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STEADY SOLITARY WAVE SOLUTIONS OF THE GENERALIZED

SIXTH-ORDER BOUSSINESQ–OSTROVSKY EQUATION

An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no
exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves
in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case
of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting
with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq–
Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with
the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the
GNLS in the form of simple soliton with monotonic or oscillating tails.
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Introduction

In 1978 [1] the nonlinear evolution equation for internal waves in rotating ocean was derived:

(

ηt +
3c0
2h

ηηξ +
c0β

6
ηξξξ

)

ξ

=
Ω2

2c0
η, (1)

where η is the perturbation of the free surface of liquid layer with depth h, c0 represents the speed
of propagation of perturbations, β is a high frequency dispersion parameter and Ω is the Coriolis
parameter characterizing the rotation of the liquid. Equation (1) called the Ostrovsky equation is
not integrated by the inverse scattering procedure and does not have exact soliton-like solutions.

In [2] it is noted that (1) actually refers to a great range of nonlinear systems characterized
by the presence of wide nondispersive band in the frequency spectrum that separates the regions
with low- and high-frequency dispersion. Examples of this can be the unusual electromagnetic and
oblique magnetosonic waves in a magnetized plasma, excitation of atoms in the chain described by
the Frenkel–Kontorova (FK) model, the waves in transmission lines of band-pass filter type, acoustic
waves in a curved rod and waves in randomly inhomogeneous media.

A large number of works are devoted to the truncated dispersionless version of equation (1):

(

ηt +
3c0
2h

ηηξ

)

ξ

=
Ω2

2c0
η. (2)

It is well known [3] that by introducing new independent and dependent variables, equation (2)
becomes integrable in a class of exact solutions [4].

Equations that can be considered in some way as generalization of (1) and have in contrast to
(1) exact solitary-wave solutions were obtained in [5,6] a few years before the publication of [1]. In
particular, in [5] the following evolution equations were proposed using FK model supplemented by
anharmonicity of interaction of neighbor atoms:

Utt = α (Uxx + α1Uxxxx − βUxUxx)− γU (a− U) (a− 2U), (3)

Utt = α
(

Uxx + α1Uxxxx − βU2
xUxx

)

− γ
2π

a
sin

(

2π

a
U

)

. (4)

A reduction of (4) called the Konno–Kameyama–Sanuki (KKS) equation
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Uzt = −σ sinU + bU2
t Utt +

k3

6
Utttt (5)

was considered in [6]. It was shown that at a certain ratio between the parameters of nonlinearity
and dispersion the KKS equation (5) becomes integrable and has the N -soliton solutions [7].

In 1997, the exact soliton solutions in generalized dynamic models of the quasi-one-dimensional
crystal were obtained in [8]. After analyzing the generalized Boussinesq equations

Utt − c2Uxx − 6GUxUxx − FUxxxx = −∂Ψ

∂U
, (6)

Utt − c2Uxx −HU2
xUxx − PUxxxx = − ∂Φ

∂U
, (7)

where Ψ = A
(

U2 − 1
)2
, Φ = B (1 + cos πU), the authors noted that [5, 6] with equations (3)–(5)

are the only known papers related to the generalized models. In addition, they showed that simple
generalizations of the potentials Ψ and Φ —

Ψ = A1

(

U2 − 1
)2

+A2

(

U2 − 1
)3

,

Φ = B1 (1 + cosπU) +B2 (1 + cos 2πU)

— lead to exact solutions without any restrictions on the relationships between the parameters in
the left sides of equations (6) and (7).

