Identify the vertex local anti-magic chromatic number for complete tripar-

tite graphs equaling 3 or 4.

In 2024, Uma and Rajasekaran [12] proved the Theorem 0.3, which is a generalization of

Theorem 0.2 [8]. In Theorem 0.3, the circulant graph of order 2r with arbitrary odd lengths ℓ1,
ℓ2, . . . , ℓs (ℓ1 < ℓ2 < · · · < ℓs) is considered, where gcd(ℓi, 2r) is either 1 or d.

Theorem 0.3 (see [12]). Let ℓ1 < ℓ2 < . . . < ℓs < r, and, for every integer j ∈ [1, s],
gcd(ℓj, 2r) = 1 or d. Then, χvℓa(C(2r; {ℓ1, ℓ2, . . . , ℓs})) = 3.

Various authors discussed some bipartite graphs whose vertex local anti-magic chromatic

number is either 2 or 3. Also, the characterization of the vertex local anti-magic chromatic

number of bipartite graphs remains open. Hence, in this article, we are interested in calculating

the vertex local anti-magic chromatic number of some special bipartite graphs as Knödel and the

Fibonacci graphs which are non isomorphic to any other bipartite graphs.

Since the birth of the Internet, our world has become a global village where almost all com-

mercial, social, private, public, and research and development networks fall under the umbrella

of the Internet. Fast and reliable dissemination of information is the central issue of all types

of real networks, such as ad-hoc, wireless, satellite communications, supercomputers, Internet,

cloud-based infrastructure. Much effort, money, and time have been spent on improving the

information dissemination. Two ways exist to resolve this issue: compressing the amount of

data that is transferred and minimizing delay in the transmission of information. The approaches

found to be received well for using the latter methodology either design algorithms that are effi-

cient or establish robust network architectures at an optimal level of information diffusion time.

Network architecture means the logical as well as the structural layout of the network. Regular

network architectures provide the platform to implement powerful algorithms related to routing,

broadcasting and parallel as well as distributed computing [13].

Compared to all of the networks, Knödel graph is the only network that can be designed for

any even number of nodes. Moreover, the degree of every node in Knödel graph on n nodes can

be any value between 2 and ⌊log2(n)⌋. When the degree of Knödel graph is 2, then it becomes

the well-known cycle. When the degree is equal to ⌊log2(n)⌋, then Knödel graph is a broadcast

and gossip graph, in which the main communication tasks can be performed, theoretically in

minimum possible time. The above properties make the Knödel graph the largest possible unique

interconnection network, which could be sparse (when degree is constant) or dense (when degree

is logarithmic of n). This way Knödel graph can be suitable for all possible applications based

on communication time, network design or implementation cost.

The Knödel graph W∆,n is a regular graph of even order n and degree ∆, where 1 ≤ ∆ ≤
≤ ⌊log2(n)⌋. It was introduced by Austrian mathematician Walter Knödel for ∆ = ⌊log2(n)⌋,
in 1975 and was used in an optimal gossiping algorithm [14]. This graph is considered as rather

unique because it is the smallest gossip graph. The main properties that need to be considered
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when dealing with the Knödel graph is gossiping and broadcasting. Start with gossiping, if there

is a group of n persons gossiping, then every single person has a chunk of information and tries

to communicate it to other with the help of binary cells and if every call lasts a specified period

of time, and the final aim is to find in total how much time is taken before every involved person

knows the entire information.

In a similar way, when the data is broadcast at time t = 0, 20 person has the data; at time t = 1,
21 people know the data; and at time t = 2, 22 people know the data. Finally, total of n people

in the system have the needed least time. In this situation, individuals are denoted to as vertices.

Knödel proposed a two-way mode that allows two nodes in a call to exchange information in a

single round. David et al. [16] studied a one-way mode, where information can only go in one

direction during a call between x and y. This means that only y can get information from x
or x can receive information from y but not both. In [14], it was proved that gossiping in a

two-way mode requires at least ⌈log2(n)⌉ rounds for even n. However, Knödel graphs permit

for gossiping in ⌈log2(n)⌉ rounds. Similarly, it was proved in [16] that, for even n, gossiping

cannot be executed in less than ⌈logρ(n)⌉ rounds in the one-way mode, where ρ = (1 +
√
5)/2.

However, there are graphs, known as Fibonacci graphs, that permit gossiping to be executed in

that number of rounds.

For smaller ∆, the family of Knödel graphs has been defined formally by Fraigniaud and

Peters [15]. Since 1994 a lot of research has been done on Knödel graphs, especially because

some subfamilies of the Knödel graph tend to have good properties in terms of broadcasting

and gossiping [17]. Many graphs introduced as minimum broadcast (resp. gossip) graphs, such

as in [18–20], were in fact isomorphic to Knödel graphs [21].

