2013. Вып. 3

УДК 532.59: 532.529.5

© В.А. Баринов, К. Ю. Басинский

НЕЛИНЕЙНЫЕ ВОЛНЫ НА СВОБОДНОЙ ПОВЕРХНОСТИ ДВУХФАЗНОЙ СРЕДЫ

Рассмотрена нелинейная задача о волнах на свободной поверхности двухфазной среды. Для ее решения предложен асимптотический метод, с помощью которого найдено решение с точностью третьего приближения. Определены траектории частиц несущей и дисперсной фазы, а также нелинейные волновые эффекты.

Ключевые слова: нелинейные поверхностные волны, двухфазная среда, дисперсионные соотношения, нелинейные эффекты.

§1. Введение

Исследования распространения волн по свободной поверхности многофазных (в частности, двухфазных или дисперсных) сред представляют теоретический и практический интерес. Они могут быть использованы как для учета влияния примесей на волновые характеристики, так и для изучения переноса взвесей волновым течением (наносов) в прибрежных зонах морей и океанов [1, 2]. Кроме того, определение зависимости концентрации примеси от волновых характеристик может быть основой метода расчета степени загрязнения водного бассейна 3. Двухскоростные модели распространения волн по свободной поверхности слоя дисперсной смеси, в которых учитывались различные межфазные силы, были построены в работах [4,5]. В них же получены решения соответствующих краевых задач в линейном приближении, а также аналитические зависимости частоты и декремента затухания волны от концентрации дисперсной фазы. Было установлено, что волновое возмущение концентрации является величиной более высокого порядка малости по сравнению с остальными возмущениями, поэтому для его определения необходимо решение нелинейной задачи. Аналитическое выражение для волнового возмущения концентрации было найдено в работах [3,6], в них получено решение нелинейной задачи с точностью второго приближения по амплитудному параметру. Это решение позволило аналитически определить нелинейный эффект, который ранее наблюдали только экспериментально. Заключается он в следующем: при волновом движении более легкие по сравнению с несущей фазой дисперсные частицы притапливаются, а более тяжелые всплывают. Однако для более точного определения нелинейных эффектов даже для моножидкостей необходимо находить асимптотические приближения более высокого порядка. Для однородных жидкостей известны нелинейные эффекты Стокса: зависимость частоты от высоты волны; наличие приповерхностного течения, обуславливающего разомкнутость траекторий движения [7,8]. В отличие от идеальной моножидкости применение прямого метода Стокса к решению нелинейной задачи для двухфазной смеси невозможно из-за наличия диссипативной силы межфазного трения. Для решения нелинейных волновых задач с диссипацией в работах [9, 10] был разработан метод переменной во времени частоты, являющийся обобщением метода Стокса, который также можно рассматривать как развитие метода Биркгофа [11] от нелинейных колебаний до нелинейных волн. В настоящей работе этот метод применен к решению нелинейной задачи о волновом движении двухфазной смеси. Получено решение с точностью третьего приближения, что позволило аналитически определить эффекты Стокса для дисперсной смеси. Найдены нелинейные траектории дисперсных частиц, по которым определяется перераспределение дисперсной фазы при волновом движении смеси.

§2. Постановка нелинейной краевой задачи

Рассматривается бесконечно глубокий слой двухфазной смеси, ограниченный сверху свободной поверхностью $z^* = \xi^*(t^*, x^*)$. Предполагается: несущая фаза — идеальная несжимаемая жидкость, вязкость которой проявляется только на межфазной границе; дисперсная фаза сферические частицы радиуса a; волна длиной λ ($\lambda \gg \xi^*_{\max}$, $\lambda \gg a$) распространяется в направлении оси x^* ; $k/\xi^*_{\max} = \varepsilon$ — малый волновой параметр, $k = 2\pi/\lambda$ — волновое число. Звездочкой, там, где это необходимо, обозначены физические (размерные) величины. Полагая частоту (фазовую скорость) волны — неизвестной функцией времени, запишем нелинейную краевую задачу [4] в безразмерном виде:

$$-\frac{\alpha_0}{(t/c)'}\frac{\partial\gamma}{\partial t} + (1-\alpha_0)\nabla\cdot\mathbf{v}_1 - \varepsilon\alpha_0\nabla\cdot(\gamma\mathbf{v}_1) = 0, \quad \frac{1}{(t/c)'}\frac{\partial\gamma}{\partial t} + \nabla\cdot\mathbf{v}_2 + \varepsilon\nabla\cdot(\gamma\mathbf{v}_2) = 0, \quad (1)$$

$$\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\frac{1}{\left(t/c\right)'}\frac{\partial\mathbf{v}_{1}}{\partial t} - \frac{s\mu_{1}\alpha_{0}}{2\left(t/c\right)'}\frac{\partial\mathbf{v}_{2}}{\partial t} - r\alpha_{0}\left(\mathbf{v}_{2} - \mathbf{v}_{1}\right) + \nabla p + \varepsilon \left[\mu_{1}\left(1 + \frac{s}{2}\alpha_{0}\right)\left(\mathbf{v}_{1}\nabla\right)\mathbf{v}_{1} - \frac{s\mu_{1}\alpha_{0}\gamma}{2\left(t/c\right)'}\left(\frac{\partial\mathbf{v}_{2}}{\partial t} - \frac{\partial\mathbf{v}_{1}}{\partial t}\right)\right] + \varepsilon^{2}\frac{s}{2}\mu_{1}\alpha_{0}\gamma\left[\left(\mathbf{v}_{1}\nabla\right)\mathbf{v}_{1} - \left(\mathbf{v}_{2}\nabla\right)\mathbf{v}_{2}\right] = 0,$$

