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The paper is onerned with the randomized Nash equilibrium for a nonzero-sum deterministi di�erential

game of two players. We assume that eah player is informed about the ontrol of the partner realized up to

the urrent moment. Therefore, the game is formalized in the lass of randomized non-antiipative strategies.

The main result of the paper is the haraterization of a set of Nash values onsidered as pairs of expeted

players' outomes. The haraterization involves the value funtions of the auxiliary zero-sum games. As a

orollary we get that the set of Nash values in the ase when the players use randomized strategies is a onvex

hull of the set of Nash values in the lass of deterministi strategies. Additionally, we present an example

showing that the randomized strategies an enhane the outome of the players.
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Introdution

The paper is onerned with a two players nonzero-sum di�erential game. We examine this

problem under the framework of Nash equilibrium proposed for one-shot games in [13℄. For the

di�erential game the study of Nash equilibria started with papers [6, 9℄.

There exist two approahes to analyze Nash equilibria of di�erential game in the ase when

the players are well-informed (i. e. they know either the state of the system or the ontrol of the

partner realized up to urrent time). The �rst approah redues the original problem to a system

of Hamilton�Jaobi PDEs. Despite of some progress in the theory of systems of Hamilton�Jaobi

PDEs [3, 4℄ the general theory of suh systems is not developed. Moreover, there are intrinsi

obstrutions to suh theory [4℄.

The seond approah is based on the onept of punishment strategies. This onept goes bak

to the folks theorems in the theory of repeated games. The punishment strategy equilibrium is

onstruted in the following way. The players hoose a line and arrange to move along this line; any

unilateral deviation are punished by all other players. Note that the player using the punishment

strategy is primary onerned not with her pro�t but with the maintenane of the arrangement. This

is a main disadvantage of the punishment strategy approah. However, the punishment strategies

are widely used to prove the existene of the Nash equilibrium.

The existene of the Nash equilibrium of di�erential game was proved using punishment teh-

niques in [10�12, 16℄. The set of Nash equilibria in the lass of punishment strategies was hara-

terized in [7, 10, 16℄. In those papers feedbak strategies or Friedman strategies were used i. e. it is

assumed that the players are informed on the urrent position.

The equivalent approah works when the players are informed about the ontrols of eah other

realized up to the urrent time. In this ase players use so alled non-antiipative strategies. This for-

malization was �rst developed for zero-sum di�erential games [8,14,15℄. For nonzero-sum di�erential

games the Nash equilibria in the lass of non-antiipative strategies were studied in [1, 2℄.

Note that all strategies mentioned above are deterministi. However, randomized strategies are

widely used for the one-shot games. In the paper we develop an approah based on a randomization

of pure strategies for the nonzero-sum di�erential game ase. We will use non-antiipative strategies.

Note that for the stohasti di�erential games the existene of the Nash equilibria was proved in the
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lass of stohasti non-antiipative strategies with a delay [5℄. In that paper the set of Nash values

was also haraterized.

The approah introdued in this paper means that the randomized strategies for nonzero-sum

two-player di�erential game are stohasti proesses de�ned on the same probability spae whereas

the probability spae is not �xed. This is the main di�erene between this paper and paper [5℄

where the probability spae is �xed. In the paper we assume that the player are informed about

the ontrols of eah other realized up to the urrent time and use non-antiipative strategies. We

obtain the haraterization of Nash equilibria and prove that the set of Nash values is a onvex hull

of the set of Nash values in the ase when only deterministi strategies are allowed. Additionally,

we present an example showing that the usage of randomize strategies an enhane the outome of

the players.

� 1. Randomized strategies

We onsider the dynamial system governed by two players

d

dt
x(t) = f(t, x(t), u(t), v(t)), t ∈ [0, T ], x(t) ∈ R

d, u(t) ∈ U, v(t) ∈ V.

Here u(t) (respetively, v(t)) is the ontrol of the �rst (respetively, seond) player. We assume that

the �rst (respetively, seond) player wishes to maximize σ1(x(T )) (respetively, σ2(x(T ))).