In the recent years, the interest in generalization of the Boussinesq and Ostrovsky equations and
corresponding mathematical models is growing. In [9,10], on the basis of the system of two coupled
Boussinesq-type equations

ftt − fxx =

(

1

2
f2 + ftt

)

xx

− δ (f − g),

gtt − c2gxx =
(α

2
g2 + βgtt

)

xx
+ γ (f − g), (8)

it was shown that in a two-layer elastic waveguide with non-ideal glued layers a soliton of elastic
deformation may be followed by a zone of resonance radiation. The initial value problem for the
system (8) is examined in [11]. Using the method of multiscale expansions it was found that various
asymptotic regimes correspond to the coupled or uncoupled system of the Ostrovsky equations.
A system of coupled Ostrovsky equations for internal waves in the shear flows was studied in [12].
Shoaling oceanic internal solitary waves based on the Ostrovsky equation with variable coefficients
were asymptotically and numerically investigated in [13]. It was demonstrated that a combined
effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced
radiation from the leading wave.

In the problems of nonlinear wave dynamics of deformable systems, the Ostrovsky equation
arises naturally [14]. Consider the generalized Boussinesq equation

Utt − c20Uxx + αUxUxx + βUxxxx = γU, (9)

which models the propagation of longitudinal waves in the geometrically nonlinear rod lying on the
linear elastic foundation [15]. Here U is the displacement, c0 is the speed of sound in the rod, α, β, γ
are the parameters characterizing nonlinearity, dispersion and effect of the elastic foundation.

Assuming that α, β, γ are of the same order of smallness ε, introduce the new independent
variables ξ = x − ct, τ = εt and expand the displacement in powers of the small parameter:
U = U0 + εU1 + . . .. Then, in the linear approximation, we obtain the expression for the velocity
of propagation of the disturbance c = c0, and the first non-linear order in the parameter ε gives us
the evolution equation

U0τξ + α1U0ξU0ξξ + β1U0ξξξξ = γ1U0. (10)
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Differentiating both sides of (10) with respect to ξ and denoting U0ξ = W for the component of
longitudinal deformation, we obtain the Ostrovsky equation

(Wτ + α1WWξ + β1Wξξξ)ξ = γ1W.

In the case of nonlinear elastic foundation the equation (9) takes the form

Utt − c20Uxx + αUxUxx + βUxxxx = γ1U ± γ2U
3, (11)

where the sign before the last term is selected depending on the type of nonlinearity: “hard”
corresponds to plus, and “soft” to minus. In the latter case, equation (11) substantially coincides
with the equation (6) and has the exact soliton-like solution.

The models of nonlinear wave dynamics of deformable media with microstructure can lead to
equations with spatial derivatives of the highest order. The work [16] contains a non-integrable
fifth-order evolution equation with cubic nonlinearity

ϕt − αϕ2ϕx − βϕxxx + β1ϕxxxxx = 0, (12)

to model the axisymmetric propagation of longitudinal deformation waves in a physically nonlinear
cylindrical shell reinforced by ribs, the exact soliton-like solution to (12) founded on the method
of the singular manifold and nonlinear Schrödinger (NLS) equation derived from (12). Considering
the case of physical and geometric nonlinearity leads us to the fifth-order Gardner equation

ϕt − αϕ2ϕx + α1ϕϕx − βϕxxx + β1ϕxxxxx = 0 (13)

that has the exact solution [17]. When the shell interacts with external nonlinear-elastic medium,
the equation (13) written for the component of longitudinal displacement U will contain additional
terms similar to those in (11):

Utx − αU2
xUxx + α1UxUxx − βUxxxx + β1Uxxxxxx = γ1U ± γ2U

3. (14)

The equation (14) which summarizes the KdV, mKdV, Gardner, Kawahara, Boussinesq and Ostro-
vsky equations, we shall call the generalized Boussinesq–Ostrovsky equation.

The main purpose of this paper is to find the solitary wave solution for (14). First, we show
that (14) has the exact kink-like solution for a certain ratio between the parameters of the equation.
Secondly, we establish a connection between (14) and the generalized nonlinear Schrödinger (GNLS)
equation. Finally, we find steady travelling wave solutions for the GNLS in the form of a simple
soliton with monotonic or oscillating tails and identify the modes that allow for existence and
distribution of such wave solutions.

