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Introduction

In the rapidly evolving landscape of artificial intelligence and computational linguistics, the

ability to process, analyze, and transform linguistic data efficiently has become a cornerstone

of technological advancement. From natural language understanding and machine translation to

automated reasoning and symbolic computation, the demand for robust and flexible tools to handle

language-related tasks is greater than ever. However, despite significant progress in the field, a

fundamental challenge persists: the tension between the simplicity of traditional grammatical

formalisms and their limited expressive power when applied to complex linguistic phenomena.

Traditional context-free grammars, particularly those expressed in Backus–Naur form (BNF),

have long been celebrated for their elegance and intuitive clarity. These grammars provide a

straightforward framework for describing the syntactic structure of languages, making them ac-

cessible and widely adopted in both theoretical and practical applications. Yet, their simplicity

comes at a cost. While they excel at capturing basic language constructs, they fall short when

it comes to modeling deeper semantic structures, handling context-sensitive transformations, or

performing advanced linguistic operations. This limitation restricts their applicability to a narrow

range of tasks, leaving more complex problems — such as semantic parsing, language translation,

and automated reasoning — beyond their reach.

On the other hand, more powerful grammatical formalisms, such as attribute grammars, tree-

adjoining grammars, and other extended frameworks, offer the theoretical capability to address

these challenges. These approaches can encode complex syntactic and semantic relationships,

enabling the representation of intricate language constructs and the execution of sophisticated

transformations. However, their increased expressiveness often comes at the expense of practi-

cality. The added complexity of these formalisms can lead to inefficiencies in implementation,

difficulties in integration with modern software systems, and challenges in maintaining clarity

and usability. As a result, while they hold great promise in theory, their real-world application is

often hindered by these practical shortcomings.

https://doi.org/10.35634/vm250210
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This contradiction between simplicity and expressiveness lies at the heart of the problem we

aim to address. Traditional grammars are easy to use but lack the power to handle complex tasks,

while more advanced formalisms are powerful but often impractical for real-world applications.

This tension is further compounded by the need for efficient processing in modern computational

environments, where performance and scalability are critical. Directly applying parameterized

grammars to linguistic data processing may yield expressive solutions, but their practical per-

formance often falls short of the requirements for real-world applications. This highlights the

need for a specialized subclass of grammars that can preserve the expressive power of advanced

formalisms while enabling efficient computation, bridging the gap between theoretical capability

and practical utility.

The motivation for our research stems from the desire to reconcile these opposing forces —

simplicity and expressiveness, theoretical power and practical efficiency — by developing a uni-

fied programming paradigm that balances these competing demands. Our approach is inspired

by the pioneering work of Valentin Turchin on the REFAL language, which demonstrated the

potential of grammar-based programming for symbolic computation. REFAL introduced a rev-

olutionary approach to programming by treating grammars as executable constructs, enabling

powerful symbolic transformations and pattern matching. However, despite its theoretical sig-

nificance, REFAL and similar languages have not achieved widespread adoption in practical

programming. The reasons for this are multifaceted, including challenges in adapting REFAL to

modern software platforms and inefficiencies in executing its programming constructs.

In light of these circumstances, we decided to return to the roots of formal language theory,

specifically grammars in Backus–Naur form, while significantly expanding their syntax and se-

mantics to address the limitations of traditional approaches. By doing so, we consciously sacrifice

some of the power of REFAL’s constructs, such as its mechanism of pattern matching through list

traversal, in favor of a more structured and efficient formalism. Our approach transitions from

classical context-free grammars to a more powerful framework of parameterized grammars,

where grammatical concepts can be equipped with parameters that themselves serve as objects

generated by the grammars. This allows us to develop a fundamentally new approach to program-

ming linguistic tasks, where parameterized grammars, under certain constraints, naturally become

executable programs.

A significant advantage of the proposed approach is its universality and flexibility in solv-

ing computational linguistic tasks. Parameterized grammars allow for the natural description of

both syntactic and semantic aspects of linguistic constructions. Unlike traditional programming

methods, which often require ad hoc solutions for different tasks, our approach provides a unified

framework for describing languages, transforming linguistic structures, and performing semantic

analysis. This flexibility is particularly valuable in applications such as language translation,

where the ability to handle both syntax and semantics in a single framework can significantly

simplify the development of language processors and translators.

