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RANDOMIZED NASH EQUILIBRIUM FOR DIFFERENTIAL GAMES!

The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential
game of two players. We assume that each player is informed about the control of the partner realized up to
the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies.
The main result of the paper is the characterization of a set of Nash values considered as pairs of expected
players’ outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a
corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex
hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example
showing that the randomized strategies can enhance the outcome of the players.
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Introduction

The paper is concerned with a two players nonzero-sum differential game. We examine this
problem under the framework of Nash equilibrium proposed for one-shot games in [13]. For the
differential game the study of Nash equilibria started with papers [6,9].

There exist two approaches to analyze Nash equilibria of differential game in the case when
the players are well-informed (i.e. they know either the state of the system or the control of the
partner realized up to current time). The first approach reduces the original problem to a system
of Hamilton—Jacobi PDEs. Despite of some progress in the theory of systems of Hamilton—Jacobi
PDEs [3, 4] the general theory of such systems is not developed. Moreover, there are intrinsic
obstructions to such theory [4].

The second approach is based on the concept of punishment strategies. This concept goes back
to the folks theorems in the theory of repeated games. The punishment strategy equilibrium is
constructed in the following way. The players choose a line and arrange to move along this line; any
unilateral deviation are punished by all other players. Note that the player using the punishment
strategy is primary concerned not with her profit but with the maintenance of the arrangement. This
is a main disadvantage of the punishment strategy approach. However, the punishment strategies
are widely used to prove the existence of the Nash equilibrium.

The existence of the Nash equilibrium of differential game was proved using punishment tech-
niques in [10-12,16]. The set of Nash equilibria in the class of punishment strategies was charac-
terized in [7,10,16]. In those papers feedback strategies or Friedman strategies were used i.e. it is
assumed that the players are informed on the current position.

The equivalent approach works when the players are informed about the controls of each other
realized up to the current time. In this case players use so called non-anticipative strategies. This for-
malization was first developed for zero-sum differential games [8,14,15]. For nonzero-sum differential
games the Nash equilibria in the class of non-anticipative strategies were studied in [1,2].

Note that all strategies mentioned above are deterministic. However, randomized strategies are
widely used for the one-shot games. In the paper we develop an approach based on a randomization
of pure strategies for the nonzero-sum differential game case. We will use non-anticipative strategies.
Note that for the stochastic differential games the existence of the Nash equilibria was proved in the
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class of stochastic non-anticipative strategies with a delay [5]. In that paper the set of Nash values
was also characterized.

The approach introduced in this paper means that the randomized strategies for nonzero-sum
two-player differential game are stochastic processes defined on the same probability space whereas
the probability space is not fixed. This is the main difference between this paper and paper [5]
where the probability space is fixed. In the paper we assume that the player are informed about
the controls of each other realized up to the current time and use non-anticipative strategies. We
obtain the characterization of Nash equilibria and prove that the set of Nash values is a convex hull
of the set of Nash values in the case when only deterministic strategies are allowed. Additionally,
we present an example showing that the usage of randomize strategies can enhance the outcome of
the players.

§ 1. Randomized strategies

We consider the dynamical system governed by two players
L) = F(t,a(),ult), o), t€0,T], a(t) €RY, u(t) €U, o(t) € V.

Here u(t) (respectively, v(t)) is the control of the first (respectively, second) player. We assume that
the first (respectively, second) player wishes to maximize o1 (z(T")) (respectively, oo(x(T))).