We impose the following onditions on the sets U and V and the funtions f , σ1 and σ2:

1) the sets U and V are metri ompat;

2) f , σ1 and σ2 are ontinuous;

3) f enjoys sublinear growth w.r.t. x;

4) f is loally Lipshitz ontinuous w.r.t. the spae variable, i. e., for any ompat G ⊂ R
d
there

exists a onstant L suh that, if x′, x′′ ∈ G, t ∈ [0, T ], u ∈ U , v ∈ V , then

‖f(t, x′, u, v) − f(t, x′′, u, v)‖ ≤ L‖x′ − x′′‖;

5) (Isaas ondition) for every x, p ∈ R
d
, t ∈ [0, T ],

min
u∈U

max
v∈V

〈p, f(t, x, u, v)〉 = max
v∈V

min
u∈U

〈p, f(t, x, u, v)〉.

Below we onsider relaxed ontrols. Let Ξ be a metri spae. We assume that Ξ is endowed by

the Borel σ-algebra. A measure ξ on [t0, t1]× Ξ is alled onsistent with the Lebesgue measure on

[t0, t1] if, for any t′, t′′ ∈ [t0, t1], t
′ < t′′,

ξ([t′, t′′]× Ξ) = t′′ − t′.

Below we say that the measures onsistent with the Lebesgue measure ξ1, ξ2 on [t0, t1]×Ξ oinide

on [t0, τ ] and write ξ1 ≡[t0,τ ] ξ2 if, for any measurable Γ ⊂ [t0, τ ] and Λ ⊂ Ξ,

ξ1(Γ× Λ) = ξ2(Γ× Λ).

Ameasure on [t0, t1]×U (respetively, [t0, t1]×V ) onsistent with the Lebesgue measure on [t0, t1]
is alled a relaxed ontrol of the �rst (respetively, seond) player on time interval [t0, t1]. Further,
we denote by U [t0, t1] (respetively, V[t0, t1]) the set of relaxed ontrols of the �rst (respetively,

seond) player. A measure on [t0, t1] × U × V onsistent with the Lebesgue measure on [t0, t1] is
alled a relaxed joint ontrol of the players. The set of relaxed joint ontrol of the players is denoted

by M[t0, t1].
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Given a relaxed joint strategy of the players ξc and an initial position (t0, x0), denote by

x(·, t0, x0, ξ
c) a solution of the problem

x(t) = x0 +

∫

[t0,t]×U×V

f(τ, x(τ), u, v)ξc(d(τ, u, v)).

Existene and uniqueness theorem for the solution of this problem an be found in [15℄.

Put

Ji(t0, x0, ξ
c) , σi(x(T, t0, x0, ξ

c)).

We say that ζ1 : V[t0, t1] → M[t0, t1] is a non-antiipative strategy of the �rst player if

• for any ξ2 ∈ V[t0, t1] and any measurable Γ ⊂ [t0, t1], Λ ⊂ V ,

ζ1[ξ2](Γ× U × Λ) = ξ2(Γ× Λ);

• for any τ ∈ [t0, t1] and any ξ21 , ξ
2
2 ∈ V[t0, t1], the equality ξ21 ≡[t0,τ ] ξ

2
2 implies the equality

ζ1[ξ21 ] ≡[t0,τ ] ζ
1[ξ22 ].

The set of all non-antiipative strategies of the �rst player on [t0, t1] is denoted by Q1[t0, t1].
Analogously, a mapping ζ2 : U [t0, t1] → M[t0, t1] is a non-antiipative strategy of the seond

player if

• for any ξ1 ∈ U [t0, t1] and any measurable Γ ⊂ [t0, t1], Λ ⊂ U ,

ζ2[ξ1](Γ× Λ× V ) = ξ1(Γ× Λ);

• for any τ ∈ [t0, t1] and any ξ11 , ξ
1
2 ∈ U [t0, t1], the equality ξ11 ≡[t0,τ ] ξ

1
2 implies the equality

ζ2[ξ11 ] ≡[t0,τ ] ζ
2[ξ12 ].