Knödel graphs [17] and Fibonacci graphs [22] are bipartite graphs G of 2n vertices. Each

partition has n vertices labeled from 0 to n − 1. The Knödel graph on n ≥ 2 vertices and of

maximum degree 1 ≤ ∆ ≤ ⌊log2(n)⌋, is represented by W∆,n. The vertices of W∆,n are the

pairs (i, j), for i = 1, 2 and 0 ≤ j ≤ (n− 2)/2. For each j, 0 ≤ j ≤ (n− 2)/2, there is an edge

between vertex (1, j) and each vertex (2, (j + 2k − 1) (mod n/2)), for k = 0, 1, . . . ,∆− 1.
The Fibonacci graph [22], on n ≥ 2, and of maximum degree ∆, where 1 ≤ ∆ ≤ k; where

k = F−1(n)− 1, is represented by F∆,n. The vertices of F∆,n are couples (i, j), for i = 1, 2 and

0 ≤ j ≤ (n− 2)/2. For every j, 0 ≤ j ≤ (n− 2)/2, there is an edge between vertex (1, j) and

each vertex (2, (j + F (k + 1)− 1) (mod n/2)), for k = 0, 1, 2, . . . ,∆− 1, where F (k) denotes

the kth Fibonacci number (F (0) = F (1) = 1, and F (k) = F (k − 1) + F (k − 2) for k ≥ 2 and

F−1(n)−1 represents the number k for which F (k) ≤ n < F (k+1)). See Fig. 1 and Fig. 2, they

show the examples of a Knödel graph and a Fibonacci graph. Specifically, there exist graphs that

are not isomorphic to Knödel graph (resp. Fibonacci graph), and permit gossiping in the 2-way

mode (resp. 1-way mode) in an optimal manner.

v0(66) v1(66) v2(66) v3(66) v4(66) v5(66) v6(66) v7(66)

w0(63) w1(71) w2(71) w3(63) w4(63) w5(63) w6(63) w7(71)

1
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Fig. 1. χvℓa(W4,16) = 3

The join graph G ∨ H [23] of two graphs G and H , is defined as follows: V (G ∨ H) =
= V (G)∪V (H) and E(G∨H) = E(G)∪E(H)∪{xy : x ∈ V (G), y ∈ V (H)}. For more results



L. Uma, G. Rajasekaran 301
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Fig. 2. χvℓa(F4,14) = 3

on the vertex local anti-magic chromatic number of join graphs, see refs. [24–27]. Terminologies

and notations are not described here and can be found in [23].

The results of this article support Conjecture 0.1, Problem 0.3 and Conjecture 0.2. In the

following Sections we concentrate on the vertex local anti-magic chromatic number of Knödel

graphs and Fibonacci graphs. Also, we provide the vertex local anti-magic chromatic number

of disjoint union Knödel graphs. Additionally, we discuss the vertex local anti-magic chromatic

number of some join graphs. The Theorems listed below will be applied.

Theorem 0.4 (see [27]). Let H be a graph of size e. Assume there is a vertex local anti-magic

chromatic number of H inducing a two-coloring of H with colors a and b where a < b. Let A
and B be the numbers of vertices of colors a and b, respectively. Then, H is a bipartite graph

whose sizes of parts are A and B with A > B, and Aa = bB = e(e + 1)/2.

Theorem 0.5 (see [26]). Let G be a graph of order p and size e. Let s ≥ 2 and p ≡ s (mod 2).
Suppose G admits a vertex local anti-magic k-coloring h. Then, χvℓa(G ∨ Os) ≤ k + 1 if either

s− p ≥ 0 or p− s ≥ 2 and 2h+(u) 6= s(p2 − ps− 2e− 1) + p(1− s2) for every u ∈ V (G).

§ 1. Results

For simplicity, we re-lable the vertices of a Knödel graph as follows: the vertices {(1, 0),
(1, 1), . . . , (1, (n − 2)/2)} are labelled as V = {v0, v1, . . . , v(n−2)/2}, while the other vertices

{(2, 0), (2, 1), . . . , (2, (n− 2)/2)} are labelled as W = {w0, w1, . . . , w(n−2)/2}. Then two vertices

of vi and wj are adjacent ⇔ j ∈ {i + 20 − 1, i + 21 − 1, . . . , i + 2d−1 − 1} (j − i ∈ {20 − 1,
21 − 1, . . . , 2d−1 − 1}). Here V ∪ W is the vertex set of Wd,n and we use subscript addition

modulo n/2. Clearly, W2,4
∼= C4 and W2,6

∼= C6. Since s ≥ 3, χvℓa(Cs) = 3 [5]. Hence,

χvℓa(W2,4) = χvℓa(W2,6) = 3.
For i ∈ {0, 1, . . . , 2d−1 − 1}, if d ≥ 2 is even and n = 2d + 2i, then the Knödel graph Wd,n is

even regular; if d > 1 is odd and n = 2d + 2i, then the Knödel graph Wd,n is odd regular.

In the following Subsections 1.1, 1.2 and 1.3, the Knödel graph Wd,n = G, where both n ≥ 8
and d > 2 (1 ≤ d ≤ ⌊log2(n)⌋) are even.

1.1. Knödel graphs

In this Subsection, we find the vertex local anti-magic chromatic number of Knödel graphs.

Theorem 1.1. For the Knödel graph G, χvℓa(G) = 3.