We impose the following conditions on the sets U and V' and the functions f, o1 and os:

1) the sets U and V are metric compact;

2

) f, o1 and o9 are continuous;
3) f enjoys sublinear growth w.r.t. x;
)

4) f is locally Lipschitz continuous w.r.t. the space variable, i.e., for any compact G C R there
exists a constant L such that, if 2/,2” € G, t € [0,T], u € U, v € V, then

||f(t,x',u,v) - f(t,ﬂfﬂ,U,U)H < LH'I/ - $”H;

5) (Isaacs condition) for every x,p € R?, ¢ € [0,7],

i t = i t .
min max({p, f(¢, 2, u,v)) = maxmin(p, f(t,z, u,v))

Below we consider relaxed controls. Let = be a metric space. We assume that = is endowed by
the Borel o-algebra. A measure £ on [tg,t1] X = is called consistent with the Lebesgue measure on
[to, t1] if, for any ¢/, 1" € [to, t1], t' < t”,

[, " xE)=t" 1.

Below we say that the measures consistent with the Lebesgue measure &1, & on [tg, 1] X E coincide

on [to, 7] and write § =p, ;) &2 if, for any measurable I' C [to, 7] and A C Z,

51(1“ X A) = SQ(F X A)

A measure on [tg, t1]x U (respectively, [to, t1]x V') consistent with the Lebesgue measure on [tg, ¢1]
is called a relaxed control of the first (respectively, second) player on time interval [t,t1]. Further,
we denote by Ultg,t1] (respectively, V[tg,t1]) the set of relaxed controls of the first (respectively,
second) player. A measure on [tg,t1] X U X V consistent with the Lebesgue measure on [tg,¢1] is
called a relaxed joint control of the players. The set of relaxed joint control of the players is denoted
by M[to, tl].



Randomized Nash equilibrium for differential games 301

MATHEMATICS 2017. Vol.27. Issue3

Given a relaxed joint strategy of the players £¢ and an initial position (to,xo), denote by
x(+, to, xo,£°) a solution of the problem

£(t) = o + /[ oy ) 0 A, 0),

Existence and uniqueness theorem for the solution of this problem can be found in [15].
Put
u7i(t05 Zo, gc) £ O-i(x(Ta to, o, é-c))

We say that ¢! : V[tg,t1] — M[to,t1] is a non-anticipative strategy of the first player if
e for any &2 € V[ty,t1] and any measurable I C [to, 1], A C V,

CHEII x U x A) = €4(I x A);

e for any 7 € [to,t1] and any &3,£3 € V[to,t1], the equality &2 =lt0,7] €2 implies the equality
CHEY =pom CHER)-

The set of all non-anticipative strategies of the first player on [to, t1] is denoted by Qj[to, t1].
Analogously, a mapping (? : U[tg,t1] — M(tg, t1] is a non-anticipative strategy of the second
player if

e for any &' € U[tg, t1] and any measurable I' C [to,t1], A C U,

CLEI x Ax V) = €I x A);

e for any 7 € [to,t1] and any &1,€3 € Uto, t1], the equality &} =lt0,7] ¢} implies the equality
CPlEN] =pom CPLER)-

We denote the set of all non-anticipative strategies of the second player on [to, t1] by Qalto,t1].
In [1] the following definition of the incentive Nash equilibrium is proposed. A triple
(€6% ¢b* ¢%*) where €% € Mtg, T), ¢4* € Q;[to, T, is an incentive Nash equilibrium at (to,zg) if

e there exist control &%, £€2* such that £&* = ¢(L*[€27%] = (2*[¢1];

o for any ¢ € Ulty, T,
Ji(to, 2o, £%) > Ji(to, zo, ¢ [€M));

e for any &2 € V[ty, T],
Jo(to, 0, £%) > Ta(to, xo, CH¥[E2)).

The equivalence of the incentive and feedback Nash equilibria is proved in [1].

In the paper we extend the class of strategies and use randomized strategies. We endow the
sets Ulto, t1], V[to,t1], and M|ty t1] with the topology of narrow convergence. This topology is
metrizable [17]. Thus, the Borel o-algebras on this sets are well-defined.