§ 1. Exact soliton-like solutions

Consider the equation

Uqz − α1U
2
zUzz + α2UzUzz − α3Uzzzz + α4Uzzzzzz = α5U − α6U

3 (15)

where all parameters α1–α6 are positive numbers. Using the transformation

U(q, z) =
4
√

α3
3α5

α2
u(t, x), x = 4

√

α5

α3
z, t = 4

√

α3α
3
5q,

we obtain a simplified equation

utx − αu2xuxx + uxuxx − uxxxx + βuxxxxxx = u− γu3 (16)

with

α =
α1

4
√

α3
3α5

α2
2

, β =
α4

√
α5

√

α3
3

, γ =
α6

√

α3
3

α2
2

√
α5

.
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Fig 1. The velocity C of the soliton (17) at α = 1

We will seek for the exact solution of (16) given by

u = A tanh [B (x− Ct)] (17)

with three constants A, B, C to be determined. Substitute the solution (17) into (16) and collect
the terms proportional to tanh powers. Equating the coefficients in front of these collections to
zero, we obtain a system of four equations, where the solution can be as follows:

A =
1√
γ
, B =

3
√
γ

2(α − 18γ)
, C =

2(α − 18γ)2

9γ
+

α− 90γ

10(α − 18γ)2
,

with the relationship between the parameters of the equation (16) given by

β =
α(α− 18γ)2

810γ2
.

We see that exact solitary wave solution (17) exists only in the case of “soft nonlinearity” of
the elastic foundation, when γ > 0 and the summands in the right-hand side of (16) have opposite
signs. The velocity C of the solitary wave tends to infinity as γ → 0 or γ → α

18 . There are two
values of γ at which the velocity C becomes zero (Fig. 1) and solution (17) is the standing wave.
The value of C is almost a linear function of γ, if γ ≫ α

18 ; the larger the value of γ, the smaller the
amplitude A of the wave.

Thus, equation (16) has the exact kink-like solution (17). This solution does not belong to
localized solutions whose wave field vanishes at infinity: u → 0 as |x| → ∞. To find such a localized
soliton-like solution we apply the approach based on the GNLS equation.

§ 2. Derivation of the GNLS equation

It is well known that the solitary wave solution of the ordinary nonlinear Schrödinger (NLS)
equation describes the solution of the original equation ((16) for the given case) in which the carrier
quasi-sinusoidal wave propagates with the linear phase velocity c (k), while the envelope propagates
with the group velocity cg (k), where k is wavenumber [18]. In general, these velocities do not
coincide, therefore this is not a steady travelling wave solution. However, for the values k such that
c (k) = cg (k) this becomes, at least to leading order, a steady solitary wave solution to the original
equation. It was shown in [18] that the condition of equality the phase and group velocities requires
consideration of higher-order corrections to the NLS equation leading to the GNLS equation.
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Fig 2. Linear phase velocity’s minimum cm (solid line) and the corresponding wavenumber km (dotted line)

In the case of small-amplitude perturbations we can neglect the nonlinear terms in equation (16)
and then seek for the solution of the reduced linear equation in the form of a travelling wave
u = Aei(kx−ωt). This leads to the following dispersion relation

ω = βk5 + k3 +
1

k
. (18)

The linear phase velocity c = ω
k
is positive and monotonically increases as k → 0 or k → ∞, hence

it has the minimum cm whose dependence on the parameter β is shown in Fig. 2.
This means that for any possible solitary wave propagating with the velocity v > cm, there is

a synchronous linear wave which is radiated by the solitary wave and gradually destroys it due to
radiative energy losses [19]. Thus, localized solitary wave can exist only in the case v < cm. Further
analysis using the GNLS equation confirmed this hypothesis.