$$\begin{split} \left[\mu_2 + \frac{s}{2} \mu_1 \left(1 - \alpha_0 \right) \right] \frac{1}{(t/c)'} \frac{\partial \mathbf{v}_2}{\partial t} &- \frac{s \mu_1 \left(1 - \alpha_0 \right)}{2 \left(t/c \right)'} \frac{\partial \mathbf{v}_1}{\partial t} + r \left(1 - \alpha_0 \right) \left(\mathbf{v}_2 - \mathbf{v}_1 \right) + \nabla p + \varepsilon \left\{ \begin{bmatrix} \mu_2 + \frac{s}{2} \mu_1 \left(1 - \alpha_0 \right) \right] \left(\mathbf{v}_2 \nabla \right) \mathbf{v}_2 - \frac{s}{2} \mu_1 \left(1 - \alpha_0 \right) \left(\mathbf{v}_1 \nabla \right) \mathbf{v}_1 - r \alpha_0 \gamma \left(\mathbf{v}_2 - \mathbf{v}_1 \right) - \frac{s \mu_1 \alpha_0 \gamma}{2 \left(t/c \right)'} \left(\frac{\partial \mathbf{v}_2}{\partial t} - \frac{\partial \mathbf{v}_1}{\partial t} \right) \right\} + \\ &+ \varepsilon^2 \frac{s}{2} \mu_1 \alpha_0 \gamma \left[\left(\mathbf{v}_1 \nabla \right) \mathbf{v}_1 - \left(\mathbf{v}_2 \nabla \right) \mathbf{v}_2 \right] = 0, \quad \mathbf{v}_1 = \left(\mathbf{v}_{1x}, 0, \mathbf{v}_{1z} \right), \quad \mathbf{v}_2 = \left(\mathbf{v}_{2x}, 0, \mathbf{v}_{2z} \right), \\ &\frac{1}{\left(t/c \right)'} \frac{\partial \xi}{\partial t} - \left(1 - \alpha_0 \right) \mathbf{v}_{1z} - \alpha_0 \mathbf{v}_{2z} + \varepsilon \left\{ \frac{\partial \xi}{\partial x} \left[\left(1 - \alpha_0 \right) \mathbf{v}_{1x} + \alpha_0 \mathbf{v}_{2x} \right] - \alpha_0 \gamma \left(\mathbf{v}_{2z} - \mathbf{v}_{1z} \right) \right\} + \\ &+ \varepsilon^2 \alpha_0 \gamma \frac{\partial \xi}{\partial x} \left(\mathbf{v}_{2x} - \mathbf{v}_{1x} \right) = 0, \quad z = \varepsilon \xi \left(t, x \right), \\ &p - \nu_0^2 \xi + \varepsilon \alpha_0 \left(\mu_1 - \mu_2 \right) \nu_0^2 \gamma \xi = 0, \quad \nu_0^2 = g/k c_0^2, \quad z = \varepsilon \xi \left(t, x \right), \\ &\mathbf{v}_{iz} \to 0, \quad \mathbf{v}_{ix} \to 0, \quad z \to -\infty, \quad i = 1, 2. \end{split}$$

Безразмерные величины связаны с физическими равенствами

$$t = kc^*t^*, \quad x = kx^*, \quad z = kz^*, \quad \mu_i = \rho_i^o/\rho^o, \quad r = R/\rho^o kc_0, \quad \rho^o = (1 - \alpha_0) \rho_1^o + \alpha_0 \rho_2^o,$$

 $c = c^*(t)/c_0 = \omega^*(t)/\omega_0, \quad \alpha^* = \varepsilon \alpha_0 \gamma, \quad k\xi^* = \varepsilon \xi, \quad \mathbf{v}_i^* = \varepsilon c_0 \mathbf{v}_i, \quad p^* = P_i - P_a + \rho_i^o gz^* = \varepsilon \rho^o c_0^2 p.$
Здесь ω_0, c_0 — частота, фазовая скорость линейной волны; α_0, α^* — концентрация дисперсной фазы, ее возмущение; $\mathbf{v}_i^*, P_i, \rho_i^o$ — вектор скорости, давление, истинная плотность *i*-й фазы;
 ρ^o, P_a — плотность покоящейся смеси, атмосферное давление; $R = 9\eta/2a^2$ — коэффициент межфазного трения (η — динамическая вязкость несущей фазы); коэффициент $s = 1, 0$ в зависимости от учета силы присоединенных масс.

Разложением в ряд Маклорена граничные условия сводятся на поверхность z = 0. Неизвестные функции определяются в виде рядов по ε :

$$\mathbf{v}_{i} = \sum_{n=1}^{\infty} \varepsilon^{n-1} \mathbf{v}_{in}, \quad p = \sum_{n=1}^{\infty} \varepsilon^{n-1} p_{n}, \quad \xi = \sum_{n=1}^{\infty} \varepsilon^{n-1} \xi_{n},$$

$$\gamma = \sum_{n=1}^{\infty} \varepsilon^{n-1} \gamma_{n}, \quad c = 1 + \sum_{n=1}^{\infty} \varepsilon^{n} a_{n}(t).$$
(2)

2013. Вып. 3

Подставив ряды (2) в уравнения и граничные условия (разложенные в окрестности z = 0) (1) и приравняв коэффициенты при ε^0 , ε^1 , ε^2 , получаем асимптотическое представление задачи

(1) и приравняв коэффициенты при ε° , ε° , ε° , получаем асимптотическое представление задачи (1) в первых трех приближениях.

В первом приближении задача имеет вид: при ε^0

$$-\alpha_{0}\frac{\partial\gamma_{1}}{\partial t} + (1-\alpha_{0})\nabla\cdot\mathbf{v}_{11} = 0, \quad \frac{\partial\gamma_{1}}{\partial t} + \nabla\cdot\mathbf{v}_{21} = 0, \tag{3}$$

$$\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\frac{\partial\mathbf{v}_{11}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{0}\frac{\partial\mathbf{v}_{21}}{\partial t} - r\alpha_{0}\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \nabla p_{1} = 0, \tag{3}$$

$$\left(\mu_{2} + \frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\right)\frac{\partial\mathbf{v}_{21}}{\partial t} - \frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\frac{\partial\mathbf{v}_{11}}{\partial t} + r\left(1-\alpha_{0}\right)\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \nabla p_{1} = 0, \tag{3}$$

$$\mathbf{v}_{11} = (\mathbf{v}_{1x1}, 0, \mathbf{v}_{1z1}), \quad \mathbf{v}_{21} = (\mathbf{v}_{2x1}, 0, \mathbf{v}_{2z1}), \qquad \frac{\partial\xi_{1}}{\partial t} = (1-\alpha_{0})\mathbf{v}_{1z1} + \alpha_{0}\mathbf{v}_{2z1}, \quad z = 0, \qquad p_{1} - \nu_{0}^{2}\xi_{1} = 0, \qquad z = 0;$$