Let (9, F, P) be a probability space. A measurable function w — pu(w) € U[tg,t1] (respectively,
w = v(w) € V[tg, t1]) is called a randomized relaxed control of the first (respectively, second) player.
Additionally, a measurable function w — n(w) € M|tg, t1] is called a randomized joint control of the
players. If 7 is a randomized joint control on [ty, T, put

Tt 0.m) & BT 0 0.00) = [ ool to,70,m(0)) Pl
A measurable mapping a: Q X V[tg,t1] — M]to, t1] (respectively, 5: Q x Uto, t1] — Mto,t1])
such that for any w, a(w,-) € Q1[to, t1] (respectively, S(w,-) € Qalto, t1]) is a randomized nonatici-
pative strategy of the second (respectively, first) player on [to, t1].
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Definition 1. We say that the 6-tuple (Q, F, P,n*, o, 5*) is an incentive Nash equilibrium in
the class of randomized strategies at the position (¢g, z¢) if

e (Q, F,P) is probability space;

e 7" is a randomized relaxed joint control of the players, whereas «o*, 3* are non-anticipative

randomized strategies of the first and second players respectively;
e there exist a randomized control p* and v* such that n*(-) = o[-, v*(")], n*(-) = B[, £*(")];
o Ji(to,x0,m*) > Ji(to, zo, B*[-, u(+)]) for any randomized relaxed control of the first player p(-);

o Jo(to,xo,m*) > Jato,xo,a[,v(-)]) for any randomized relaxed control of the second
player v(-).

Definition 2. We call a pair (c1, c2) € R? a Nash value in the class of randomized strategies at the
position (tg, z¢) if there exists an incentive Nash equilibria at the position (to,zo) (2, F, P,n*, a*, 3*)
such that C; = Ji(to,xo,’l’]*).

§ 2. Characterization of Nash equilibria

To characterize the set of Nash values in the class of randomized strategies we consider the
auxiliary zero-sum differential games, where the i-th player wishes to maximize the outcome given
by o;(x(T)) and the other player prevents her. Recall [15] that the value function of the zero-sum
games where the first player maximizes o1 (z(7)) is equal to

Vl(t(ﬁxo) = Ul(x(T7t07x07C2[§1]))7 (2-1)

min min
¢2€Qa[to,T] E1€V[to,T]

whereas the value function of the zero-sum game where the second player wishes to maximize
o9(x(T)) is given by

Val(ty, o) = i i T, to, zo, C1[€%])).
2(to,@0) = | min L auin o1 (@(T o, 2o, CTIET]))

Theorem 1. A pair (c1,c2) is a Nash value in the class of randomized strategies at the posi-
tion (to,xo), if and only if there exists a probability P on M[ty,T] such that

= [ Tilto,o, ENPE), i =1,2 (2:2)
Q
and for any t € [to, T
oi(z(T, to, x0,£%)) > Vi(t, z(t, to,x0,£°)) P-a.s., i=1,2. (2.3)

The proof of the theorem involves the operation of concatenation of the relaxed controls. It is
defined in the following way. If = is a metric set, to < t1, 7 € [to, t1], £ is a measure on [tg,t1] X Z
consistent with the Lebesgue measure on [tg,t1], whereas £” is a measure on [7,t1] consistent with
the Lebesgue measure on [7, 1], then denote by & ®, &” the probability £ on [tg, 1] X = defined by
the rule: for A C [to,t1] X E,

E(A) =& (AN ([to, 7] x B)) +€"(AN([r, 1] x F)).

Note that £ is also consistent with the Lebesgue measure on [tg,t1].
Additionally, define the projectors 7y, m by the rules: if (¢,u,v), then

w1t u,v) 2 (tu), m(t,u,v) 2 (t,v).
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Further, if (', F'), (", F") are measurable spaces, h : ' — Q" is measurable, m is a probability
on F', then hym is a probability on F” such that, for any T € F”,

(hgm)(T) £ m(h~(T)).

Note that ¢! : V[to,t1] — M|to,t1] is a non-anticipative strategy of the first player if and only
if mo4(CE?]) = €2 for any €2 € V[to,t1]. Similarly, ¢?: U[to,t1] — M(to,t1] is a non-anticipative
strategy of the seconds player if and only if 7y 4(C?[€1]) = ¢! for any &1 € U[to, t1].