At the first step of the GNLS derivation [20], we allow for function u to depend on the phase
variable θ = kx− ωt, slow coordinate X = εx and slow time T = εt, where ε is a small parameter,
so that equation (16) takes the following form

βε6uXXXXXX + 6βε5kuθXXXXX + 15βε4k2uθθXXXX + 20βε3k3uθθθXXX +

+ 15βε2k4uθθθθXX + 6βεk5uθθθθθX + βk6uθθθθθθ − ε4uXXXX −
− 4ε3kuθXXX − 6ε2k2uθθXX − 4εk3uθθθX − k4uθθθθ + ε2uXT + εkuθT −
−
[

αε4u2X +
(

2αε3kuθ + ε3
)

uX + αε2k2u2θ − ε2kuθ
]

uXX −
−
[

2αε3ku2X +
(

4αε2k2uθ − 2ε2k
)

uX + 2αεk3u2θ − 2εk2uθ + εω
]

uθX −
−
[

αε2k2u2X +
(

2αεk3uθ − εk2
)

uX + αk4u2θ − k3uθ + kω
]

uθθ +

+ γu3 − u = 0.

(19)

Next we substitute the solution into equation (19) (the bar designates complex conjugation)

u = ε
(

A (X,T ) eiθ + Ā (X,T ) e−iθ
)

+

+ ε2
(

B (X,T ) e2iθ + B̄ (X,T ) e−2iθ + C (X,T )
)

+O
(

ε3
)

(20)

and collect the terms proportional to eiθ. At the leading order ε-term, we obtain the dispersion
relation (18) as well as expressions for the phase and group velocities

c = βk4 + k2 +
1

k2
, cg ≡

∂ω

∂k
= 5βk4 + 3k2 − 1

k2
, (21)
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while the remaining terms give

ε2
[

i
(

6βk5 + 4k3 − ω
)

AX + ikAT

]

+

+ ε3
[(

15βk4 + 6k2
)

AXX +ATX +
(

αk4 + 3γ
)

A2Ā+ 2ik3ĀB
]

+

+ ε4
[

−i
(

20βk3 + 4k
)

AXXX − k2ACX + 3k2ĀBX − 4iαk3AĀAX

]

+

+O
(

ε5
)

= 0.

(22)

At the leading ε2-term in (22), we have obtain

AT + cgAX = O (ε). (23)

Turning to the superslow time τ = εT and running variable ξ = X − cgT we can obtain the
solution of the last equation in the form of a travelling wave with a slowly varying amplitude
A (X,T ) = A (ξ, τ). After convertion ATX to Aξξ by (23), we present the value of ĀB from ε3-term

and substitute it to ε4-term to get the factor 1
6
∂3ω
∂k3

in the front of the third derivative AXXX .
At the next step in the transformation of the equation (22) to the GNLS equation, we need to

express B and C as the functions of A. To do that, we ought to collect the terms proportional to
e2iθ and get

ε2
(

−ik3A2 −
(

60βk6 + 12k4 − 3
)

B
)

+

+ ε3
[

i

(

190βk5 + 30k3 − 2

k

)

BX + 2ikBT − 3k2AAX

]

+

+O
(

ε4
)

= 0.

(24)

Note that B, a similar way as A, can be regarded as a function of ξ and τ ; we can convert BT to Bξ

and then seek the solution of (24) in the form B = iB0 (ξ) + εB1 (ξ). Equating to zero the real and
imaginary parts of the equation (24) will allow us to find B0 and B1 separately, so that function B

can be written as

B = −i
k3

3 (20βk6 + 4k4 − 1)
A2 + ε

k2
(

60βk6 + 4k4 + 3
)

3 (20βk6 + 4k4 − 1)
AAξ +O

(

ε2
)

. (25)

Finally, we collect the “mean flow” terms which are independent on θ, and obtain

−ε2C + ε3k2
(

AĀ
)

X
+O

(

ε4
)

= 0. (26)

Similarly introducing the variables ξ and τ , one can see that the equation (26) has the solution

C = εk2
(

AĀ
)

ξ
+O

(

ε2
)

. (27)