We denote the set of all non-antiipative strategies of the seond player on [t0, t1] by Q2[t0, t1].
In [1℄ the following de�nition of the inentive Nash equilibrium is proposed. A triple

(ξc,∗, ζ1,∗, ζ2,∗) where ξc,∗ ∈ M[t0, T ], ζ
i,∗ ∈ Qi[t0, T ], is an inentive Nash equilibrium at (t0, x0) if

• there exist ontrol ξ1,∗, ξ2,∗ suh that ξc,∗ = ζ1,∗[ξ2,∗] = ζ2,∗[ξ1,∗];

• for any ξ1 ∈ U [t0, T ],
J1(t0, x0, ξ

c,∗) ≥ J1(t0, x0, ζ
2,∗[ξ1]);

• for any ξ2 ∈ V[t0, T ],
J2(t0, x0, ξ

c,∗) ≥ J2(t0, x0, ζ
1,∗[ξ2]).

The equivalene of the inentive and feedbak Nash equilibria is proved in [1℄.

In the paper we extend the lass of strategies and use randomized strategies. We endow the

sets U [t0, t1], V[t0, t1], and M[t0, t1] with the topology of narrow onvergene. This topology is

metrizable [17℄. Thus, the Borel σ-algebras on this sets are well-de�ned.

Let (Ω,F , P ) be a probability spae. A measurable funtion ω 7→ µ(ω) ∈ U [t0, t1] (respetively,
ω 7→ ν(ω) ∈ V[t0, t1]) is alled a randomized relaxed ontrol of the �rst (respetively, seond) player.

Additionally, a measurable funtion ω 7→ η(ω) ∈ M[t0, t1] is alled a randomized joint ontrol of the

players. If η is a randomized joint ontrol on [t0, T ], put

Ji(t0, x0, η) , EJi(t0, x0, η(·)) =

∫

Ω
σi(x(T, t0, x0, η(ω)))P (dω).

A measurable mapping α : Ω × V[t0, t1] → M[t0, t1] (respetively, β : Ω × U [t0, t1] → M[t0, t1])
suh that for any ω, α(ω, ·) ∈ Q1[t0, t1] (respetively, β(ω, ·) ∈ Q2[t0, t1]) is a randomized nonatii-

pative strategy of the seond (respetively, �rst) player on [t0, t1].
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De�nition 1. We say that the 6-tuple (Ω,F , P, η∗, α∗, β∗) is an inentive Nash equilibrium in

the lass of randomized strategies at the position (t0, x0) if

• (Ω,F , P ) is probability spae;

• η∗ is a randomized relaxed joint ontrol of the players, whereas α∗, β∗
are non-antiipative

randomized strategies of the �rst and seond players respetively;

• there exist a randomized ontrol µ∗
and ν∗ suh that η∗(·) = α[·, ν∗(·)], η∗(·) = β[·, µ∗(·)];

• J1(t0, x0, η
∗) ≥ J1(t0, x0, β

∗[·, µ(·)]) for any randomized relaxed ontrol of the �rst player µ(·);

• J2(t0, x0, η
∗) ≥ J2(t0, x0, α

∗[·, ν(·)]) for any randomized relaxed ontrol of the seond

player ν(·).

De�nition 2. We all a pair (c1, c2) ∈ R
2
a Nash value in the lass of randomized strategies at the

position (t0, x0) if there exists an inentive Nash equilibria at the position (t0, x0) (Ω,F , P, η∗, α∗, β∗)
suh that ci = Ji(t0, x0, η

∗).

� 2. Charaterization of Nash equilibria

To haraterize the set of Nash values in the lass of randomized strategies we onsider the

auxiliary zero-sum di�erential games, where the i-th player wishes to maximize the outome given

by σi(x(T )) and the other player prevents her. Reall [15℄ that the value funtion of the zero-sum

games where the �rst player maximizes σ1(x(T )) is equal to

V1(t0, x0) = min
ζ2∈Q2[t0,T ]

min
ξ1∈V [t0,T ]

σ1(x(T, t0, x0, ζ
2[ξ1])), (2.1)

whereas the value funtion of the zero-sum game where the seond player wishes to maximize

σ2(x(T )) is given by

V2(t0, x0) = min
ζ1∈Q1[t0,T ]

min
ξ2∈V [t0,T ]

σ1(x(T, t0, x0, ζ
1[ξ2])).