P r o o f. Let V (G) =
{

vi, wj : 0 ≤ i, j ≤ (n− 2)/2} and

E(G) = {viwj : 0 ≤ i ≤ (n− 2)/2, j ∈ {i+ 20 − 1, i+ 21 − 1, . . . , i+ 2d−1 − 1}
}

.
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Clearly, |V (G)| = n and |E(G)| = nd/2. Define ϕ : E(G) → {1, 2, . . . , nd/2} as follows. For

i ∈ {0, 1, . . . , n/2− 1}, j ∈ {i− 1 + 2k : 0 ≤ i ≤ n/2− 1 and 0 ≤ k ≤ d− 1},

ϕ(viwj) =











n(k + 1)− 2i

2
, if k ∈ {1, 3, . . . , d− 1},

2(i+ 1) + nk

2
, if k ∈ {0, 2, . . . , d− 2}.

Thus, ϕ is a VLAC of G with vertex colors

ϕ+(vi) = d(nd+ 2)/4 for i ∈ {0, 1, . . . , (n− 2)/2}. (1.1)

For j ∈ {0, 1, . . . , n/2− 1},

ϕ+(wj) =











d(nd+ 2)

4
+

2d − 1

3
, if 2k − 1 ≤ j ≤ 2k+1 − 2 and k ∈ {1, 3, . . . , d− 1},

d(nd+ 2)

4
− n

2
+

2d − 1

3
, otherwise.

(1.2)

Hence, ϕ induces a proper vertex coloring ϕ+ of G with 3 colors and χvℓa(G) ≤ 3. By Theo-

rem 0.4, χvℓa(G) ≥ 3. Thus, χvℓa(G) = 3 (for example, see χvℓa(W4,16) in Fig. 1). �

1.2. Union of Knödel graphs

In this Subsection we discuss the vertex local anti-magic chromatic number for disjoint union

of Knödel graphs.

Remark 1.1. For r ∈ N, χvℓa(rH) ≥ χvℓa(H).

For r ∈ N, the disjoint union of r copies of G is a disconnected graph which is denoted by rG
with V (rG) =

{

vℓi , w
ℓ
j : 0 ≤ i, j ≤ (n − 2)/2, 1 ≤ ℓ ≤ r

}

and E(rG) =
{

vℓiw
ℓ
j : 1 ≤ ℓ ≤ r,

0 ≤ i ≤ (n− 2)/2, j ∈ {i+ 20 − 1, i+ 21 − 1, . . . , i+ 2d−1 − 1}
}

.

Theorem 1.2. For r ∈ N, χvℓa(rG) = 3.

P r o o f. Define ϕ : E(rG) → {1, 2, . . . , nrd/2} as follows. For i ∈ {0, 1, . . . , (n − 2)/2},

j ∈ {i+ 2k − 1: 0 ≤ i ≤ (n− 2)/2 and 0 ≤ k ≤ d− 1}, and 1 ≤ ℓ ≤ r,

ϕ(vℓiw
ℓ
j) =















n
(

r(k + 1)− (ℓ− 1)
)

− 2i

2
, if k ∈ {1, 3, . . . , d− 1},

n
(

rk + ℓ− 1
)

+ 2(i+ 1)

2
, if k ∈ {0, 2, . . . , d− 2}.

Thus, ϕ is a VLAC of rG with vertex colors as follows: ϕ+(vℓi ) = d(nrd + 2)/4, i ∈ {0, 1, . . . ,
. . . , n/2− 1}. For j ∈ {0, 1, . . . , n/2− 1} and 1 ≤ ℓ ≤ r,

ϕ+(wℓ
j) =











d(nrd+ 2)

4
+

2d − 1

3
, if 2k − 1 ≤ j ≤ 2k+1 − 2 and k ∈ {1, 3, . . . , d− 1},

d(nrd+ 2)

4
+

2d − 1

3
− n

2
, otherwise.

Hence, ϕ induces a proper vertex coloring ϕ+ of rG with 3 colors and χvℓa(rG) ≤ 3. By Re-

mark 1.1, χvℓa(rG) ≥ 3. Thus, χvℓa(rG) = 3. �
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1.3. Knödel graphs join with some graphs

This Subsection describes the vertex local anti-magic chromatic number of Knödel graph join

with trivial graph (isolated vertices), complete graphs, cycles and complete bipartite graphs.

Let Os, s ≥ 1, be the trivial graph with V (Os) = {zt : 1 ≤ t ≤ s} and let G ∨ Os be the

join graph. Clearly, V (G ∨ Os) = V (G) ∪ V (Os) and E(G ∨ Os) = E(G) ∪
{

vizt, wjzt : 0 ≤ i ≤
(n− 2)/2, 1 ≤ t ≤ s, and 2k − 1 ≤ j ≤ 2k+1− 2 ≤ (n− 2)/2, where k ∈ {0, 1, . . . , d− 1}

}

.

Note that, |V (G ∨ Os)| = n + s and |E(G ∨ Os)| = nd/2 + ns. Hereafter, p = n + s and

q = nd/2 + ns.

Lemma 1.1. For s ≥ 2 even, χvℓa(G ∨Os) = 3.