Proof of Theorem 1. First, let us assume that (c¢1,cz) is a Nash value. Thus, there
exists an incentive Nash equilibrium in the class of randomized strategies (2, F, P,n*, a*, *) such
that ¢; = J;(to, x0,n*)- Let It be a set of w € Q such that inequality

oi(x(T, to, xo, 0" (w))) < Vi(t, z(t, o, w0, 1" (w))) (2.4)

holds true.

Let us prove that P(I') = 0. Without loss of generality, we can assume that i = 1. Given
t € [to,t1], denote by y(w) the state z(t, to, xo,n* (w)).

Let p*(w) denote m4n*(w). Note that n*(w) = 8*w, u*(w)].

Let us define a randomized non-anticipative strategy on [t,T] of the second player B by the
following rule: for w € Q, &' € U[t, T,

Bilw, €] & B lw, i (w) @1 €]
Further, (2.1) implies that

Vi(t,y(w)) = B o1(x(T,t,y(w), ¢*(€h)) < A o1(2(T,t,y(w), Blw,€']). (2.5)

Let y(w) € U[t, T] maximize the right-hand side of (2.5), i.e.,

e o1(@(T,t,y(w), B4(w,€1)) = o1(2(T, t,y(w), 5*(w,7(w)))). (2.6)

Without loss of generality one may assume that the mapping w — 7(w) is measurable.
Define a randomized control uf of the first player on [to, T by the following rule:

by 2 Wwow), wely
) {060 war

Note that, if 7 > ¢, w ¢ T'},
(7, to, 0, 7" (W) = x(T, to, 20, B* [w, uf (W)]). (2.7)
Moreover, for 7 > t, w € ['},
(7, t,y(w), 8w, Y(w)]) = (7, to, z0, B [w, 1 (w)))- (2.8)

If one assume that P(T'}) > 0, then from (2.4) we get

e1 = Jilto, z0,m") = /Q Ti(to, 20,m" () P(dw) =

- / 01 (2(T o, x0, 7" (w))) P(dw) + / o1 (2(T o, 70,7 () P(de) <
r! O\r}

< /F% Vi(t,y(w))P(dw) + /Q\F% o1(z(T, to, zo,n" (w))) P(dw).
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Further, under assumption P(T'}) > 0 (2.6), (2.5), (2.7), (2.8) imply that

< max o1 (z(T,t,y(w), B [w, ') P(dw) —i—/ o1(z(T, tg, xo, B |w, u*(w)]))P(dw) =
r} &reU(t,T] O\T'!

_ /F 1 (@b, 0, 8" () P(do) + /Q T o0 1E()])) P (dew) =

:Amm1WWWMMMmHmy

This contradicts with the assumption that (Q,F, P,n*, a*, 5*) is an incentive Nash equilibrium
in the class of randomized strategies. The equality P(I'?) = 0 is proved in the same way.
To complete the proof let us define the probability P on Mtg, T] by the rule: for T C M|ty 17,

P(T) = P{w : n*(w) € T}.

Since inequality (2.4) can violates only on P-negligible set, we have that (2.2) and (2.3) hold true.
Now assume that (2.2) and (2.3) are valid for some probability P on M[tg, T]. We shall prove
that (c1,c2) is a Nash value in the class of randomized strategies. Using continuity of V; and o one
can deduce that
O'Z'(x(T, to, Zo, 50)) Z %(t, ,I(t, to, o, 50)), 1= 1, 2

for P-a.e. £¢ and A-a.e. t € [tg, T] (here X stands for the Lebesgue measure).

Recall that we endow Mto,T| with the topology of narrow convergence which is metrizable.
Let B stand for Borel g-algebra on M(ty, T]. Put Q = M(ty,T], F = B(M[ty,T]), P &£ P. For
w € Q= Mlty, T, put n*(w) £ w, p*(w) = mpw, v (W) = Topw.