Theorem 1. A pair (c1, c2) is a Nash value in the lass of randomized strategies at the posi-

tion (t0, x0), if and only if there exists a probability P on M[t0, T ] suh that

ci =

∫

Ω
Ji(t0, x0, ξ

c)P(dξc), i = 1, 2, (2.2)

and for any t ∈ [t0, T ]

σi(x(T, t0, x0, ξ
c)) ≥ Vi(t, x(t, t0, x0, ξ

c)) P-a.s., i = 1, 2. (2.3)

The proof of the theorem involves the operation of onatenation of the relaxed ontrols. It is

de�ned in the following way. If Ξ is a metri set, t0 < t1, τ ∈ [t0, t1], ξ
′
is a measure on [t0, t1]× Ξ

onsistent with the Lebesgue measure on [t0, t1], whereas ξ′′ is a measure on [τ, t1] onsistent with
the Lebesgue measure on [τ, t1], then denote by ξ′ ⊙τ ξ

′′
the probability ξ on [t0, t1]× Ξ de�ned by

the rule: for Λ ⊂ [t0, t1]× Ξ,

ξ(Λ) , ξ′(Λ ∩ ([t0, τ ]× Ξ)) + ξ′′(Λ ∩ ([τ, t1]× Ξ)).

Note that ξ is also onsistent with the Lebesgue measure on [t0, t1].

Additionally, de�ne the projetors π1, π2 by the rules: if (t, u, v), then

π1(t, u, v) , (t, u), π2(t, u, v) , (t, v).



Randomized Nash equilibrium for di�erential games 303

MATHEMATICS 2017. Vol. 27. Issue 3

Further, if (Ω′,F ′), (Ω′′,F ′′) are measurable spaes, h : Ω′ → Ω′′
is measurable, m is a probability

on F ′
, then h#m is a probability on F ′′

suh that, for any Υ ∈ F ′′
,

(h#m)(Υ) , m(h−1(Υ)).

Note that ζ1 : V[t0, t1] → M[t0, t1] is a non-antiipative strategy of the �rst player if and only

if π2#(ζ
1[ξ2]) = ξ2 for any ξ2 ∈ V[t0, t1]. Similarly, ζ2 : U [t0, t1] → M[t0, t1] is a non-antiipative

strategy of the seonds player if and only if π1#(ζ
2[ξ1]) = ξ1 for any ξ1 ∈ U [t0, t1].

P r o o f o f T h e o r e m 1. First, let us assume that (c1, c2) is a Nash value. Thus, there

exists an inentive Nash equilibrium in the lass of randomized strategies (Ω,F , P, η∗, α∗, β∗) suh
that ci = Ji(t0, x0, η

∗). Let Γi
t be a set of ω ∈ Ω suh that inequality

σi(x(T, t0, x0, η
∗(ω))) < Vi(t, x(t, t0, x0, η

∗(ω))) (2.4)

holds true.

Let us prove that P (Γi
t) = 0. Without loss of generality, we an assume that i = 1. Given

t ∈ [t0, t1], denote by y(ω) the state x(t, t0, x0, η
∗(ω)).

Let µ∗(ω) denote π1#η
∗(ω). Note that η∗(ω) = β∗[ω, µ∗(ω)].

Let us de�ne a randomized non-antiipative strategy on [t, T ] of the seond player β♮
by the

following rule: for ω ∈ Ω, ξ1 ∈ U [t, T ],

β♮[ω, ξ1] , β∗[ω, µ∗(ω)⊙t ξ
1].

Further, (2.1) implies that

V1(t, y(ω)) = min
ζ2∈Q2[t,T ]

max
ξ1∈U [t,T ]

σ1(x(T, t, y(ω), ζ
2(ξ1))) ≤ max

ξ1∈U [t,T ]
σ1(x(T, t, y(ω), β

♮[ω, ξ1])). (2.5)

Let γ(ω) ∈ U [t, T ] maximize the right-hand side of (2.5), i. e.,

max
ξ1∈U [t,T ]

σ1(x(T, t, y(ω), β
♮(ω, ξ1))) = σ1(x(T, t, y(ω), β

♮(ω, γ(ω)))). (2.6)

Without loss of generality one may assume that the mapping ω 7→ γ(ω) is measurable.