для второго приближения: при ε^1

$$-\alpha_{0}\frac{\partial\gamma_{2}}{\partial t} + (1-\alpha_{0})\nabla\cdot\mathbf{v}_{12} = \alpha_{0}\nabla\cdot(\gamma_{1}\mathbf{v}_{11}), \quad \frac{\partial\gamma_{2}}{\partial t} + \nabla\cdot\mathbf{v}_{22} = -\nabla\cdot(\gamma_{1}\mathbf{v}_{21}), \quad (4)$$

$$\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\frac{\partial\mathbf{v}_{12}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{0}\frac{\partial\mathbf{v}_{22}}{\partial t} - r\alpha_{0}\left(\mathbf{v}_{22} - \mathbf{v}_{12}\right) + \nabla p_{2} = r\alpha_{0}\gamma_{1}\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) - \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\left(\mathbf{v}_{11}\nabla\right)\mathbf{v}_{11} + \frac{s}{2}\mu_{1}\alpha_{0}\left(\mathbf{v}_{21}\nabla\right)\mathbf{v}_{21} + \frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left(\frac{\partial\mathbf{v}_{21}}{\partial t} - \frac{\partial\mathbf{v}_{11}}{\partial t}\right),$$

$$\begin{split} \left(\mu_{2} + \frac{s}{2}\mu_{1}\left(1 - \alpha_{0}\right)\right) \frac{\partial \mathbf{v}_{22}}{\partial t} &- \frac{s}{2}\mu_{1}\left(1 - \alpha_{0}\right) \frac{\partial \mathbf{v}_{12}}{\partial t} + \nabla p_{2} + r\left(1 - \alpha_{0}\right)\left(\mathbf{v}_{22} - \mathbf{v}_{12}\right) = \\ &= -\left(\mu_{2} + \frac{s}{2}\mu_{1}\left(1 - \alpha_{0}\right)\right)\left(\mathbf{v}_{21}\nabla\right)\mathbf{v}_{21} + \frac{s}{2}\mu_{1}\left(1 - \alpha_{0}\right)\left(\mathbf{v}_{11}\nabla\right)\mathbf{v}_{11} + r\alpha_{0}\gamma_{1}\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \\ &+ \frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left(\frac{\partial \mathbf{v}_{21}}{\partial t} - \frac{\partial \mathbf{v}_{11}}{\partial t}\right), \qquad \mathbf{v}_{12} = \left(\mathbf{v}_{1x2}, 0, \mathbf{v}_{1z2}\right), \quad \mathbf{v}_{22} = \left(\mathbf{v}_{2x2}, 0, \mathbf{v}_{2z2}\right), \\ &\frac{\partial\xi_{2}}{\partial t} - \left(1 - \alpha_{0}\right)\mathbf{v}_{1z2} - \alpha_{0}\mathbf{v}_{2z2} = \alpha_{0}\gamma_{1}\left(\mathbf{v}_{2z1} - \mathbf{v}_{1z1}\right) - \frac{\partial\xi_{1}}{\partial x}\left[\left(1 - \alpha_{0}\right)\mathbf{v}_{1x1} + \alpha_{0}\mathbf{v}_{2x1}\right] + \\ &+ \left(1 - \alpha_{0}\right)\xi_{1}\frac{\partial \mathbf{v}_{1z1}}{\partial z} + \alpha_{0}\xi_{1}\frac{\partial \mathbf{v}_{2z1}}{\partial z}, \quad z = 0, \\ &p_{2} - \nu_{0}^{2}\xi_{2} = \alpha_{0}\left(\mu_{2} - \mu_{1}\right)\nu_{0}^{2}\gamma_{1}\xi_{1} - \xi_{1}\frac{\partial p_{1}}{\partial z}, \quad z = 0; \end{split}$$

для третьего приближения: при ε^2

$$-\alpha_{0}\frac{\partial\gamma_{3}}{\partial t} + (1-\alpha_{0})\nabla\cdot\mathbf{v}_{13} = \alpha_{0}\nabla\cdot(\gamma_{1}\mathbf{v}_{12} + \gamma_{2}\mathbf{v}_{11}) + \alpha_{0}\frac{\partial\gamma_{1}}{\partial t}(ta_{2})', \qquad (5)$$

$$\frac{\partial\gamma_{3}}{\partial t} + \nabla\cdot\mathbf{v}_{23} = -\nabla\cdot(\gamma_{1}\mathbf{v}_{22} + \gamma_{2}\mathbf{v}_{21}) - \frac{\partial\gamma_{1}}{\partial t}(ta_{2})', \qquad (5)$$

$$\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\frac{\partial\mathbf{v}_{13}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{0}\frac{\partial\mathbf{v}_{23}}{\partial t} - r\alpha_{0}(\mathbf{v}_{23} - \mathbf{v}_{13}) + \nabla p_{3} = r\alpha_{0}\gamma_{1}(\mathbf{v}_{22} - \mathbf{v}_{12}) - \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{0}\right)\left[(\mathbf{v}_{11}\nabla)\mathbf{v}_{12} + (\mathbf{v}_{12}\nabla)\mathbf{v}_{11}\right] + \frac{s}{2}\mu_{1}\alpha_{0}\left[(\mathbf{v}_{21}\nabla)\mathbf{v}_{22} + (\mathbf{v}_{22}\nabla)\mathbf{v}_{21}\right] + r\alpha_{0}\gamma_{2}\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left(\frac{\partial\mathbf{v}_{22}}{\partial t} - \frac{\partial\mathbf{v}_{12}}{\partial t}\right) + \frac{s}{2}\mu_{1}\alpha_{0}\gamma_{2}\left(\frac{\partial\mathbf{v}_{21}}{\partial t} - \frac{\partial\mathbf{v}_{11}}{\partial t}\right) +$$