P r o o f. Let ϑ : E(G ∨ Os) → [1, q] be an edge labeling of G ∨ Os and let ϕ be the vertex local

anti-magic chromatic number of G defined by Theorem 1.1. First we label the edges of G by

using [1, nd/2] labels such that ϑ(e) = ϕ(e) for all e ∈ E(G).
Next label the edges of vizt, as shown in the table below:

z1 z2 z3 z4 . . . zs−2 zs−1 zs

v0
nd
2
+ ns nd

2
+ n(s− 1) + 1 nd

2
+ n(s− 1) nd

2
+ n(s− 2) + 1 . . . n(d−s+2)

2
+ ns+ 1 n(d−s+2)

2
+ ns n(d−s)

2
+ ns + 1

v1
nd
2
+ ns− 1 nd

2
+ n(s− 1) + 2 nd

2
+ n(s− 1)− 1 nd

2
+ n(s− 2) + 2 . . . n(d−s+2)

2
+ ns+ 2 n(d−s+2)

2
+ ns− 1 n(d−s)

2
+ ns + 2

v2
nd
2
+ ns− 2 nd

2
+ n(s− 1) + 3 nd

2
+ n(s− 1)− 2 nd

2
+ n(s− 2) + 3 . . . n(d−s+2)

2
+ ns+ 3 n(d−s+2)

2
+ ns− 2 n(d−s)

2
+ ns + 3

v3
nd
2
+ ns− 3 nd

2
+ n(s− 1) + 4 nd

2
+ n(s− 1)− 3 nd

2
+ n(s− 2) + 4 . . . n(d−s+2)

2
+ ns+ 4 n(d−s+2)

2
+ ns− 3 n(d−s)d

2
+ ns+ 4

...
...

...
...

...
...

...
...

...

vn−6

2

n(d−1)
2

+ ns+ 3 n(d−1)
2

+ ns− 2 n(d−3)
2

+ ns + 3 n(d−3)
2

+ ns− 2 . . . n(d−s+3)
2

+ ns− 2 n(d−s+1)
2

+ ns + 3 n(d−s+1)
2

+ ns− 2

vn−4

2

n(d−1)
2

+ ns+ 2 n(d−1)
2

+ ns− 1 n(d−3)
2

+ ns + 2 n(d−3)
2

+ ns− 1 . . . n(d−s+3)
2

+ ns− 1 n(d−s+1)
2

+ ns + 2 n(d−s+1)
2

+ ns− 1

vn−2

2

n(d−1)
2

+ ns+ 1 n(d−1)
2

+ ns n(d−3)
2

+ ns + 1 n(d−3)
2

+ ns . . . n(d−s+3)
2

+ ns n(d−s+1)
2

+ ns + 1 n(d−s+1)
2

+ ns

Table 1. The edge labeling of vizt

From the above table, the first column is the series of numbers in [1 + q − n/2, q] in reverse

natural order; the second column is the series of numbers in [1 + q− n, q− n/2] in natural order;

the third column is the series of numbers [1+ q− 3n/2, q−n] in reverse natural order; the fourth

column is the series of numbers in [1 + q − 2n, q − 3n/2] in natural order; the fifth column is

the series of numbers in [1 + q − 5n/2, q − 2n] in reverse natural order; continuing the above

process we obtain that odd columns are the series of numbers in reverse natural order and even

columns are the series of numbers in natural order. Finally, (s − 2)th column is the series of

numbers [q+1− n(s− 2)/2, q− n(s− 3)/2] in natural order; then (s− 1)th column is the series

of numbers [q + 1− n(s− 1)/2, q − n(s− 2)/2] in natural order; and sth column is the series of

numbers [q + 1− sn/2, q − n(s− 1)/2] in natural order. Easily, we see that each row sum is

g+(vi) = f+(vi) +
ns(2d+ 3s) + 2s

4
=

nd+ 2

4
+

ns(2d+ 3s) + 2s

4

=
nd+ ns(2d+ 3s) + 2(s+ 1)

4
.
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Next we label the edges of wjz1 as follows:

ϑ+(wjz1) =



































nd+ 2

2
+ (j − 2k + 1) +

(k−1)/2
∑

i=1

22i−1, if k ∈ {1, 3, . . . , d− 1},

n(d+ 1)− 2d + 4

2
+ (j − 2k + 1) + 2

(d−4)/2
∑

i=0

4i +

(k−2)/2
∑

i=0

22i,

if k ∈ {0, 2, . . . , d− 2}.

Moreover, we label the edges of wjzt, t ∈ {2, 3, . . . , s} and k ∈ {0, 2, . . . , d− 2},

ϑ+(wjzt) =























n(d+ t)

2
− (j − 2k + 1)−

(k−2)/2
∑

i=0

22i, if t is even,

n(d+ t− 1) + 2

2
+ (j − 2k + 1) +

(k−2)/2
∑

i=0

22i, if t is odd.

For k ∈ {1, 3, . . . , d− 1},

ϑ+(wjzt) =























n(d+ t)

2
− (j − 2k + 1)−

d−2/2
∑

i=0

4i −
(k−1)/2
∑

i=1

22i−1, if t is even,

n(d+ t− 1) + 2

2
+ (j − 2k + 1) +

(d−2)/2
∑

i=0

4i +

(k−1)/2
∑

i=1

22i−1, if t is odd.