De�ne a randomized ontrol µ♮
of the �rst player on [t0, T ] by the following rule:

µ♮(ω) ,

{

µ∗(ω)⊙t γ(ω), ω ∈ Γ1
t

µ∗(ω), ω /∈ Γ1
t .

Note that, if τ > t, ω /∈ Γ1
t ,

x(τ, t0, x0, η
∗(ω)) = x(τ, t0, x0, β

∗[ω, µ♮(ω)]). (2.7)

Moreover, for τ > t, ω ∈ Γ1
t ,

x(τ, t, y(ω), β♮[ω, γ(ω)]) = x(τ, t0, x0, β
∗[ω, µ♮(ω)]). (2.8)

If one assume that P (Γ1
t ) > 0, then from (2.4) we get

c1 = J1(t0, x0, η
∗) =

∫

Ω
J1(t0, x0, η

∗(ω))P (dω) =

=

∫

Γ1

t

σ1(x(T, t0, x0, η
∗(ω)))P (dω) +

∫

Ω\Γ1

t

σ1(x(T, t0, x0, η
∗(ω)))P (dω) <

<

∫

Γ1

t

V1(t, y(ω))P (dω) +

∫

Ω\Γ1

t

σ1(x(T, t0, x0, η
∗(ω)))P (dω).
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Further, under assumption P (Γ1
t ) > 0 (2.6), (2.5), (2.7), (2.8) imply that

c1 <

∫

Γ1

t

max
ξ1∈U [t,T ]

σ1(x(T, t, y(ω), β
♮[ω, ξ1]))P (dω) +

∫

Ω\Γ1

t

σ1(x(T, t0, x0, β
∗[ω, µ∗(ω)]))P (dω) =

=

∫

Γ1

t

σ1(x(T, t0, x0, β
∗[ω, µ♮(ω)]))P (dω) +

∫

Ω\Γ1

t

σ1(x(T, t0, x0, β
∗[ω, µ♮(ω)]))P (dω) =

=

∫

Ω
σ1(x(T, t0, x0, β

∗[ω, µ♮(ω)]))P (dω).

This ontradits with the assumption that (Ω,F , P, η∗, α∗, β∗) is an inentive Nash equilibrium

in the lass of randomized strategies. The equality P (Γ2
t ) = 0 is proved in the same way.

To omplete the proof let us de�ne the probability P on M[t0, T ] by the rule: for Υ ⊂ M[t0, T ],

P(Υ) = P{ω : η∗(ω) ∈ Υ}.

Sine inequality (2.4) an violates only on P -negligible set, we have that (2.2) and (2.3) hold true.

Now assume that (2.2) and (2.3) are valid for some probability P on M[t0, T ]. We shall prove

that (c1, c2) is a Nash value in the lass of randomized strategies. Using ontinuity of Vi and σ one

an dedue that

σi(x(T, t0, x0, ξ
c)) ≥ Vi(t, x(t, t0, x0, ξ

c)), i = 1, 2

for P-a.e. ξc and λ-a.e. t ∈ [t0, T ] (here λ stands for the Lebesgue measure).

Reall that we endow M[t0, T ] with the topology of narrow onvergene whih is metrizable.

Let B stand for Borel σ-algebra on M[t0, T ]. Put Ω , M[t0, T ], F , B(M[t0, T ]), P , P. For

ω ∈ Ω = M[t0, T ], put η
∗(ω) , ω, µ∗(ω) , π1#ω, ν

∗(ω) , π2#ω.
Further, if ω ∈ M[t0, T ], ξ2 ∈ V[t0, T ], then let τ1[ω, ξ2] be the greatest time τ suh that

π2#ω ≡[t0,τ ] ξ2.

For θ ∈ [t0, T ], z ∈ R
d
, let ζ1,∗θ,z minimize the right-hand side of

V2(θ, z) = min
ζ1∈Q1[θ,T ]

max
ξ2∈V [θ,T ]

σ2(x(T, θ, z, ζ
1[ξ2])).