At the core of our approach is the concept of parameterized grammars, which extend the

classical formalism by incorporating parameters into grammatical constructs. These parameters

serve not only to enrich the syntactic description but also to capture semantic nuances, enabling a

unified framework for language description, transformation, and analysis. By allowing parameters

to modify both syntactic structures and semantic interpretations, we facilitate the automatic, de-

ductive synthesis of programs. This approach simplifies the development of language processors

and compilers while ensuring that the resulting implementations are both correct and efficient.

Furthermore, the ability to convert these grammar-based programs into conventional programming

languages like JavaScript and Python broadens their practical applicability and enables integration

with modern development ecosystems.

The potential impact of this research is far-reaching. By merging classical theories with con-
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temporary computational techniques, our approach offers a unified and flexible framework for

programming linguistic tasks. It promises significant advancements in the efficient processing,

transformation, and semantic analysis of natural languages, paving the way for next-generation

applications in computational linguistics and artificial intelligence. From natural language under-

standing and machine translation to automated reasoning and symbolic computation, the ability to

handle complex linguistic tasks with both clarity and efficiency has the potential to revolutionize

a wide range of fields.

In summary, our research is motivated by the need to overcome the trade-off between simplic-

ity and expressiveness in grammatical formalisms, creating a formalism that is both theoretically

powerful and practically efficient. By developing a unified programming paradigm that balances

these competing demands, we aim to provide a robust and flexible tool for addressing the complex

linguistic challenges of the modern era. This work not only builds on the rich legacy of formal

language theory but also pushes the boundaries of what is possible in computational linguistics,

offering new opportunities for innovation and discovery in the field.

§ 1. Background

The evolution of programming languages has been shaped by the continuous struggle to

balance expressiveness and simplicity. On one hand, highly expressive formalisms facilitate

complex data transformations but often sacrifice usability; on the other hand, simpler languages

offer accessibility but limit the scope of solvable problems. This tension is particularly evident in

the domain of linguistic data processing, where traditional approaches have repeatedly fallen short.

The theoretical underpinnings of our work trace back to Chomsky’s [1] foundational research on

formal properties of grammars, which established the hierarchy of formal languages that continues

to influence computational linguistics. Backus [2] further advanced the field by introducing

a notation for describing language syntax that would later evolve into the Backus–Naur Form

(BNF), a cornerstone of language specification. Context-free grammars, while elegant in their

simplicity, exhibit fundamental limitations when applied to complex linguistic phenomena. As

Knuth [3] demonstrated in his seminal work on the semantics of context-free languages, traditional

grammatical formalisms struggle to capture the rich semantic structures inherent in both natural

and programming languages. This limitation has spurred research into more powerful extensions

of basic grammar models.

The concept of using grammars as programming tools has a rich history. Hehner and Silver-

berg [4] pioneered the exploration of grammar-directed language design, advocating for a method-

ological approach where programming languages emerge naturally from grammatical structures.

Their work demonstrated how formal grammars could serve not merely as descriptive tools but as

prescriptive frameworks for language implementation. Attribute grammars, extensively surveyed

by Paakki [5], emerged as a powerful extension to context-free grammars. By augmenting gram-

matical rules with attributes and semantic equations, these formalisms provided a mechanism for

expressing both syntactic structure and semantic interpretation within a unified framework. This

advancement represented a significant step toward bridging the gap between grammar specifica-

tion and practical language implementation. The SNOBOL family of languages, chronicled by

Griswold [6], demonstrated the practical potential of pattern-matching approaches to program-

ming. These languages introduced innovative constructs for text processing and manipulation,

showing how grammatical concepts could be embedded directly into programming paradigms to

facilitate linguistic operations.

A pivotal influence on our research has been the groundbreaking work of Valentin Turchin,

particularly his development of the REFAL programming language [7] and the concept of super-

compilation [8]. REFAL introduced a revolutionary approach to programming by treating gram-

mars as executable constructs, enabling powerful symbolic transformations and pattern matching.



318 Programming in grammars

The language’s emphasis on recursion and pattern-based substitution provided a natural frame-

work for expressing complex transformations of symbolic data. Turchin’s concept of a supercom-

piler [8] further extended these ideas by introducing techniques for program transformation and

optimization. The supercompiler analyzes programs to identify opportunities for improvement,

generating more efficient implementations while preserving semantic equivalence. This work,

later advanced by Nemytykh [9] and adapted to modern languages by Klimov [10], demonstrated

the potential for automated program synthesis and transformation based on grammatical princi-

ples. Romanenko’s [11] exploration of inversion and metacomputation expanded upon Turchin’s

foundation, developing techniques for reasoning about and manipulating computational processes.