2013. Вып. 3

$$\begin{split} &+\mu_{1}\left[\frac{s}{2}\alpha_{0}\frac{\partial\mathbf{v}_{21}}{\partial t}-\left(1+\frac{s}{2}\alpha_{0}\right)\frac{\partial\mathbf{v}_{11}}{\partial t}\right](ta_{2})'-\frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left[\left(\mathbf{v}_{11}\nabla\right)\mathbf{v}_{11}-\left(\mathbf{v}_{21}\nabla\right)\mathbf{v}_{21}\right],\\ &\left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\right)\frac{\partial\mathbf{v}_{23}}{\partial t}-\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\frac{\partial\mathbf{v}_{13}}{\partial t}+\nabla p_{3}+r\left(1-\alpha_{0}\right)\left(\mathbf{v}_{23}-\mathbf{v}_{13}\right)=\\ &=-\left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\right)\left[\left(\mathbf{v}_{21}\nabla\right)\mathbf{v}_{22}+\left(\mathbf{v}_{22}\nabla\right)\mathbf{v}_{21}\right]+\frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left(\frac{\partial\mathbf{v}_{22}}{\partial t}-\frac{\partial\mathbf{v}_{12}}{\partial t}\right)+\\ &+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\left[\left(\mathbf{v}_{11}\nabla\right)\mathbf{v}_{12}+\left(\mathbf{v}_{12}\nabla\right)\mathbf{v}_{11}\right]+r\alpha_{0}\gamma_{1}\left(\mathbf{v}_{22}-\mathbf{v}_{12}\right)+r\alpha_{0}\gamma_{2}\left(\mathbf{v}_{21}-\mathbf{v}_{11}\right)+\\ &+\frac{s}{2}\mu_{1}\alpha_{0}\gamma_{2}\left(\frac{\partial\mathbf{v}_{21}}{\partial t}-\frac{\partial\mathbf{v}_{11}}{\partial t}\right)+\left[\left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\right)\frac{\partial\mathbf{v}_{21}}{\partial t}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\frac{\partial\mathbf{v}_{11}}{\partial t}\right]\left(ta_{2})'-\\ &-\frac{s}{2}\mu_{1}\alpha_{0}\gamma_{1}\left[\left(\mathbf{v}_{11}\nabla\right)\mathbf{v}_{11}-\left(\mathbf{v}_{21}\nabla\right)\mathbf{v}_{21}\right],\quad\mathbf{v}_{13}=\left(\mathbf{v}_{1x3},0,\mathbf{v}_{1z3}\right),\quad\mathbf{v}_{23}=\left(\mathbf{v}_{2x3},0,\mathbf{v}_{2z3}\right),\\ &\frac{\partial\xi_{3}}{\partial t}-\left(1-\alpha_{0}\right)\mathbf{v}_{1z3}-\alpha_{0}\mathbf{v}_{2z3}=\alpha_{0}\gamma_{1}\left(\mathbf{v}_{2z2}-\mathbf{v}_{1z2}\right)+\alpha_{0}\gamma_{2}\left(\mathbf{v}_{2z1}-\mathbf{v}_{1z1}\right)-\frac{\partial\xi_{1}}{\partial t}\left(ta_{2}\right)'-\\ &-\frac{\partial\xi_{1}}{\partial x}\left[\left(1-\alpha_{0}\right)\mathbf{v}_{1x2}+\alpha_{0}\mathbf{v}_{2x2}\right]-\frac{\partial\xi_{2}}{\partial x}\left[\left(1-\alpha_{0}\right)\mathbf{v}_{1x1}+\alpha_{0}\mathbf{v}_{2x1}\right]+\left(1-\alpha_{0}\right)\xi_{1}\frac{\partial\mathbf{v}_{1z2}}{\partial z}+\\ &+\alpha_{0}\xi_{1}\frac{\partial\mathbf{v}_{2z2}}{\partial z}+\left(1-\alpha_{0}\right)\xi_{2}\frac{\partial\mathbf{v}_{1z1}}{\partial z}+\alpha_{0}\xi_{2}\frac{\partial\mathbf{v}_{2z1}}{\partial z}+\frac{1}{2}\left(1-\alpha_{0}\right)\xi_{1}\frac{\partial^{2}\mathbf{v}_{1z1}}{\partial z^{2}}+\frac{1}{2}\alpha_{0}\xi_{1}^{2}\frac{\partial^{2}\mathbf{v}_{2z1}}{\partial z^{2}}-\\ &-\xi_{1}\frac{\partial\xi_{1}}{\partial x}\left[\left(1-\alpha_{0}\right)\frac{\partial\mathbf{v}_{1x1}}{\partial z}+\alpha_{0}\frac{\partial\mathbf{v}_{2x1}}{\partial z}\right]+\alpha_{0}\gamma_{1}\xi_{1}\left(\frac{\partial\mathbf{v}_{2z1}}{\partial z}-\frac{\partial\mathbf{v}_{1z1}}{\partial z^{2}}+\frac{1}{2}\alpha_{0}\xi_{1}\frac{\partial^{2}\mathbf{v}_{2z1}}{\partial z^{2}},\quad z=0,\\ &p_{3}-\nu_{0}^{2}\xi_{3}=\alpha_{0}\left(\mu_{2}-\mu_{1}\right)\nu_{0}^{2}\left(\gamma_{1}\xi_{2}+\gamma_{2}\xi_{1}+\xi_{1}^{2}\frac{\partial\gamma_{1}}{\partial z}\right)-\xi_{1}\frac{\partial p_{2}}}{\partial z}-\xi_{2}\frac{\partial p_{1}}{\partial z}-\frac{1}{2}\xi_{1}^{2}\frac{\partial^{2}p_{1}}{\partial z^{2}},\quad z=0. \end{split}$$

§3. Решение в трех приближениях

Решение линейной задачи (3) имеет вид [4]

$$v_{ix1} = Ae^{z-bt} (M_i \cos \chi + N_i \sin \chi), \quad v_{iz1} = Ae^{z-bt} (M_i \sin \chi - N_i \cos \chi), \quad i = 1, 2,$$

$$\gamma_1 = 0, \quad p_1 = Ae^{z-bt} \cos \chi, \quad \xi_1 = A\nu_0^{-2}e^{-bt} \cos \chi, \quad \chi = x - t,$$

где

$$M_{1} = \frac{1}{b^{2} + 1} \left[1 + 2 \left(b^{2} + 1 \right) \mu_{1} \mu_{2} \left(1 - \mu_{1} \right) \left(s + 2\mu_{2} \right) / d \right],$$

$$M_{2} = \frac{1}{b^{2} + 1} \left[1 + 2 \left(b^{2} + 1 \right) \mu_{1}^{2} \left(1 - \mu_{2} \right) \left(s + 2\mu_{2} \right) / d \right],$$

$$N_{1} = \frac{1}{b^{2} + 1} \left[-b + 2 \left(b^{2} + 1 \right) \mu_{2} \left(1 - \mu_{1} \right) \left(2r - b\mu_{1} \left(s + 2\mu_{2} \right) \right) / d \right],$$

$$N_{2} = \frac{1}{b^{2} + 1} \left[-b + 2 \left(b^{2} + 1 \right) \mu_{1} \left(1 - \mu_{2} \right) \left(2r - b\mu_{1} \left(s + 2\mu_{2} \right) \right) / d \right],$$

$$d = \left(2r - b\mu_{1} \left(s + 2\mu_{2} \right) \right)^{2} + \mu_{1}^{2} \left(s + 2\mu_{2} \right)^{2}.$$