For ω ∈ Ω = M[t0, T ], ξ
2 ∈ U [t0, T ], Λ ⊂ [t0, T ]× U × V , put

(α∗[ω, ξ2])(Λ) , ω(Λ ∩ ([t0, τ
1(ω, ξ2)]× U × V )) +

+ (ζ1,∗
τ1(ω,ξ2),x(τ1(ω,ξ2),t0,x0,ω)

[ξ2])(Λ ∩ ([τ1(ω, ξ2), T ]× U × V )).

Analogously, if ω ∈ M[t0, T ], ξ
1 ∈ U [t0, T ], then let τ2[ω, ξ1] be the greatest time τ suh that

π1#ω ≡[t0,τ ] ξ
1.

As above, given θ ∈ [t0, T ], z ∈ R
d
, hoose a non-antiipative strategy of the seond player ζ2,∗θ,z by

the rule

V1(θ, z) = max
ξ1∈U [θ,T ]

σ1(x(T, θ, z, ζ
2,∗
θ,z [ξ

1])).

Finally, for ω ∈ Ω = M[t0, T ], ξ
1 ∈ V[t0, T ], Λ ⊂ [t0, T ]× U × V , put

(β∗[ω, ξ1])(Λ) , ω(Λ ∩ ([t0, τ
2(ω, ξ1)]× U × V )) +

+ (ζ2,∗
τ2(ω,ξ1),x(τ2(ω,ξ1),t0,x0,ω)

[ξ1])(Λ ∩ ([τ2(ω, ξ1), T ]× U × V )).

We have that ω = α∗[ω, ν∗(ω)] = β∗[ω, µ∗(ω)]. Further, for any ω 7→ µ(ω) ∈ U [t0, t1],
ω 7→ ν(ω) ∈ V[t0, t1], and for P-a.e. ω,

σ1(x(T, t0, x0, β
∗[ω, µ(ω)])) = V1(τ

2(ω, µ(ω)), x(τ2(ω, µ(ω))), t0, x0, ω) ≤ σ1(x(T, t0, x0, ω)),



Randomized Nash equilibrium for di�erential games 305

MATHEMATICS 2017. Vol. 27. Issue 3

σ2(x(T, t0, x0, α
∗[ω, ν(ω)])) = V2(τ

1(ω, ν(ω)), x(τ1(ω, ν(ω))), t0, x0, ω) ≤ σ2(x(T, t0, x0, ω)).

Thus, (Ω,F , P, η∗, α∗, β∗) is an inentive Nash equilibrium at (t0, x0) in the lass of randomized

strategies. Therefore, (c1, c2) is a Nash value. �

Below we denote the set of Nash values at (t0, x0) in the lass of randomized strategies by

N r(t0, x0). One an also onsider the set of Nash values at (t0, x0) in the lass of deterministi

strategies. Denote this set by N d(t0, x0). Reall [1℄ that the pair (c1, c2) belongs to N r(t0, x0), if
and only if there exists a ontrol ξc ∈ M[t0, T ] suh that

ci = σi(x(T, t0, x0, ξ
c)) (2.9)

and, for any t ∈ [t0, T ],
ci ≥ Vi(t, x(t, t0, x0, ξ

c)). (2.10)

Corollary 1. N r(t0, x0) = coN d(t0, x0).

P r o o f o f C o r o l l a r y 1. The proof diretly follows from Theorem 1 and (2.9), (2.10). �

� 3. Example

Let us highlight the di�erene between Nash values in the lass of the deterministi and randomized

strategies by the following simple example. Let

ẋ1 = u, ẋ2 = v, |u|, |v| ≤ 1, T = 1,

σi(x1, x2) = |x3−i|(1 − | sin(2arctg(|x1/x2|))|).