These advancements in metacomputation — the ability of programs to operate on representations

of themselves — established critical theoretical groundwork for our approach to program synthesis

from grammatical specifications.

More recent work has continued to explore the intersection of grammars and programming.

Besova et al. [12] demonstrated how grammatical principles could be applied to model transfor-

mations in software engineering, providing evidence for the broader applicability of grammar-

based techniques beyond traditional language processing. Carette and Kiselyov [13] addressed

the efficiency challenges in generic programming through multi-stage programming with func-

tors and monads. Their work highlighted the importance of eliminating abstraction overhead,

a concern that resonates with our focus on developing practical, efficient implementations of

grammar-based programs. Despite these advances, significant challenges remain in reconciling

the expressive power of advanced grammatical formalisms with the practical requirements of

modern software development. Direct application of parameterized grammars to linguistic data

processing, while theoretically appealing, often produces inefficient implementations unsuitable

for real-world deployment. This tension between theoretical capability and practical utility un-

derscores the need for our research.

Current approaches to programming linguistic tasks typically fall into one of two categories:

they either utilize powerful but unwieldy grammatical formalisms that sacrifice efficiency and

usability, or they employ ad hoc solutions that lack theoretical grounding and generality. This

dichotomy highlights a critical gap in the field — the absence of a unified framework that balances

expressiveness and practicality. Traditional programming languages, while efficient, often lack

the natural facilities for expressing linguistic transformations. Conversely, specialized language

processing tools may provide domain-specific capabilities but fail to integrate seamlessly with

broader software ecosystems. This fragmentation of approaches hampers the development of

comprehensive solutions to complex linguistic problems. Our research aims to bridge this gap

by returning to the fundamental principles of formal language theory while incorporating the

insights gained from decades of research in programming language design, attribute grammars,

and program transformation. By developing a specialized class of parameterized grammars that

maintain expressiveness while enabling efficient implementation, we seek to provide a practical

framework for programming linguistic tasks that combines theoretical rigor with practical utility.

§ 2. Parameterized grammars

2.1. Metasyntax of parameterized grammars

By metasyntax, we mean the syntax for writing the grammars themselves. A parameterized

grammar is defined by a set of rules described by the syntactic structure below. The description of

the context-free metasyntax of rules (the concept <rule>) is given below in the form of Backus–

Naur forms. To avoid confusion when reading, chains of terminal symbols are enclosed in

apostrophes (’ ’). Non-terminal symbols are enclosed in angle brackets (< >).

The meta-rules for generating rules of a parameterized grammar are as follows:
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<rule> ::= ’<’<name> ’ ’ <expression>’>’

’=’<expression> <descriptions> ’;’,

<descriptions> ::= | ’,’ <name> ’:’ <expression> <descriptions>.

Here, the symbol “::=” is the separator between the left and right parts of the metarule, and

‘=’ is the separator between parts of the rule described by the grammar. In this form, it is

necessary to distinguish between angle brackets without apostrophes, which limit metaconcepts,

and angle brackets with apostrophes, which limit the concepts of the described grammar and their

parameters. The metaconcept <name> is the name of the described concept, a non-empty string

of letters. The metaconcept <expression> is an expression whose syntax is described below.

Thus, any rule of a parameterized grammar has the form:

< N t >= u, v1 : w1, . . . , vn : wn;

where

• N is a non-terminal symbol (the name of the concept),

• expressions t and u are the parameter and the right part of this rule, respectively,

• vi are variables (names, identifiers),

• wi are expressions that specify the permissible values of the corresponding variables.

In the definitions of permissible values (types) of variables vi : wi, circular chains of refer-

ences are prohibited to avoid logical difficulties. The value of n can be zero. In that case, a

semicolon follows immediately after u.

The context-free metasyntax of expressions of parameterized grammars <expression> is writ-

ten in Backus–Naur form as follows:

<expression> ::= | <term> <expression>;

<term> ::= <quote> <string> <quote>

| ’(’ <expression> ’)’

| <name> ’ ’

| ’<’ <name> ’ ’ <expression> ’>’;

where

• <quote> is an apostrophe, the symbol ’;

• <string> is a string (a non-empty chain of arbitrary elements from the considered alphabet

of terminal symbols of the grammar, not containing apostrophes; we assume that certain

classes of grammars are considered, and for each of these considered classes, a certain

alphabet of terminal symbols is fixed),

• <name> are names (non-empty chains of letters).