Здесь b — безразмерный декремент затухания, $\beta = bkc_0$ — размерный декремент. Для декремента затухания и фазовой скорости в [4] получены выражения

$$c_0^2 = c_g^2 + c_d^2 + c_r^2,$$

$$\beta = k \left\{ \left[-\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + \frac{\psi^3}{27}} \right]^{\frac{1}{3}} + \left[-\frac{\delta}{2} - \sqrt{\frac{\delta^2}{4} + \frac{\psi^3}{27}} \right]^{\frac{1}{3}} + \frac{2R/\rho^o k}{3\mu_1 \left(s + 2\mu_2\right)} \right\},$$

2013. Вып. 3

где

$$\begin{split} c_g^2 &= \frac{g}{k}, \quad c_d^2 = \frac{2\alpha_0 \left(1 - \alpha_0\right) \left(\rho_1^o - \rho_2^o\right)^2 g}{\rho_1^o \left(s\rho^o + 2\rho_2^o\right)} \frac{g}{k}, \quad c_r^2 = \frac{\beta}{k^2} \left(3\beta - \frac{4R\rho^o}{\rho_1^o \left(s\rho^o + 2\rho_2^o\right)}\right), \\ \psi &= \frac{3\mu_1 \left(s + 2\mu_2\right) \left(s\mu_1 + 2\mu\right) g/k - 4 \left(R/\rho^o k\right)^2}{12\mu_1^2 \left(s + 2\mu_2\right)^2}, \\ \delta &= \frac{R/\rho^o k}{54\mu_1^3 \left(s + 2\mu_2\right)^3} \left[4 \left(R/\rho^o k\right)^2 + 9\mu_1 \left(s + 2\mu_2\right) \left(s\mu_1 - \mu + 3\mu_1\mu_2\right) g/k\right]. \end{split}$$

Решение задачи второго приближения (4) записывается следующим образом:

$$v_{ix2} = 0, \quad v_{iz2} = A^2 L_i e^{2z - 2bt}, \quad i = 1, 2, \quad p_2 = A^2 e^{-2bt} \left[L_3 \left(e^{2z} - 1 \right) - \frac{1}{2\nu_0^2} \right],$$
$$\gamma_2 = A^2 L_4 e^{2z - 2bt}, \quad \xi_2 = \frac{A^2}{2\nu_0^4} e^{-2bt} \cos 2\chi,$$

где

$$L_{1} = -\frac{\alpha_{0}}{(1-\alpha_{0})}L_{2}, \quad L_{2} = \frac{(1-\alpha_{0})H}{2(r-b(s\mu_{1}+2\mu))}, \quad L_{4} = \frac{(1-\alpha_{0})H}{2b(r-b(s\mu_{1}+2\mu))},$$
$$L_{3} = \frac{-(1-\alpha_{0})(\mu_{1}r-b\mu_{1}(s+2\mu_{2}))(M_{1}^{2}+N_{1}^{2})-\alpha_{0}(\mu_{2}r-b\mu_{1}(s+2\mu_{2}))(M_{2}^{2}+N_{2}^{2})}{2(r-b(s\mu_{1}+2\mu))},$$
$$H = \mu_{1}(s+2)(M_{1}^{2}+N_{1}^{2})-(s\mu_{1}+2\mu_{2})(M_{2}^{2}+N_{2}^{2}).$$

Подставив выражения первого и второго приближений в уравнения и граничные условия задачи (5), получим задачу для третьего приближения в явном виде:

2013. Вып. 3

$$\begin{split} &-A^2 e^{2z-2b} \left[s\mu_1 \alpha_0 L_4 \left(M_1 - M_2 \right) + (2\mu_2 + s\mu_1) L_2 N_2 + 2\alpha_0 r L_4 \left(N_1 - N_2 \right) \right] \right\} \sin \chi \right), \\ & \left(\mu_2 + \frac{s}{2} \mu_1 \left(1 - \alpha_0 \right) \right) \frac{\partial v_{2z3}}{\partial t} - \frac{s}{2} \mu_1 \left(1 - \alpha_0 \right) \frac{\partial v_{1z3}}{\partial t} + \frac{\partial p_3}{\partial z} + r \left(1 - \alpha_0 \right) \left(v_{23} - v_{13} \right) = \\ & = A^3 e^{z-bt} \Big/ 2 \left(\left\{ \left[2\mu_2 \left(M_2 - bN_2 \right) - s\mu_1 \left(1 - \alpha_0 \right) \left(M_1 - bN_1 - M_2 + bN_2 \right) \right] \left(ta_2 \right)' + \\ & + A^2 e^{2z-2bt} \left[s\mu_1 \alpha_0 L_4 \left(M_1 - M_2 \right) + \left(6\mu_2 + 3s\mu_1 - 2s\alpha_0 \mu_1 \right) L_2 N_2 + 2\alpha_0 r L_4 \left(N_1 - N_2 \right) - \\ & - 2s\mu_1 \left(1 - \alpha_0 \right) L_1 N_1 \right] \right\} \cos \chi + \left\{ \left[2\mu_2 \left(N_2 + bM_2 \right) - s\mu_1 \left(1 - \alpha_0 \right) \left(N_1 + bM_2 - \\ & - N_2 - bN_2 \right) \right] \left(ta_2 \right)' + A^2 e^{2z-2bt} \left[2s\mu_1 \left(1 - \alpha_0 \right) L_1 M_1 - 2\alpha_0 r L_4 \left(M_1 - M_2 \right) + s\mu_1 \alpha_0 L_4 \cdot \\ & \cdot \left(N_1 - N_2 \right) - \left(6\mu_2 + 3s\mu_1 - 2s\alpha_0 \mu_1 \right) L_2 M_2 \right] \right\} \sin \chi \right), \\ & \frac{\partial \xi_3}{\partial t} - \left(1 - \alpha_0 \right) v_{1z3} - \alpha_0 v_{2z3} = \frac{A^3 e^{-3bt}}{8\nu_0^6} \left(9e^{-2bt} \left[\sin 3\chi - b \cos 3\chi \right] + \left\{ 8b\nu_0^4 A^{-2} e^{2bt} \cdot \\ & \cdot \left(ta_2 \right)' + 16\nu_0^4 \left[\alpha_0 L_2 + \left(1 - \alpha_0 \right) L_1 - \nu_0^2 \alpha_0 L_4 d^{-1} \left(\mu_1 - \mu_2 \right) \left(2r - b\mu_1 \left(s + 2\mu_2 \right) \right) \right] + b \right\} \cdot \\ & \cdot \cos \chi + \left\{ 5 - 8\nu_0^4 A^{-2} e^{2bt} \left(ta_2 \right)' + 16\nu_0^6 \alpha_0 \mu_1 L_4 d^{-1} \left(s + 2\mu_2 \right) \left(\mu_1 - \mu_2 \right) \right\} \sin \chi \right), \quad z = 0, \\ & p_3 - \nu_0^2 \xi_3 = -\frac{A^3 e^{-3bt}}{8\nu_0^4} \left\{ 3\cos 3\chi + \left[5 + 16\nu_0^2 L_3 + 8\alpha_0 \nu_0^4 L_4 \left(\mu_1 - \mu_2 \right) \right] \cos \chi \right\}, \quad z = 0. \end{split}$$