We restrit our attention to the ase when initial time is 0 and initial position is x1,0 = x2,0 = 0.
Sine the dynamis of the game is symmetri the sets of Nash values at (0, 0, 0) are also symmetri.
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Fig 1. The set ontaining the set of Nash values in the

lass of deterministi strategies
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Fig 2. The set of Nash values in the lass of randomized

strategies

Further, the set N d(0, 0, 0) is ontained in the set

{(σ1(x1, x2), σ2(x1, x2)) : x1, x2 ∈ [−1, 1]} =

= {(x1, x2) : x1 ∈ [0, x2(1− sin(2arctg(x2)))], x2 ∈ [0, 1]} ∪

∪ {(x1, x2) : x1 ∈ [0, 1], x2 ∈ [0, x1(1− sin(2arctg(x1)))]}.
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This set is shown in Fig. 1.

Now let us prove that

{0} × [0, 1], [0, 1] × {0} ⊂ N d(0, 0, 0).

We have that, for x1,0 ∈ R,

V1(t0, x1,0, 0) = 0, V2(t0, x1,0, 0) ≤ min{|x1,0 − (1− t0)|, 0}. (3.1)

Analogously,

V1(t0, 0, x2,0) ≤ min{|x2,0 − (1− t0)|, 0}, V2(t0, 0, x2,0) = 0. (3.2)

Sine

σ1(r, 0) = σ2(0, r) = 0, σ1(0, r) = σ2(r, 0) = |r| (3.3)

we have by (3.1), (3.2) that, for any r ∈ [0, 1],

σi(r, 0) ≥ Vi(t, rt, 0), σi(0, r) ≥ Vi(t, 0, rt).

Hene, any ontrols u = r, v = 0 and u = 0, v = r provide the deterministi Nash equilibrium in the

lass of punishment strategies. Using (3.3) we get that the sets [0, 1]×{0}, {0}×[0, 1] lies in N d(0, 0).
Consequently, by Corollary 1 we get that N r(0, 0) = {(x1, x2) : x1, x2 ∈ [0, 1], x1 + x2 ≤ 1}. The set
N r(0, 0, 0) is presented in Fig. 2.

It is instrutive to ompare the optimal symmetri Nash values. If the players use deterministi

strategies the best symmetri Nash value is (0, 0), whereas players using randomized strategies an

reah the outomes equal to 1/2.
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�àáîòà ïîñâÿùåíà èññëåäîâàíèþ ðàâíîâåñèÿ ïî Íýøó â íåàíòàãîíèñòè÷åñêîé äåòåðìèíèðîâàííîé äè�-

�åðåíöèàëüíîé èãðå äâóõ ëèö â êëàññå ðàíäîìèçèðîâàííûõ ñòðàòåãèé. Ïðåäïîëàãàåòñÿ, ÷òî èãðîêè

èí�îðìèðîâàíû îá óïðàâëåíèè ñâîåãî ïàðòíåðà, ðåàëèçîâàâøåãîñÿ ê òåêóùåìó âðåìåíè. Ïîýòîìó èã-

ðà �îðìàëèçóåòñÿ â êëàññå ðàíäîìèçèðîâàííûõ êâàçèñòðàòåãèé. Â ðàáîòå ïîëó÷åíà õàðàêòåðèçàöèÿ

ìíîæåñòâà âûèãðûøåé (ïàð îæèäàåìûõ âûèãðûøåé èãðîêîâ) â ñèòóàöèÿõ ðàâíîâåñèÿ ïî Íýøó ñ èñ-

ïîëüçîâàíèåì âñïîìîãàòåëüíûõ àíòàãîíèñòè÷åñêèõ èãð. Ïîêàçàíî, ÷òî ìíîæåñòâî âûèãðûøåé â ñèòó-

àöèÿõ ðàíäîìèçèðîâàííîãî ðàâíîâåñèÿ ïî Íýøó ÿâëÿåòñÿ âûïóêëîé îáîëî÷êîé ìíîæåñòâà âûèãðûøåé

â êëàññå äåòåðìèíèðîâàííûõ ñòðàòåãèé. Ïðèâåäåí ïðèìåð, ïîêàçûâàþùèé äîïîëíèòåëüíûå âîçìîæíî-

ñòè, êîòîðûå âîçíèêàþò ïðè ïåðåõîäå ê ðàíäîìèçèðîâàííûì ñòðàòåãèÿì.
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