Names in expressions after the sign ’<’ are concept names, while other names are local

variables of the rules. We use letters from a pre-selected alphabet for names. In this work, we use

lowercase English letters. Consecutive names are separated by spaces. Trailing spaces in names

may be omitted when writing. For readability, we will insert additional spaces and line breaks,

but not within names.
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2.2. Semantics of parameterized grammars

The semantics of a parameterized grammar is defined as follows. The membership of a string

d in the set defined by the expression < N e > means that there exists a rule in the grammar of

the form

< N t >= u, v1 : w1, . . . , vn : wn,

for which values of the variables are selected in the form of chains of symbols such that:

• the string e belongs to the set generated by the expression t,

• the string d belongs to the set generated by the expression u,

• the chains vi belong to the sets generated by the expressions wi, respectively.

If no set of permissible values is specified for some variable, it is assumed that this variable

takes values from some standard set chosen for the considered class of grammars. By default,

this is any chain of terminal symbols. When generating chains from expressions, some repre-

sentatives of the participating concepts with parameters are taken, and the implied operations of

concatenating chains are performed. This definition is recursive. If there is no process of its

application that terminates in a finite number of steps, then it should be considered that the given

chain does not belong to the given set.

2.3. Example of a parameterized grammar generating some predicate logic formulas

Let us give an example of a grammar that generates a set of predicate logic formulas with

permissible free variables from a given list.

For simplicity, we will limit ourselves to the following possible elements of formulas:

• one type of quantifier (the universal quantifier, denoted by the letter “A”),

• one type of binary connective (conjunction “ & ”),

• two predicates (a unary “P ” and a binary “Q”),

• three subject variables (“x”, “y”, “z”),

• negation (denoted by the sign “−”).

Subject constants are not used.

Next, the expression <formula w> means “a formula with free variables from the list w”. The

corresponding parameterized grammar looks as follows:

<formula w> = ’P(’ <element w> ’)’;

<formula w> = ’Q(’ <element w> ’, ’ <element w> ’)’;

<formula w> = ’-’ <formula w>;

<formula w> = ’(’ <formula w> ’&’ <formula w> ’)’;

<formula w> = ’A’ x <formula x w>, x:<variable>;

<element w v u> = v, v:<variable>;

<variable> = ’x’;

<variable> = ’y’;

<variable> = ’z’;
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Let us provide examples of formulas generated and not generated by this grammar.

Positive examples, valid formulas generated by this grammar for the concept <formula . . . >

with different parameters. The examples are written in the form:

′example′ :< formula ′parameters′ >:

• ′P (x)′ :< formula ′x′ >, an atomic formula with the free variable x,

• ′Q(x, y)′ :< formula ′xy′ >, an atomic formula with two free variables,

• ′(P (x) & P (y))′ :< formula ′xy′ >, a conjunction of two atomic formulas,

• ′AxP (x)′ :< formula >, a closed formula with a universal quantifier,

• ′AxQ(x, y)′ :< formula ′y′ >, a formula with a quantifier and a free variable y,

• ′ − P (x)′ :< formula ′x′ >, negation of an atomic formula,

• ′AxAxP (x)′ :< formula >, repeated binding of the same variable is allowed,

• ′AzQ(x, y)′ :< formula ′xy′ >, the quantifier can bind a variable not present in the

formula.

Negative examples (invalid formulas):

• ′P (w)′, the variable w is not defined in the grammar,

• ′Q(x, x, y)′, the predicate Q has only two arguments,

• ′P (x) & Q(y)′, mandatory parentheses around the conjunction are missing,

• ′P (x)′ :< formula >, the formula is not closed,

• ′P (x)′ :< formula ′y′ >, the formula contains a variable not from the specified list.

§ 3. Special type of parameterized grammars for programming

3.1. Unambiguous parameterized grammars

A parameterized grammar is called unambiguous (functional) if the value of any expression

of the form < N e > consists of no more than one element. Such grammars define functions

and can be used as programs to compute these functions. We will refer to these grammars as

program-grammars.

One such class of grammars is described below. In the rules of this class, descriptions of

permissible sets of variable values are absent. A single standard set of values <tree> (binary tree)

is implied, with the following syntax (defined in Backus–Naur form, where terminal symbols are

enclosed in apostrophes):

<tree> ::= ’\’ <character> | ’(’ <tree> ’)’ <tree>,

<character> – an arbitrary symbol from a pre-selected alphabet.