Для решения задачи (6) полагаем амплитудные коэффициенты функциями времени, подлежащими определению. Тогда с точностью третьего приближения решение нелинейной задачи имеет вид

$$c = 1 + \varepsilon^2 A^2 \frac{1 - e^{-2bt}}{bt} C_a,\tag{7}$$

$$\begin{aligned} \mathbf{v}_{1x} &= Ae^{z-bt} \left(M_1 \cos \chi + N_1 \sin \chi \right) + \varepsilon^2 A^3 e^{z-bt} \left\{ e^{2z-2bt} Q_1 \sin \chi + \left[D_{v3} \left(e^{-2bt} - 1 \right) + e^{2z-2bt} R_1 \right] \right\} \cos \chi, \\ \mathbf{v}_{2x} &= Ae^{z-bt} \left(M_2 \cos \chi + N_2 \sin \chi \right) + \varepsilon^2 A^3 e^{z-bt} \left[\left(e^{2z-2bt} Q_2 - C_{w4} - D_{w4} e^{-2bt} \right) \sin \chi + \right. \\ &+ \left(C_{v4} + D_{v4} e^{-2bt} + e^{2z-2bt} R_2 \right) \cos \chi \right], \\ \mathbf{v}_{1z} &= Ae^{z-bt} \left(M_1 \sin \chi - N_1 \cos \chi \right) + \varepsilon A^2 L_1 e^{2z-2bt} + \varepsilon^2 A^3 e^{z-bt} \left[\left(D_{v3} \left(e^{-2bt} - 1 \right) + e^{2z-2bt} Q_3 \right) \sin \chi + \right. \\ &+ e^{2z-2bt} R_3 \cos \chi \right], \end{aligned}$$

$$\begin{aligned} \mathbf{v}_{2z} &= Ae^{z-bt} \left(M_2 \sin \chi - N_2 \cos \chi \right) + \varepsilon A^2 L_2 e^{2z-2bt} + \varepsilon^2 A^3 e^{z-bt} \left[\left(C_{v4} + D_{v4} e^{-2bt} + e^{2z-2bt} Q_4 \right) \sin \chi + \right. \\ &+ \left(C_{w4} + D_{w4} e^{-2bt} + e^{2z-2bt} R_4 \right) \cos \chi \right], \\ p &= Ae^{z-bt} \cos \chi + \varepsilon A^2 e^{-2bt} \left[L_3 \left(e^{2z} - 1 \right) - \frac{1}{2\nu_0^2} \right] + \varepsilon^2 A^3 e^{z-bt} \left[\left(C_{v5} + D_{v5} e^{-2bt} + e^{2z-2bt} Q_5 \right) \sin \chi + \right. \\ &+ \left(C_{w5} + D_{w5} e^{-2bt} + e^{2z-2bt} R_5 \right) \cos \chi \right], \\ \gamma &= \varepsilon A^2 L_4 e^{2z-2bt} + \varepsilon^2 A^3 e^{3z-3bt} \left[Q_6 \sin \chi + R_6 \cos \chi \right], \\ \xi &= \frac{A}{\nu_0^2} e^{-bt} \cos \chi + \varepsilon \frac{A^2}{2\nu_0^4} e^{-2bt} \cos 2\chi + \varepsilon^2 e^{-bt} A^3 \left[3e^{-2bt} A^3 8^{-1} \nu_0^{-6} \cos 3\chi + \\ &+ \left(\left(1 + 9b^2 \right)^{-1} e^{-2bt} \left\{ 2\alpha_0 d^{-1} L_4 \left(\mu_1 - \mu_2 \right) \left[6br + \left(\mu_1 s + 2\mu_2 \right) \left(1 - 3b^2 \right) \right] - 2\nu_0^{-2}. \end{aligned}$$

136

2013. Вып. 3

$$(1+3b^{2}) C_{a} + (1-\alpha_{0}) (Q_{3} - 3bR_{3} + D_{v3}) + \alpha_{0} (Q_{4} - 3bR_{4} + D_{v4} - 3bD_{w4}) + 8^{-1}\nu_{0}^{-6} \cdot (5-3b^{2}) + (1+b^{2})^{-1} [(1-\alpha_{0}) C_{v3} + \alpha_{0} (C_{v4} - bC_{w4})]) \cos \chi + ((1+9b^{2})^{-1} e^{-2bt} \cdot \cdot \{4\alpha_{0}d^{-1}L_{4} (\mu_{1} - \mu_{2}) [r - 2b (\mu_{1}s + 2\mu_{2})] + 4\nu_{0}^{-2}bC_{a} - (1-\alpha_{0}) (R_{3} + 3bQ_{3} + + 3bD_{v3}) - \alpha_{0} (R_{4} + 3bQ_{4} + D_{w4} + 3bD_{v4}) + 2\nu_{0}^{-6}b \} - (1+b^{2})^{-1} [(1-\alpha_{0}) bC_{v3} + + \alpha_{0} (C_{w4} + bC_{v4})]) \sin \chi].$$

Здесь коэффициенты третьего приближения $C_a, Q_{1-6}, R_{1-6}, C_{v3-5}, C_{w3-5}, D_{v3-5}, D_{w3-5}$ не приведены из-за своей громоздкости.

Исходя из первой формулы (7), текущую волновую координату можно записать в виде

$$\chi^* = kx^* - \omega^* t^* = kx^* - \omega_0 t^* + \phi(t), \quad \phi(t) = -\varepsilon^2 A^2 C_a \frac{1 - e^{-2bt}}{bc(t)},$$

то есть полученное решение можно рассматривать как затухающие установившиеся волны с постоянной частотой и добавочной переменной во времени фазой. Следовательно, примененный для решения нелинейной задачи метод переменной во времени частоты можно заменить методом дополнительной переменной фазы, суть которого заключается в том, что частота берется постоянной, соответствующей линейной задаче, а к волновой координате добавляется фаза неизвестная функция времени. Поэтому метод переменной частоты можно рассматривать как распространение не только метода Биркгофа на нелинейные волны, но и метода переменной фазы Крылова Н.М., Боголюбова Н.Н. [12].