Hence, the induced vertex colors of ϑ are as follows:

ϑ+(vi) = ϕ+(vi) +
ns(2d+ 3s) + 2s

4
for 0 ≤ i ≤ n− 2

2
, (1.3)

ϑ+(wj) = ϕ+(wj) +
p+ 2

2
+

ns(s+ 2d)

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i for k ∈ {0, 2, . . . , d− 2}, (1.4)

ϑ+(wj) = ϕ+(wj) +
s+ 2

2
+

ns(s+ 2d)

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i for k ∈ {1, 3, . . . , d− 1}.

From the equations (1.2) and (1.4), we have

ϑ+(wj) =
d(nd+ 2)

4
+
2d − 1

3
+
s+ n+ 2

2
+
ns(s+ 2d)

4
−2d−1+2

(d−4)/2
∑

i=0

4i for 0 ≤ k ≤ d−1.

From the equations (1.1) and (1.3),

ϑ+(vi) =
d(nd+ 2)

4
+

ns(2d+ 3s) + 2s

4
for 0 ≤ i ≤ (n− 2)/2.

Then the leftover colors of G ∨ Os are as follows:

ϑ+(zt) = n(nd+ ns+ 1)/2 for 0 ≤ t ≤ s.

Thus, ϑ induces a proper vertex coloring ϑ+ of G∨Os with 3 colors. Hence, χvℓa(G∨Os) ≤ 3
and χvℓa(G ∨ Os) ≥ χ(G ∨ Os) = 3 (Table 2 shows the example of vertex local anti-magic

chromatic number of W4,16 ∨ O8.) �
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z1 z2 z3 z4 z5 z6 z7 z8 ϕ+(vi) ℜ+(vi)

v0 160 145 144 129 128 113 112 97 66 1094

v1 159 146 143 130 127 114 111 98 66 1094

v2 158 147 142 131 126 115 110 99 66 1094

v3 157 148 141 132 125 116 109 100 66 1094

v4 156 149 140 133 124 117 108 99 66 1094

v5 155 150 139 134 123 118 107 102 66 1094

v6 154 151 138 135 122 119 106 103 66 1094

v7 153 152 137 136 121 120 105 104 66 1094

w0 36 48 49 64 65 80 81 96 63 582

w3 37 47 50 63 66 79 82 95 63 582

w4 38 46 51 62 67 78 83 94 63 582

w5 39 45 52 61 68 77 84 93 63 582

w6 40 44 53 60 69 76 85 92 63 582

w1 33 43 54 59 70 75 86 91 71 582

w2 34 42 55 58 71 74 87 90 71 582

w7 35 41 56 57 72 73 88 89 71 582

g+(zt) 1544 1544 1544 1544 1544 1544 1544 1544

Table 2. χvℓa(W4,16 ∨O8) = 3

Lemma 1.2. For s ≥ 3 odd, χvℓa(G ∨Os) = 3.

P r o o f. Label the edges of G ∨ Os−2 by

[

nd

2
+ 1,

n(d+ s− 2)

2

]

∪
[

nd

2
+ ns− n(s− 2)

2
+ 1,

nd

2
+ ns

]

as in the Lemma 1.1. Next, we label the remaining edges wjzt−1 and wjzt as follows.

Let 2k − 1 ≤ j ≤ 2k+1 − 2 ≤ (n− 2)/2 and 0 ≤ i ≤ (n− 2)/2. For k ∈ {0, 2, . . . , d− 2},

ϑ(wjzs−1) =
n(d+ s− 2) + 2

2
+ (j − 2k + 1) +

(k−2)/2
∑

i=0

22i,

ϑ(wjzs) =
n(d+ s+ 1)− 2

2
− 2(j − 2k + 1)− 2

(k−2)/2
∑

i=0

22i.

For k ∈ {1, 3, . . . , d− 1},

ϑ(wjzs−1) =
n(d+ s− 2) + 2

2
+ (j − 2k + 1) +

(d−2)/2
∑

i=0

4i +

(k−1)/2
∑

i=1

22i−1,

ϑ(wjzs) =
n(d+ s+ 1)− 2

2
− 2(j − 2k + 1)− 2

(d−2)/2
∑

i=0

4i − 2

(k−1)/2
∑

i=1

22i−1.

Further, label the edges of vizs−1 and vizs as shown in the table below:

Hence, the induced vertex colors of ϑ are as follows:

ϑ+(vi) = ϕ+(vi) +
ns(2d+ 3s) + 2(s+ 1)− n

4
for 0 ≤ i ≤ (n− 2)/2, (1.5)
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v0 v1 v2 v3 . . . vn−2

2

zs−1
n(2 + d+ s)

2

n(2 + d+ s)

2
− 1

n(2 + d+ s)

2
− 2

n(2 + d+ s)

2
− 3 . . .

n(1 + d+ s)

2
+ 1

zs
n(s + d− 1) + 4

2

n(s+ d− 1) + 4

2
+ 2

n(s+ d− 1) + 4

2
+ 4

n(s+ d− 1) + 4

2
+ 6 . . .

n(s + d+ 1)

2

Table 3. The edge labeling of vizs−1 and vizs

For 2k − 1 ≤ j ≤ 2k+1 − 2 ≤ (n− 2)/2,

ϑ+(wj) = ϕ+(wj) +
ns(s+ 2d) + 2(s+ 1) + 3n

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i, if k ∈ {0, 2, . . . , d− 2};

ϑ+(wj) = ϕ+(wj) +
ns(s+ 2d) + 2(s+ 1) + n

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i, if k ∈ {1, 3, . . . , d− 1}.