(a list of permissible terminal symbols for the considered class

of grammars)
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a b c d

Fig. 1. Branched list representation. Example. List representation ((a)b)(c)d

a b

c

Fig. 2. Branched list representation. Example: Representation of the list (\a)\b)\c

Here, the notation \c describes a tree consisting of a single leaf marked with the symbol

c, and the notation (a)b describes a complex tree consisting of left and right subtrees a and b,

respectively. Non-leaf nodes are not marked, and edges are naturally considered to be labeled as

“left” and “right”. The asymmetric notation (a)b is chosen for the convenience of representing

more complex data structures (see below). The binary tree structure is chosen because it is fairly

simple and allows for easy modeling of other structures.

Note that this is merely a representation of a tree as a chain of symbols. In practice, when

working with such data, branched lists are typically used (see, for example, figures 1 and 2).

Ordinary one-dimensional chains of symbols can be easily modeled by such binary trees. For

example, if we need to encode the chain “bac”, we will use the tree (\a)(\b)(\c)empty (see

figure 3), where “empty” refers to an empty tree — a leaf marked with the symbol “space” (\\).

In future representations, such an empty tree will sometimes be omitted. If x is a tree of the

form (x1) . . . (xn), it can be concatenated with any tree y. The result will be the tree (x1) . . . (xn)y
(see figure 4), which is written as xy (the notation of two trees written consecutively implies the

concatenation operation).

If x does not have such a form (i.e., does not end with an empty tree in the rightmost branch),

then the operation xy is not defined.

As rules for unambiguous parameterized grammars, we consider only statements of the form:

< N t >= u;
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b

a

c

Fig. 3. Branched list representation. Example:Representation of the string “bac” = (\b)(\a)(\c)

x1

xn y

y

x1

xn

Fig. 4. Concatenation of trees
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next we give a formal description of the class of unambiguous parameterized grammars.

3.2. Core concepts and structure of grammar-programs

The class of grammar-programs can be viewed as a special programming language, a tool

for data processing based on manipulating binary trees. Grammar-programs are unambiguous

parameterized grammars that operate on binary trees.

3.3. Formal syntax of the grammar-program language

3.3.1 Context-free metasyntax of grammar-programs

The original metasyntax of grammar-programs is defined as follows using Backus–Naur forms

(lines marked with “−” are comments):

<program> ::= <rule> | <program> <rule>,

<rule> ::= ’<’ <name> <left> ’>’ ’=’ <right> ’;’,

<left> ::= ’\’ <character>

| <name>

| ’(’ <left> ’)’ <left>,

- comment: <left> is the "left part of the rule"

<right> ::= ’\’ <character>

| <name>

| ’(’ <right> ’)’ <right>

| ’<’ <name> ’ ’ <right> ’>’,

- comment: <right> is the "right part of the rule",

- metaconcepts <name> and <character> are defined above.

As we can see, the syntax lacks concatenation of chains and non-terminal symbols in the left

parts of rules, which simplifies the computation of the function defined by such a program. The

specified binary trees can be efficiently represented in memory, allowing for an instantaneous

transition from the left parenthesis to the right one.

3.3.2 Context conditions

It is required that in program-grammars, variables in the left part of the rule do not repeat. This is

a requirement for implementation efficiency; otherwise, during execution, it would be necessary

to compare the values of the variables. If comparison of values is needed, a special built-in

function for comparing values will be provided in the programming system.

All variables in the right part of the rule (to determine their values) must appear in its left

part. Variables in the right part can be repeated. One can assume that these values are then

copied. However, in implementation, only references to them may be copied. It is also possible

not to use some variables from the left part in the right part. In that case, it can be assumed that

these values are destroyed. However, in implementation, only references to them may disappear.

In case of necessity, a more or less efficient “garbage collection” will be provided. In some

particularly efficient implementations, these permissions can also be replaced with corresponding

prohibitions and implemented with special built-in functions for copying and destruction.