Из (7) следует, что с течением времени частота (фазовая скорость) стремится к значению, соответствующему линейной задаче. На рисунке 1 приведена зависимость фазовой скорости волны c^* от времени t^* при $\rho_2^0 = 1500 \text{ kr/m}^3$ и $\rho_2^0 = 500 \text{ kr/m}^3$ ($A = 1, \lambda = 5 \text{ м}, \rho_1^0 = 1000 \text{ kr/m}^3$, $\eta = 10^{-3} \text{ kr/(m^*c)}, a = 0, 15 \cdot 10^{-2} \text{ м}$). Фазовая скорость в случае, когда частицы дисперсной фазы имеют большую, чем несущая фаза, плотность, выше, чем в случае более легких частиц. При этом, из графиков зависимости амплитуды волны от времени, приведенных на рисунке 2, видно, что волновое движение затухает быстрее, чем фазовая скорость достигает линейного значения.

§4. Нелинейные траектории частиц несущей и дисперсной фаз

Безразмерные координаты частиц несущей и дисперсной фаз удовлетворяют уравнениям

$$x_{i} = \chi_{i} + \gamma_{i}t_{i}, \quad \chi_{it} = \varepsilon \left(\frac{t_{i}\gamma_{i}}{c}\right)' \mathbf{v}_{xi} - (t_{i}\gamma_{i})', \quad z_{it} = \varepsilon \left(\frac{t_{i}\gamma_{i}}{c}\right)' \mathbf{v}_{zi}, \tag{8}$$

2013. Вып. 3

где $\gamma_i t_i = t, \gamma_i (t) = \omega / \sigma_i, \sigma_i$ — частота колебаний частицы *i*-ой фазы.

Решение (8) находим в виде рядов по малому параметру:

$$\chi_i = \sum_{j=0}^{\infty} \varepsilon^j \chi_{ij}, \quad z = \sum_{j=0}^{\infty} \varepsilon^j z_{ij}, \quad \gamma_i = 1 + \sum_{j=0}^{\infty} \varepsilon^j \gamma_{ij}.$$
(9)

Подставляя выражения (7), ряды (9) в уравнения движения (8), для определения первых трех коэффициентов получим следующие уравнения:

$$\begin{aligned} \frac{d\chi_{i0}}{dt_i} &= -1, \quad \frac{dz_{i0}}{dt_i} = 0, \\ \frac{d\chi_{i1}}{dt_i} &= Ae^{z_{i0} - bt_i} \left[M_i \cos \chi_0 + N_i \sin \chi_0 \right] - (t_i \gamma_1)', \\ \frac{dz_{i1}}{dt_i} &= Ae^{z_{i0} - bt_i} \left[M_i \sin \chi_{i0} - N_i \cos \chi_{i0} \right], \quad \chi_{i0} = x_{i0} + d, \\ \frac{d\chi_{i2}}{dt_i} &= Ae^{z_{i0} - bt_i} \left\{ \left[N_i x_{i1} + M_i z_{i1} + M_i (t_i \gamma_{i1})' - bM_i t_i \gamma_{i1} \right] \cos \chi_{i0} + \right. \\ &+ \left[N_i z_{i1} - M_i x_{i1} + N_i (t_i \gamma_{i1})' - bN_i t_i \gamma_{i1} \right] \sin \chi_{i0} - (t_i \gamma_{i2})' \right\}, \\ \frac{dz_{i2}}{dt_i} &= Ae^{z_{i0} - bt_i} \left\{ \left[N_i x_{i1} + M_i z_{i1} + M_i (t_i \gamma_{i1})' - bM_i t_i \gamma_{i1} \right] \sin \chi_{i0} - \right. \\ &- \left[N_i z_{i1} - M_i x_{i1} + N_i (t_i \gamma_{i1})' - bN_i t_i \gamma_{i1} \right] \cos \chi_{i0} + Ae^{z_0 - bt_i} L_i \right\}, \end{aligned}$$

В нулевом приближении

$$\chi_{i0} = x_{iL} - t_i, \quad z_{i0} = z_{iL},$$

где x_{iL} , z_{iL} — лагранжевы координаты частицы в состоянии покоя. Определяя периодическое решение для χ_{i1} , z_{i1} , получим

$$\gamma_{i1} = 0, \quad \chi_{i1} = \frac{Ae^{z_{iL} - bt_i}}{b^2 + 1} \left[(N_i - bM_i) \cos \chi_{iL} - (M_i + bN_i) \sin \chi_{iL} \right],$$
$$z_{i1} = \frac{Ae^{z_{iL} - bt_i}}{b^2 + 1} \left[(M_i + bN_i) \cos \chi_{iL} + (N_i - bM_i) \sin \chi_{iL} \right].$$

Уравнения для определения траектории частицы жидкости во втором приближении примут вид

$$\frac{dx_{i2}}{dt_i} = \frac{A^2 e^{2z_{iL} - 2bt_i}}{b^2 + 1} \left(M_i^2 + N_i^2 \right) - \left(t_i \gamma_{i2} \right)', \quad \frac{dz_{i2}}{dt_i} = A^2 e^{2z_{iL} - 2bt_i} \left(L_i - \frac{bM_i^2 + bN_i^2}{b^2 + 1} \right).$$

Разрешая эти уравнения, получим

$$\begin{aligned} x_{i2} &= 0, \quad z_{i2} = \frac{A^2 e^{2z_{iL}}}{2b} \left(1 - e^{-2bt_i} \right) \left(L_i - \frac{bM_i^2 + bN_i^2}{b^2 + 1} \right), \\ \gamma_{i2} &= \frac{A^2 e^{2z_{iL}}}{2bt_i \left(b^2 + 1\right)} \left(1 - e^{-2bt_i} \right) \left(M_i^2 + N_i^2 \right). \end{aligned}$$

Величина $u_{si} = c - \frac{\sigma_i}{k}$ представляет собой переносную скорость. Е
е приближенное выражение имеет вид

$$u_{si} = \varepsilon^2 c_0 \frac{A^2 e^{2z_{iL}}}{2bt_i (b^2 + 1)} \left(1 - e^{-2bt_i}\right) \left(M_i^2 + N_i^2\right).$$

Переносная скорость зависит не только от глубины, на которой находится частица, но и от времени, с течением которого затухает. Движение частиц состоит из двух затухающих движений — непериодического и вращательного. Для иллюстрации на рисунках 3, 4 приведены траектории частиц дисперсной фазы при $\rho_2^0 = 500$ кг/м³ и $\rho_2^0 = 1500$ кг/м³. Из графиков видно, что более легкие частицы заглубляются по мере движения, а более тяжелые, наоборот, поднимаются ближе к свободной поверхности. Это приводит к увеличению (уменьшению) концентрации более тяжелых (легких) частиц в приповерхностном слое. Это явление, имеющее нелинейный характер, было аналитически обнаружено в работе [3]. Полученное в данной работе более точное решение подтверждает и уточняет этот нелинейный эффект.