(1.6)

From (1.2) and (1.6),

ϑ+(wj) =
d(nd+ 2)

4
+

2d − 1

3
+

ns(s+ 2d) + 2(s+ 1) + 3n

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i,

if k ∈ {0, 1, . . . , d− 1},

From (1.1) and (1.5),

ϑ+(vi) =
d(nd+ 2)

4
+

ns(2d+ 3s) + 2(s+ 1)− n

4
, if 0 ≤ i ≤ (n− 2)/2.

Then, the leftover colors of G ∨ Os are as follows:

ϑ+(zt) =
n(nd + ns+ 1)

2
for 0 ≤ t ≤ s.

Thus, ϑ induces a proper vertex coloring ϑ+ of G∨Os with 3 colors. Hence, χvℓa(G∨Os) ≤ 3
and χvℓa(G ∨ Os) ≥ χ(G ∨ Os) = 3 (Table 4 shown the example of vertex local anti-magic

chromatic number of W4,16 ∨ O7.) �

Due to the proof of Lemma 1.1 and 1.2, we have the following

Theorem 1.3. For s ≥ 2, χvℓa(G ∨ Os) = 3.

Theorem 1.4. For s ≥ 3, χvℓa(G ∨ Cs) = 5.

P r o o f. Let ϑ is a VLAC as in the proof of Lemma 1.2. Since θ : E(Cs) → [1, s] is a VLAC

of Cs by

θ(ztzt+1) =

{

t/2, if t is even,

s− (t− 1)/2, if t is odd.

Next, define edge labeling function τ : E(G ∨ Cs) → [1, q + s] as follows:

τ(e) =

{

ϑ(e), if e ∈ E(G ∨ Os),

q + θ(e), if e ∈ E(Cs),
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z1 z2 z3 z4 z5 z6 z7 f+(vi) g+(vi)

v0 144 129 128 113 112 104 82 66 878

v1 143 130 127 114 111 103 84 66 878

v2 142 131 126 115 110 102 86 66 878

v3 141 132 125 116 109 101 88 66 878

v4 140 133 124 117 108 100 90 66 878

v5 139 134 123 118 107 99 92 66 878

v6 138 135 122 119 106 98 94 66 878

v7 137 136 121 120 105 97 96 66 878

w0 36 48 49 64 65 73 95 63 493

w3 37 47 50 63 66 74 93 63 493

w4 38 46 51 62 67 75 91 63 493

w5 39 45 52 61 68 76 89 63 493

w6 40 44 53 60 69 77 87 63 493

w1 33 43 54 59 70 78 85 71 493

w2 34 42 55 58 71 79 83 71 493

w7 35 41 56 57 72 80 81 71 493

g+(zt) 1416 1416 1416 1416 1416 1416 1416

Table 4. χvℓa(W4,16 ∨O7) = 3

and

τ(ztzt+1) =

{

q + t/2, if t is even,

q + s + (1− t)/2, if t is odd.

If 1 ≤ i ≤ j ≤ (n− 2)/2,

τ+(zt) = ϑ+(zt) + s, for odd t, (1.7)

τ+(zt) = ϑ+(zt) + s+ 1, for even t, (1.8)

τ+(z1) = ϑ+(z1) + (3s+ 1)/2, for even t. (1.9)

Furthermore,

τ+(wj) = ϑ+(wj), (1.10)

τ+(vi) = ϑ+(vi). (1.11)

Clearly, (1.7) < (1.8) < (1.9) and (1.10) < (1.11).

Next, we show that

(1.9) − (1.11) = τ+(z1)− τ+(vi)

=
n(nd+ ns + 1) + 3s+ 1

2
−

(

d(nd+ 2)

4
+

ns(3s+ 2d) + 2(s+ 1)− n

4

)

=
2n2d+ 2n2s+ 2n+ 6s+ 2− nd2 − 2d− 3ns2 − 2nsd− 2s− 2 + n

4

=
nd(2n− d− 2s) + ns(2n− 3s) + 3n+ 4s− 2d

4
6= 0.

Therefore, τ is a VLAC that induces 5 distinct vertex colors. Hence, χvℓa(G ∨ Cs) ≤ 5 and

χvℓa(G ∨ Cs) ≥ χ(G ∨ Cs) = 5. �

Theorem 1.5. For s ≥ 3, χvℓa(G ∨Ks) = s+ 2.
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P r o o f. Recall that: ϑ is a VLAC of G ∨ Os (by Theorem 1.3).