For unambiguity, all rules must be incompatible in their left parts (i.e., the rule that starts the

execution of any function is determined unambiguously by the argument of that function). Two

left parts are considered compatible if there exists a tree that can be matched with both of these

parts. It is not difficult to formulate an algorithm that effectively recognizes the compatibility of

left parts.
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p

p

oo

t

t

Fig. 5. Illustrating tree reversal (like “top”→ “pot”)

3.4. Semantics of the programming language

3.4.1 Function definitions

One can consider that a grammar-program consists of a set of function definitions. Each function

definition F includes the following:

– a list of rules of the form < F L >= R;

– where L represents the pattern of the function argument, the left part of the rule,

– R is the expression of the function value, the right part of the rule with possible calls to this

and other functions.

3.4.2 Pattern matching mechanism

The process of executing a rule includes the following steps:

1) selecting values for the variables to match the left part to the function argument (context

conditions are such that there is no more than one way to make such a selection),

2) substituting the found values into the right part,

3) computing the resulting expression.

If it was not possible to find a suitable rule, then the value of the function is undefined. It is

also undefined if the described computation process does not terminate.

3.5. Examples

3.5.1 String reversal

A string reversal program might look as follows:

1 <reverse x> = <rev (x)\ >.

2 <rev ((x)y)z> = <rev (y)(x)z>.

3 <rev (\ )z> = z.

Example: when applying this program to the string “top” (\t)(\o)(\p), we get the string “pot”

(see figure 5).

The process of this transformation can be depicted as follows:

1 <reverse (\t)(\o)(\p)\ > = <rev((\t)(\o)(\p)\ )\ >

2 - first rule applied,

3 = <rev((\o)(\p)\ )(\t)\ > = <rev((\p)\ )(\o)(\t)\ >

4 - second rule applied,

5 = <rev(\ )(\p)(\o)(\t)\ > = (\p)(\o)(\t)\

6 - finally, the third rule is applied.

3.5.2 String concatenation

Unlike many other languages where string and list concatenation (cat) is a built-in operation, in

our language, it can be implemented through programming:
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1 <cat((x)y)z>=(x)<cat(y)z>;

2 <cat()z>=z;

This program first outputs the elements of the first list and then appends the second list to

them. This does not seem very efficient, so in practical implementation, such an operation could

be built-in.

3.6. Example of a substantive grammar-program

Let us consider an example of solving the problem of simplifying a propositional formula

with one variable. The task is to replace any propositional formula with one variable “Y ” in the

signature − (negation), & (conjunction) with one of the equivalent formulas: 0 (false), 1 (true),

Y , or N (negation of Y ). The program with the function < tr . . . >, which solves this task, looks

as follows:

1 <tr "Y"x> = "Y"x;

2 <tr "-"x> = <trnot <tr x>>;

3 <tr "("x> = <trand <tr x>>;

4 <trnot "Y"x> = "N"x;

5 <trnot "N"x> = "Y"x;

6 <trnot "0"x> = "1"x;

7 <trnot "1"x> = "0"x;

8 <trand (x)"&"y> = <conj (x)<tr y>>;

9 <conj (x)(y)")"z> = (<and (x)y>)z;

10 <and "0"x> = \0;

11 <and "1"x> = x;

12 <and "Y"\Y> = \Y;

13 <and "Y"\N> = \0;

14 <and "Y"\0> = \0;

15 <and "Y"\1> = \Y;

16 <and "N"\Y> = \0;

17 <and "N"\N> = \N;

18 <and "N"\0> = \0;

19 <and "N"\1> = \N;

For example, running the execution

1 <tr "(Y&-Y)">,

we obtain the following process:

1 <tr "(Y&-Y)"> =

2 <trand <tr "Y&-Y)">> =

3 <trand "Y&-Y)"> =

4 <conj "Y"<tr "-Y)">> =

5 <conj "Y"<trnot <tr "Y)">>> =

6 <conj "Y"<trnot "Y)">> =

7 <conj "YN)"> =

8 (<and "Y"\N>) = (\0) = "0".

§ 4. Built-in functions of the programming system

To process data, it is recommended to include the following functions in the programming

system:
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• Comparison function, for example:

1 <comp(x)x> = \1;

2 <comp(x)y> = \0; - when x is not equal to y

• Functions for analyzing the type of character, for example:

1 <letter x> = "1"; - if x is a letter

2 <letter x> = "0"; - if x is not a letter

The programming system can also include functions for outputting strings to the output stream

and reading strings from the input stream, as well as functions for file handling.

§ 5. Logical construction of program grammars from parameterized grammars (deductive

programming)

For programming in grammars to work successfully, a transition is required from problem

statements in terms of complex grammars to algorithms formulated as executable grammars (pro-

grams). This transition can be achieved through deductive programming, the logical derivation

of programs in the form of functional grammars from problem statements in the form of gen-

eral parameterized grammars. Below, we provide example of such deductive programming, the

transformation of a parameterized grammar into a program grammar.