As a final step in the derivation we substitute (25) and (27) into (22) to obtain the GNLS equation

iAτ + β1Aξξ + β2 |A|2A+ iε

(

β3Aξξξ +
β2

k

(

|A|2 A
)

ξ
+ β4 |A|2 Aξ

)

+O
(

ε2
)

= 0, (28)

where

β1 =
1

2

∂2ω

∂k2
= 10βk3 + 3k +

1

k3
, β2 = αk3 +

2k5

3 (20βk6 + 4k4 − 1)
+

3γ

k
,

β3 = −1

6

∂3ω

∂k3
= −10βk2 − 1 +

1

k4
, β4 = −

(

4αk2 +
4k4

(

4k4 − 3
)

3 (20βk6 + 4k4 − 1)2

)

.

Note that as 20βk6 + 4k4 − 1 → 0 coefficients β2 and β4 tend to infinity as a result of the
resonance of the fundamental and second harmonics of the solution (20) [19], but investigation of
the case is beyond the scope of this paper.
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§ 3. Solution of the GNLS equation

Consider a simplified case of the equation (28) when the value of the wavenumber k satisfies

the equation 4k4 − 3 = 0, i. e. k = 4

√

3
4 if we assume that k > 0. The condition of equality of the

phase and group velocities (21) leads to the values β =
√
3
9 and c = cg = 5

√
3

4 . For any differentiable
function ω (k) the necessary condition for the extremum of ω

k
can be written in the form ω′ = ω

k
,

hence the phase velocity c = ω
k
can coincide with the group velocity cg = ω′ only at the extreme

point (km, cm) of function c. Thus, going in the GNLS equation (28) back to the variables T and X

and putting k = km = 4

√

3
4 , cg = cm = 5

√
3

4 , β =
√
3
9 we can write the GNLS equation as

i

(

AT +
5
√
3

4
AX

)

+
4
√
12ε

(

3AXX + γ1 |A|2 A
)

+

+ 2ε2i

(

−2

3
AXXX + γ1

(

|A|2 A
)

X
−

√
3α |A|2AX

)

= 0,

(29)

where γ1 = 1
18 +

√
3
4 α +

√
3γ. At leading order (29) reduces to the ordinary NLS equation with

a well-known solitary wave solution

A = a sech [δ (ξ − ευT )]ei(lξ−εσT ), (30)

where ξ = X − 5
√
3

4 T , υ = 6 4
√
12l, σ = −3 4

√
12
(

δ2 − l2
)

, a2 = 6δ2

γ1
and l, δ are free parameters. Note

that in general the solution (30) is not a steady solitary wave solution of the original equation (16).
In [18] it was shown that the requirement c = cg needed for steady solitary wave solution leads to
the parameters υ and l of (30) to be O (ε). Therefore, the requirement c = cg can be correctly taken
into account only when considering the full GNLS equation (29) with the last ε2-term. Following
the paper [18], we will seek for the solution of (29) in the form

A = R (η) eiε[φ(η)+lη−σT ], (31)

where η = X − cmT − ε2V T and R, φ are functions to be determined. The total phase of the first
harmonic of the solution (20) is

θ + ε [φ (η) + lη − σT ] =

= kmx− cmkmt+ εφ
[

ε
(

x− cmt− ε2V t
)]

+ ε2
[

l
(

x− cmt− ε2V t
)

− σt
]

.

For a steady wave the total phase must be a function on η alone, hence we have to put σ = kmV .
After substituting (31) into (29), equating the real and imaginary parts of the resulting equation to
zero, and omitting terms of O

(

ε2
)

, we obtain:

3Rηη +
1

2
V R+ γ1R

3 = 0,

18km (Rφηη + 2Rηφη) + 3
[(

6γ1 − 2
√
3α
)

R2 + 12kml − V
]

Rη − 4Rηηη = 0.
(32)

The first equation in the set (32) has a solitary wave solution

R = a sech

(
√

γ1

6
a
(

X − cmT − ε2V T
)

)