Further, if w € M[to, T], & € Vlto, T), then let 71w, £2] be the greatest time 7 such that

7'('2#(,«) E[to,r] 52.
For 6 € [tg,T], z € R, let C(}’: minimize the right-hand side of

= i T 1e).
Va(6, 2) Cleanir[IG,T}@g?;(,T]az(x( 0,2, [€7]))

For w € Q = Mty,T], €2 € U[to, T), A C [to, T) x U x V, put
(0 [w, E))(A) 2 w(A N ([to, 7' (w, )] x U x V) +
(CH )t 2 0. [ED A 1 ([, €2), T X U X V).
Analogously, if w € M[tg, T], &' € U[to, T), then let 72[w, £!] be the greatest time 7 such that
T1#W =[to,7] 3

As above, given 6 € [tg, T], z € R?, choose a non-anticipative strategy of the second player Cg’; by
the rule
V1(0,2z) = max o1(x(T,0,z, Zxely).
1(6.2) = max o1(a(T,0. 2 GIE')

Finally, for w € Q = M[to, T], &' € V[to, T], A C [to,T] x U x V, put
(B*[w, € N(A) £ w(A N ([to, 7*(w, )] x U x V) +
+ (ngzw,fl),x(’rQ(w,fl)memw) [51])(A N ([72(w=51)7T] x U xV)).

We have that w = o*|w,v*(w)] = B*w,p*(w)]. Further, for any w — p(w) € Ulto,t1],
w i v(w) € V[to, t1], and for P-a.e. w,

0'1(.%'(T, tvaOvﬁ*[w7M(w)])) = ‘/’1(7—2(“}7:u(w))7x(TQ(wau(w)))7t07x07w) < O’1((L‘(T, t07x07w))7
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oo(z(T, to, xg, o [w,v(w)])) = Vz(Tl(w, y(w)),w(Tl (w,v(w))), to, zo,w) < oo(x(T, ty, zg,w)).

Thus, (2, F, P,n*,a*, 5*) is an incentive Nash equilibrium at (g, z¢) in the class of randomized
strategies. Therefore, (c1,c2) is a Nash value. O

Below we denote the set of Nash values at (tp,z¢) in the class of randomized strategies by
N7 (tg,z0). One can also consider the set of Nash values at (tg,zo) in the class of deterministic
strategies. Denote this set by N%(tg,2). Recall [1] that the pair (ci,c2) belongs to N7 (tg, o), if
and only if there exists a control £¢ € M|ty, T] such that

C; = O’Z‘(.%'(T,to,.’ﬂo,fc)) (2.9)

and, for any t € [to, T,
c = ‘/i(t’x(t’tha:OaEc))' (2]‘0)

Corollary 1. N"(ty,z0) = coN%(tg, x0).

Proof of Corollary 1. The proof directly follows from Theorem 1 and (2.9), (2.10). O

§ 3. Example

Let us highlight the difference between Nash values in the class of the deterministic and randomized
strategies by the following simple example. Let

T =u, Ta=v, u,|v]<1, T=1,

0i(w1,x2) = |w3—i|(1 — | sin(2arctg(|z1/x2|)))-

We restrict our attention to the case when initial time is 0 and initial position is x1,9 = 22,0 = 0.
Since the dynamics of the game is symmetric the sets of Nash values at (0,0, 0) are also symmetric.

1.0 1.0
0.8+ 0.8

0.6- 0.6

T2
T2

0.2} 0.2

Tl xr1

Fig 1. The set containing the set of Nash values in the  Fjg 2. The set of Nash values in the class of randomized
class of deterministic strategies strategies

Further, the set A'¢(0,0,0) is contained in the set

{(0'1(.%1,.%'2),0'2(.%'1,.%'2))2 xr1,T9 € [—1,1]} =
={(x1,22): 21 € [0,22(1 — sin(2arctg(z2)))], z2 € [0,1]} U
U{(x1,22): 21 € [0,1], 22 € [0, 21(1 — sin(2arctg(z1)))]}
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This set is shown in Fig. 1.
Now let us prove that
{0} x [0,1],10,1] x {0} € N¥(0,0,0).