Let τ : E(Ks) → [1, s(s− 1)/2] be the VLAC of Ks that induces the vertex coloring of τ as

τ+(zt) =
2t3 + 6t2(1− s) + 2t(3s2 − 3s− 4) + 3s(3− s)

6
for 1 ≤ t ≤ s.

Observe that τ induces t distinct vertex colors. Next we define edge labeling function

ζ : E(G ∨Ks) → [1, q + s(s− 1)/2] as

ζ(e) =

{

ϑ(e), if e ∈ E(G ∨Ks),

τ(e) + q, if e ∈ E(Ks).

Note that ζ+(zt) = ϑ+(zt) + τ+(zt) + q(s − 1). Easily, we see that ϑ induces same vertex

labels and τ, ζ induce distinct vertex labels. Furthermore, we consider two cases.

Case 1. s is even. We know that ϑ is the VLAC of G ∨ Os (by Lemma 1.1).

(a) ζ+(vi) = ϑ+(vi) =
d(nd+ 2)

4
+

ns(2d+ 3s) + 2s

4
for 0 ≤ i ≤ (n− 2)/2;

(b) ζ+(wj) = ϑ+(wj) =
d(nd+ 2)

4
+

2d − 1

3
+

p + 2

2
+

ns(s + 2d)

4
− 2d−1 + 2

(d−4)/2
∑

i=0

4i,

for 0 ≤ k ≤ d− 1;

(c) ζ+(zt) = ϑ+(zt) + τ+(zt) + q(s− 1)

=
n(nd+ ns + 1)

2
+

2t3 + 6t2(1− s) + 2t(3s2 − 3s− 4) + 3s(3− s)

6
+ q(s− 1).

Finally, we see that (a)>(b) for 1 ≤ i ≤ j ≤ n/2− 1.
Thus,

ζ+(zt)− ζ+(vi) =
n(nd+ ns + 1)

2
+

2t3 + 6t2(1− s) + 2t(3s2 − 3s− 4) + 3s(3− s)

6

+ q(s− 1)− d(nd+ 2)

4
+

ns(2d+ 3s) + 2s

4
> 0.

Case 2. s is odd. We know that ϑ is the VLAC of G ∨ Os (by Lemma 1.2).

(a) ζ+(vi) = ϑ+(vi) =
d(nd+ 2)

4
+

ns(2d+ 3s) + 2(s+ 1)− n

4
for 0 ≤ i ≤ (n− 2)/2;

(b) ζ+(wj) = ϑ+(wj) =
d(nd+ 2)

4
+
2d − 1

3
+
ns(s+ 2d) + 2(s+ 1) + 3n

4
−2d−1+2

(d−4)/2
∑

i=0

4i,

for 0 ≤ k ≤ d− 1;

(c) ζ+(zt) = ϑ+(zt) + τ+(zt) + q(s− 1)

=
n(nd+ ns + 1)

2
+

2t3 + 6t2(1− s) + 2t(3s2 − 3s− 4) + 3s(3− s)

6
+ q(s− 1).

Finally, see that (a)>(b) for 1 ≤ i ≤ j ≤ n/2− 1.
Thus,

ζ+(zt)− ζ+(vi) =
n(nd+ ns+ 1)

2
+

2t3 + 6t2(1− s) + 2t(3s2 − 3s− 4) + 3s(3− s)

6

+ q(s− 1)− d(nd+ 2)

4
+

ns(2d+ 3s) + 2(s+ 1)− n

4
> 0.
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Clearly, in both cases, ζ+(zt) 6= ζ+(vi). Thus, ζ+(wj) < ζ+(vi) < ζ+(zt). Therefore, ζ is

a VLAC of G∨Ks that induces s+2 distinct vertex colors. It concludes that χvℓa(G∨Ks) ≤ s+2.
Since χvℓa(G ∨Ks) ≥ χ(G ∨Ks) = s+ 2, we obtain χvℓa(G ∨Ks) = s+ 2. �

Theorem 1.6. Let s, ℓ ≥ 2 and s 6= ℓ, where s and ℓ are even (s and ℓ are odd). If (a) p+ s > ℓ
and (b) ℓ < s, then χvℓa

(

[G ∨Os] ∨Oℓ

)

= χvℓa(G ∨Ks,ℓ) = 4.

P r o o f. According to Theorem 1.3, p = n + s, q = ns + nd/2, and r = ℓ. Recall that by the

proof of Theorem 1.3, ϑ+(wj) < ϑ+(vi) < ϑ+(zt).
(a) Using Theorem 0.5, we get χvℓa(G ∨Ks,ℓ) ≤ 4.
(b) Consider

p− ℓ = n ≤ n+ s− ℓ = (1 + ℓp+ 2q)(p− ℓ)− 2g+(zt)

= (n + s− ℓ)
(

ℓ(n+ s) + 2ns+ nd+ 1
)

− 2

(

n(1 + nd+ ns)

2

)

= (s+ n− ℓ)
(

ℓ(s+ n) + 2ns+ nd+ 1
)

− n(nd + ns+ 1)

= ℓn2 − ℓ2n+ n2s+ ℓs2 − ℓ2s+ 2ns2 + nds− ℓnd− ℓ + s

= ℓn(n− ℓ) + ns(n + 2s) + ℓs(s− ℓ) + nd(s− ℓ) + s− ℓ

= ℓn(n− ℓ) + ns(n + 2s) + (s− ℓ)(ℓs+ nd+ 1) > 0.