5.1. Example of deductive programming

5.1.1 Informal problem statement

It is required to create a program that translates a logical formula, written as a chain of symbols,

into an internal representation in the form of a binary tree. For simplicity, we consider constant

formulas of propositional logic with one logical connective “Sheffer stroke” and one logical

constant 0 (false). Error handling is not considered for simplicity.

5.1.2 Formal problem statement

To clarify, we first present the grammar of the internal syntax of formulas <form>:

1 <form> = \0;

2 - case of the constant "false"

3 <form> = (<form>)<form>;

4 - case of a complex formula (the Sheffer stroke subsumed)

Now, we define the rules of the parameterized grammar establishing correspondence

1 <frml f> = t

between the internal

1 f:<form>

and external (string t) representations of formulas.

Since the definition of form has two cases, the corresponding two cases also apply to the

definition of frml:

1 <frml \0> = "0";

2 - case when the formula is the constant "false"

3 <frml (g) h> = "(" <frml g> "|" <frml h> ")";

4 - case when the formula is obtained by the Sheffer stroke,

5 no restrictions on g and h
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The specification of the target function for converting the external representation of the for-

mula into its internal representation (f ) will be as follows:

1 <ana <frml f> x> = (f) x;

Note that it is not just a formula being processed, but text starting with a formula from which

this formula is extracted in its internal form. This is done to simplify the problem being solved, as

recognizing a formula at the beginning of the text is often required during its recursive resolution.

5.1.3 Solution to the problem: building the target function program

This section presents reasoning showing how, in our example, a program grammar can be con-

structed from a general parameterized grammar using logical construction. The generated sen-

tences of the program grammar are marked with a “!” at the beginning of the line. Collecting

them together, we obtain the generated program.

Consider the specification rule of our task:

1 <ana <frml f> x> = (f) x;

First, we analyze the cases of the term

1 <frml f>.

for each case of the definition frml, we generate the corresponding program rules:

– in the case

1 <frml \0> = "0";

that is, when f = \0, our specification rule turns into the following form:

1 !<ana "0" x> = (\0) x;

this is already a program grammar rule, further transformation is not required.

– In the case

1 <frml (g) h> = "(" <frml g> "|" <frml h> ")";

that is, when f = (g)h, the specification rule turns into the following form:

1 <ana "(" <frml g> "|" <frml h> ")" x> = ((g) h) x;

Next, to build the next program rule, we denote the expression

1 <frml g> "|" <frml h> ")" x

as i:

1 i = <frml g> "|" <frml h> ")" x

Thus, the next action of the program can start with

1 <ana "(" i> =...,

since the value of i starts with

1 $<frml g>$.

It is proposed to continue working with recursive application of ana, then the next action can

take the program grammar rule:

1 !<ana "(" i> = <anaa <ana i>>;
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where anaa is the function that continues the computation of ana.

Note that

1 <ana i> = <ana <frml g> "|" <frml h> ")" x> = (g) "|" <frml h> ")" x,

from which we obtain the following specification for the function anaa:

1 <anaa (g) "|" <frml h> ")" x> = ((g) h) x;

Let’s take a new variable j defined by the equality

1 j=<frml h> ")" x.

Thus, the next action of the program can start with

1 <anaa (g) "|" j> =...

Since the value of j starts with

1 <frml h>,

it is also proposed to continue working with recursive application of ana. The action is extracted

as a program rule:

1 !<anaa (g) "|" j> = <anab (g) <ana j>>;

where anab is the function that continues the computation of anaa.

Note that

1 <ana j> = <ana <frml h> ")" x> = (h) ")" x.

From this, we obtain the following specification for the function anab:

1 !<anab (g) (h) ")" x> = ((g) h) x;

This is already a program rule, further transformation is not required. There are no remaining

rules that are not program rules. Thus, the problem of building the program is solved. To justify

the correctness of the constructed program, it can also be shown that the size of the data processed

by it decreases at each step. The final solution looks as follows:

1 !<ana "0" x> = (\0) x;

2 !<ana "(" i> = <anaa <ana i>>;

3 !<anaa (g) "|" j> = <anab (g) <ana j>>;

4 !<anab (g) (h) ")" x> = ((g) h) x;

§ 6. Conclusion

This work presents and analyzes a new approach to programming based on the use of pa-

rameterized grammars. This approach combines classical formal language theory with modern

programming methods, creating a powerful and flexible tool for solving a wide range of tasks in

computational linguistics and data processing.