We have that, for z19 € R,

Vi(to,z1,0,0) =0, Va(to,21,0,0) < min{|x19 — (1 — o)l 0}. (3.1)
Analogously,
Vl(to,o,xzo) < min{]w;o — (1 — to)’, 0}, Vg(to,o,(L'Q,o) = 0. (3.2)
Since
o1(r,0) = 02(0,7) =0, 01(0,7) = o2(r,0) = |r| (3.3)

we have by (3.1), (3.2) that, for any r € [0, 1],
oi(r,0) > Vi(t,rt,0), 0;(0,r) > Vi(t,0,rt).

Hence, any controls u = r, v = 0 and v = 0, v = r provide the deterministic Nash equilibrium in the
class of punishment strategies. Using (3.3) we get that the sets [0, 1] x {0}, {0} x [0, 1] lies in N'¢(0, 0).
Consequently, by Corollary 1 we get that N7(0,0) = {(z1,x2) : 21,22 € [0,1], 21 + 22 < 1}. The set
N7(0,0,0) is presented in Fig. 2.

It is instructive to compare the optimal symmetric Nash values. If the players use deterministic
strategies the best symmetric Nash value is (0,0), whereas players using randomized strategies can
reach the outcomes equal to 1/2.
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FO. B. Agepbyzx
PangomusupoBanHoe paBHoBecue mo Hamry B quddepeHnmaabHBIX Urpax

IInrara: Bectnuk Yamyprckoro yauBepcutera. Maremarnka. Mexanuka. Komnbiorepubie maykm. 2017.
T. 27. Bem. 3. C. 299-308.

Kaouesvie crosa: nuddepennnaabHbie UTPhI, paBHOBecHe M0 HaIy, paHIoMu3npoBaHHbIE CTPATErHH.
VIK 517.977.8
DOI: 10.20537/vm170301

Pabora nocssmena ncciemoBaHuio paBHOBECHS M0 HIIMy B HEAHTATOHUCTHIECKOH JeTEPMUHUPOBAHHON M-
depennuanbHONl Urpe ABYX JIMI, B KJIacce PAHIOMU3UPOBAHHBIX cTpareruii. [Ipeamomaraercs, 9ro UTPOKH
uHGOPMHUPOBAHDBI 00 yIIPABIECHUN CBOErO MAPTHEPA, PEATH30BABINErOCa K TEKyIeMy Bpemenu. [losTroMmy wr-
pa dopmanudyercss B KJIACCe PAHIOMU3MPOBAHHBIX KBasucrpareruii. B pabore mosydueHa xapakTepu3alus
MHOKECTBA, BBIUTPBIIEH (Tap 0KUIAEMBIX BLIUTPHINIEH UTPOKOB) B CHUTyalUsX pasHOBecus mo Hamry c uc-
MOJIb30BAHUEM BCIIOMOTATENbHBIX AHTATOHUCTHIECKUX UTp. [I0KA3aHO, YTO MHOXKECTBO BBIUTPBINIEH B CHTY-
alugax PaHIOMU3UPOBAHHOTO paBHOBecHs Mo H3Imy ABIsSeTCs BBIMYKIION 000I0YKONH MHOXKECTBA BHIUTPHIIIEH
B KJIacCe IETePMUHUPOBAHHBIX cTpareruii. [IpuBeaen mpuMep, MOKA3bIBAIONMIAI JOMOJTHATETbHBIE BO3MOXKHO-
CTH, KOTOPbIE BOZHUKAIOT MPHU MEPEXOJIe K PAHIOMU3UPOBAHHBIM CTPATETUSIM.
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