Рис. 3. Траектория частицы при _____ $\rho_2^0 = 500 \text{ кг/м}^3$

Рис. 4. Траектория частицы при $\rho_2^0 = 1500 \text{ кг/м}^3$

СПИСОК ЛИТЕРАТУРЫ

- 1. Алешков Ю.З. Распространение примесей в океане // Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия. 2001. Вып. 1. С. 12–20.
- 2. Нуднер И.С., Максимов В.В., Майоров Ю.Б., Бабчик Д.В. Моделирование динамики наносов в прибрежной зоне // Вычислительные технологии. 2008. Т. 13. № S2. С. 60–77.
- 3. Баринов В.А., Бутакова Н.Н. Нелинейная задача о поверхностных волнах на двухфазной смеси // Журнал вычислительной математики и математической физики. 2003. Т. 43. № 12. С. 1870–1883.
- 4. Баринов В.А., Бутакова Н.Н. Распространение волн по свободной поверхности двухфазной смеси // Известия РАН. Механика жидкости и газа. 2003. № 6. С. 94–102.
- 5. Баринов В.А., Бутакова Н.Н. Волны на свободной поверхности двухфазной среды // Прикладная механика и техническая физика. 2002. Т. 43. № 4. С. 27–35.
- Алешков Ю.З., Баринов В.А., Бутакова Н.Н. Нелинейные поверхностные волны на слое двухфазной среды // Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия. 2003. Вып. 4. С. 64–75.
- 7. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977. 816 с.
- 8. Алешков Ю.З. Теория волн на поверхности тяжелой жидкости. Л.: Изд-во Ленинградского университета, 1981. 196 с.
- Баринов В.А., Басинский К.Ю. Решение нелинейной задачи о волнах на поверхности слабовязкой жидкости // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления. 2011. Вып. 2. С. 9–16.
- Баринов В.А., Басинский К.Ю. Нелинейные волны Стокса на поверхности слабовязкой жидкости // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2011. № 2. С. 112–122.
- 11. Биркгоф Дж.Д. Динамические системы. Ижевск: Изд. дом «Удмуртский университет», 1999. 408 с.
- 12. Крылов Н.М., Боголюбов Н.Н. Введение в нелинейную механику. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004. 352 с.

Баринов Василий Александрович, к. ф.-м. н., доцент, кафедра математического моделирования, Тюменский государственный университет, 625003, Россия, г. Тюмень, ул. Семакова, 10. E-mail: vbarinov@utmn.ru

Басинский Константин Юрьевич, к. ф.-м. н., старший преподаватель, кафедра математического моделирования, Тюменский государственный университет, 625003, Россия, г. Тюмень, ул. Семакова, 10. E-mail: kbasinsky@mail.ru

V. A. Barinov, K. Yu. Basinskii Nonlinear waves on the free surface a two-phase medium

Keywords: nonlinear surface waves, two-phase medium, dispersion relations, nonlinear effects.

Mathematical Subject Classifications: 76T20, 35Q30

We consider the nonlinear problem of waves on the surface of a two-phase medium. To solve this problem we suggest an asymptotic method by which a solution is found within the third approximation. The trajectories of the particles by the carrier and dispersed phase, and nonlinear wave effects are defined.

REFERENCES

1. Aleshkov Yu.Z. Spread of impurities in the ocean, Vestn. S.-Peterb. Univ. Mat. Mekh. Astron., 2001, no. 1, pp. 12–20.

2. Nudner I.S., Maksimov V.V., Maiorov Yu.B., Babchik D.V. Modeling the dynamics of sediments in the coastal zone, *Vychislitel'nye Tekhnologii*, 2008, vol. 13, no. S2, pp. 60–77.

3. Barinov V.A., Butakova N.N. A nonlinear problem of surface waves on a two-phase mixture, Computational Mathematics and Mathematical Physics, 2003, vol. 43, no. 12, pp. 1798–1811.

4. Barinov V.A., Butakova N.N. Propagation of waves on the free surface of a two-phase mixture, *Fluid Dynamics*, 2003, vol. 38, no. 6, pp. 908–915.

5. Barinov V.A., Butakova N.N. Waves on the free surface of a two-phase medium, *Journal of Applied Mechanics and Technical Physics*, 2002, vol. 43, no. 4, pp. 512–518.

6. Aleshkov Yu.Z., Barinov V.A., Butakova N.N. Nonlinear surface waves on a layer of a two-phase medium, Vestn. S.-Peterb. Univ. Mat. Mekh. Astron., 2003, no. 4, pp. 64–75.

7. Sretenskii L.N. *Teoriya volnovykh dvizhenii zhidkosti* (Theory of wave fluid motion), Moscow: Nauka, 1977, 816 p.

8. Aleshkov Yu.Z. *Teoriya voln na poverkhnosti tyazheloi zhidkosti* (Theory of waves on the surface of a heavy liquid), Leningrad: Izd. Leningr. Univ., 1981, 196 p.

9. Barinov V.A., Basinskii K.Yu. The solution of a nonlinear problem of waves on the surface weaklyviscous fluid, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 2, pp. 9–16.

10. Barinov V.A., Basinskii K.Yu. Nonlinear Stokes waves on the surface of low-viscosity fluid, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, pp. 112–122.

11. Birkhoff G.D. Dynamical systems, New York, 1927. Translated under the title Dinamicheskie sistemy, Izhevsk: Udmurt. Univ., 1999, 408 p.

12. Krylov N.M., Bogolyubov N.N. Vvedenie v nelineinuyu mekhaniku (Introduction to nonlinear mechanics), Moscow-Izhevsk: Regular & Chaotic Dynamics, 2004, 352 p.

Received 27.06.2013

Barinov Vasilii Aleksandrovich, Candidate of Physics and Mathematics, Associate Professor, Mathematical Modelling Department, Tyumen State University, ul. Semakova, 10, Tyumen, 625003, Russia. E-mail: vbarinov@utmn.ru

Basinskii Konstantin Yur'evich, Candidate of Physics and Mathematics, Senior Lecturer, Mathematical Modelling Department, Tyumen State University, ul. Semakova, 10, Tyumen, 625003, Russia. E-mail: kbasinsky@mail.ru