, (33)

where V = −a2γ1. From physical considerations it follows that α > 0, γ > 0, hence V < 0 and
velocity of the steady solitary wave is less then cm, in accordance with the previously formulated
hypothesis.
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Fig 3. Plots of the steady solitary wave defined by (31) with a = 5, ε = 0.1, α = γ = 1
√

3
at T = 0 and T = 1

With R given by (33), the second equation of the set (32) becomes the equation for the function φ

alone with the solution of the form

φ = −3a
(

11
√
3γ1 − 9α

)

54 4
√
3
√
γ1

tanh

(
√

γ1

6
a
(

X − cmT − ε2V T
)

)

, (34)

where l = − 7
√
2

108 4
√
3
γ1a

2. It follows that the wavenumber correction for the first harmonic is negative.

The plots of the steady solitary wave (20) for leading order at T = 0 and T = 1 show that the
wave form really does not change over time (Fig. 3).

Therefore, the GNLS equation (28) in its simplified form (29) has a one-parametric solution in
the form of a steady solitary wave defined by (31), (33), and (34). The larger the amplitude of the
wave, the smaller its scale and lower its velocity. With the increase of the small parameter ε, the
oscillating tails of the soliton (Fig. 3) gradually transformed into monotonically decreasing tails.
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À.È. Çåìëÿíóõèí, À.Â. Áî÷êàðåâ

Óñòîé÷èâûå óåäèíåííî-âîëíîâûå ðåøåíèÿ îáîáùåííîãî óðàâíåíèÿ Áóññèíåñêà�

Îñòðîâñêîãî øåñòîãî ïîðÿäêà

Êëþ÷åâûå ñëîâà: íåëèíåéíûå ýâîëþöèîííûå óðàâíåíèÿ, óåäèíåííî-âîëíîâûå ðåøåíèÿ, îáîáùåííîå

íåëèíåéíîå óðàâíåíèå Øð¼äèíãåðà.

ÓÄÊ 517.95

Ïðîâåäåí îáçîð ìîäåëåé, ïðèâîäÿùèõ ê íåèíòåãðèðóåìîìó óðàâíåíèþ Îñòðîâñêîãî è åãî îáîáùåíèÿì,

íå èìåþùèì òî÷íûõ óåäèíåííî-âîëíîâûõ ðåøåíèé. Ïðèâåäåí êðàòêèé âûâîä óðàâíåíèÿ Îñòðîâñêîãî

äëÿ ïðîäîëüíûõ âîëí â ãåîìåòðè÷åñêè íåëèíåéíîì ñòåðæíå, ëåæàùåì íà óïðóãîì îñíîâàíèè. Ïîêàçà-

íî, ÷òî â ñëó÷àå îñåñèììåòðè÷íîãî ðàñïðîñòðàíåíèÿ ïó÷êà ïðîäîëüíûõ âîëí â �èçè÷åñêè íåëèíåéíîé

öèëèíäðè÷åñêîé îáîëî÷êå, âçàèìîäåéñòâóþùåé ñ íåëèíåéíî-óïðóãîé ñðåäîé, äëÿ êîìïîíåíòû ïåðåìå-

ùåíèÿ âîçíèêàåò îáîáùåííîå óðàâíåíèå Áóññèíåñêà�Îñòðîâñêîãî øåñòîãî ïîðÿäêà. Ïîñòðîåíî òî÷íîå

êèíêîïîäîáíîå ðåøåíèå ýòîãî óðàâíåíèÿ, óñòàíîâëåíà ñâÿçü ñ îáîáùåííûì íåëèíåéíûì óðàâíåíèåì

Øð¼äèíãåðà è íàéäåíî ðåøåíèå ïîñëåäíåãî óðàâíåíèÿ â �îðìå óñòîé÷èâîé ñîëèòîíîïîäîáíîé áåãóùåé

âîëíû ñ ìîíîòîííî çàòóõàþùèìè èëè êîëåáàòåëüíûìè õâîñòàìè.
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