The main results of the work can be summarized as follows.

1. A theoretical foundation for parameterized grammars over binary trees has been developed,

generalizing classical concepts from formal language theory. It has been shown that gram-

mars over linear chains are a special case of grammars over binary trees, allowing for a

unified approach to solving various classes of problems.
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2. A special class of unambiguous (functional) parameterized grammars has been proposed,

which can be directly used as programs. These grammar-programs possess clear semantics

and efficient implementation, making them practical programming tools.

3. Deductive synthesis of programs has been demonstrated, allowing for generation of efficient

grammar-programs from task specifications written in the form of general parameterized

grammars. This approach ensures the correctness of the obtained solutions.

4. The practical applicability of the proposed approach has been demonstrated through specific

examples, including tasks related to processing logical formulas, string transformations,

and conversions between various data representations. The developed formalism allows

for the natural expression and efficient resolution of a wide class of symbolic computation

problems.

The theoretical significance of the work lies in the advancement of formal language theory

and programming methods. The proposed formalism of parameterized grammars over binary trees

creates a new programming paradigm that combines the advantages of declarative and functional

approaches. The method of deductive synthesis of programs opens up prospects for automating

the programming process and verifying programs.

The practical value of the research consists in the creation of specific tools for solving lan-

guage processing and symbolic computation tasks. The developed approach can find applications

in the following areas:

• Compiler and language processor development

• Natural language processing systems creation

• Symbolic computation systems construction

• Development of program analysis and transformation tools

• Creation of specialized programming languages

Prospects for further research include:

1. Development of the theory of parameterized grammars, exploring their expressive power

and computational complexity.

2. Development of efficient methods for implementing grammar-programs on various plat-

forms.

3. Creation of tools for automatic program synthesis from specifications.

4. Integration of the proposed approach with machine learning methods.

5. Expansion of the application area to new classes of problems.

The proposed approach opens new horizons in programming language tasks, creating a theoretical

and practical basis for the development of more efficient and reliable methods for processing

formal and natural languages. The synthesis of classical ideas from formal language theory with

modern programming methods creates a powerful toolkit for addressing current challenges in

computational linguistics and artificial intelligence.

Implementing the system by converting it into modern programming languages seems to be

the most promising approach. This not only simplify the implementation of the system into
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existing projects, but also opens up access to the extensive libraries of these languages, especially

in the field of machine learning and data processing. This approach avoids the problems faced by

earlier systems that attempted to create a completely autonomous execution environment.

Further development of the system in this regard is seen in the creation of effective converters

into various programming languages and the development of specialized interfaces for interaction

with modern machine learning and data analysis libraries. This will allow preserving the advan-

tages of the formal approach when working with grammars, while simultaneously using the full

power of modern development tools.

The key advantages of this approach are as follows.

1. Practicality of implementation:

– use of existing optimized programming systems,

– access to debugging and profiling systems,

– ease of integration into existing projects.

2. Extensibility:

– easy addition of new functionality through libraries,

– ability to use modern development tools,

– access to language ecosystems.

3. Prospective:

– natural integration with machine learning tools,

– possibility of parallel computing,

– access to cloud technologies.
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DOI: 10.35634/vm250210

В данной работе рассматривается подход к программированию, основанный на использовании па-

раметризованных грамматик. Понятия этих грамматик снабжены параметрами, которые также мо-

гут быть объектами грамматик. Такие грамматики являются довольно мощным инструментом, их

предлагается использовать для формулирования постановок задач преобразования лингвистических

данных. Эти грамматики можно использовать непосредственно для обработки информации, но это

может оказаться не эффективным. Поэтому выделяется специальный эффективный в применении

класс таких грамматик. Предлагается специальная система однозначных (функциональных) пара-

метризованных грамматик, которую можно использовать как эффективный язык программирования

лингвистических задач. Описываются идеи дедуктивного синтеза программ в этой системе из по-

становок задач в общих параметризованных грамматиках с помощью логического вывода с пер-

спективой последующей автоматизации. Демонстрируется практическое применение предложенно-

го инструмента на примерах обработки логических формул и решения других задач. Эта работа

продолжает идеи Валентина Турчина в области языка РЕФАЛ.
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