Thus, 2ϑ+(zt) < (p − ℓ)(ℓp + 2q + 1). By Theorem 0.5, we have χvℓa(G ∨ Ks,ℓ) ≤ 4 and

χvℓa(G ∨Ks,ℓ) ≥ χ(G ∨Ks,ℓ) = 4. �

For simplicity, we relabel the vertices of a Fibonacci graph as follows. The vertices
{

(1, 0), (1, 1), . . . , (1, (n − 2)/2)
}

are labelled as V =
{

v0, v1, . . . , vn−2

2

}

, while the other ver-

tices
{

(2, 0), (2, 1), . . . , (2, (n − 2)/2)
}

are labelled as W =
{

w0, w1, . . . , wn−2

2

}

. Then, two

vertices of vi and wj are adjacent ⇔ j ∈
{

i + F (1) − 1, i + F (2) − 1, . . . , i + F (d + 1) − 1
}

(j − i ∈
{

F (1) − 1, F (2) − 1, . . . , F (d + 1) − 1
}

). Here V ∪ W are the vertices of Fd,n and

we utilise the subscript addition modulo n/2. Clearly, F2,4
∼= C4 and F3,6

∼= K3,3. Since

χvℓa(K3,3) = 3 and χvℓa(Cs) = 3 [5,6], we get χvℓa(F2,4) = χvℓa(F3,6) = 3. Also, F3,8
∼= C4×P2

and χvℓa(C4 × P2) = 4 [28]. Hence, χvℓa(F3,8) = 4.
For i ∈ {0, 1, . . . , d− 1}, if d > 2 is even and n = 2(F (d)+ i), then the Fibonacci graph Fd,n

is even regular; if d ≥ 3 is odd and n = 2(F (d)+i), then the Fibonacci graph Fd,n is odd regular.

§ 2. Fibonacci graphs

In this Section, we find the vertex local anti-magic chromatic number of Fibonacci graphs.

Theorem 2.1. For both n ≥ 10 and d > 2 (1 ≤ d ≤ F−1(n)− 1) even, χvℓa(Fd,n) = 3.

P r o o f. Let |V (Fd,n)| = n and |E(Fd,n)| = nd/2. Clearly,

V (Fd,n) = {vi, wj : 0 ≤ i, j ≤ (n− 2)/2}, and

E(Fd,n) =
{

viwj : 0 ≤ i ≤ (n− 2)/2, j ∈ {i+ F (1)− 1, i+ F (2)− 1, . . . , i+ F (d+ 1)− 1}
}

.

Define ϕ : E(Fd,n) → {1, 2, . . . , nd/2} as follows.

For i ∈ {0, 1, . . . , (n− 2)/2}, j ∈ {i+ F (k + 1)− 1: 0 ≤ i ≤ (n− 2)/2 and 0 ≤ k ≤ d},

ϕ(viwj) =











n(k + 1)− 2i

2
, if k ∈ {1, 3, . . . , d− 1},

2(i+ 1) + nk

2
, otherwise.
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Thus, ϕ is a VLAC of Fd,n with vertex colors as follows:

ϕ+(vi) =
d(nd+ 2)

4
, if i ∈ {0, 1, . . . , n/2− 1}.

For j ∈ {0, 1, . . . , n/2− 1}, we have

ϕ+(wj) =



















d(nd+ 2)

4
+ F (d− 1), if F (k + 1)− 1 ≤ j ≤ F (k + 1) + k − 1,

k ∈ {1, 3, . . . , d− 1},
d(nd+ 2)

4
− n

2
+ F (d− 1), otherwise.

Thus, ϕ induces a proper vertex coloring ϕ+ of Fd,n with 3 colors and χvℓa(Fd,n) ≤ 3. By

Theorem 0.4, χvℓa(Fd,n) ≥ 3. Hence, χvℓa(Fd,n) = 3 (for example, see χvℓa(F4,14) in Fig. 2). �

Conclusion

In this article, we discussed the vertex local anti-magic chromatic number of some Knödel

graphs and Fibonacci graphs. Also we determined the vertex local anti-magic chromatic number

of disjoint union of Knödel graphs and obtained the vertex local anti-magic chromatic number of

some join graphs. Further, the following problems naturally arise.

Problem 2.1. Determine χvℓa(Wd,n) for even n ≥ 8 and odd d > 1 (1 ≤ d ≤ ⌊log2(n)⌋).

Problem 2.2. Determine χvℓa(Fd,n) for even n ≥ 10 and odd d > 3 (1 ≤ d ≤ F−1(n)− 1).

In addition, our aim is to find the vertex local anti-magic chromatic number of generalized

Knödel graphs.
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В этой статье мы представляем вершинное локальное антимагическое хроматическое число для

некоторых графов Кнёделя G и графов Фибоначчи, дизъюнктного объединения графов Кнёделя и со-

единенных графов G ∨ H, где H ∈ {Os = KC
s ,Ks, Cs,Ks,ℓ}.
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