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A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in
a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics
of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border
of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are
numerically solved using a uniform grid of 6001 x 301 points. The control-volume technique for the second-
order difference approximation for spatial derivatives is used. The solutions were validated for a wide range
of Reynolds numbers (100 < Re < 1000) and Prandtl number Pr = 0.71, comparing them to experimental
and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along
the heated bottom wall of the channel are examined. The study results showed that a condition for the heat
flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear
boundary condition for temperature at the outflow border is claimed as the best.
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Introduction

Aim and objective of the work

Heat transfer and fluid flow in separated streams are found in heat exchangers, combustors,
microelectronic circuit boards, and so on. Hence, the investigation of separated flows is a problem of
great importance for fundamental and industrial reasons. As is well known, the flow over a backward-
facing step is the most representative issue of the class of separated flows since it has a configuration
which is regarded as having the simplest geometry. In other words, the heat and mass transfer
in a 2D plane channel with a backward-facing step and a heated bottom wall (or any other one)
is considered in numerous experimental and numerical investigations. Thus, it is a classic fluid
mechanics benchmark problem.

Because heat transfer and fluid flow characteristics experience large variation within separated
regions, it is very essential to carry out an accurate simulation of the mechanisms of heat transfer
in such regions in order to enhance or reduce heat flows. It is clear that a solution of the problem
first of all depends on the Reynolds number Re, the Prandtl number Pr, and the expansion ratio
of the channel ER which is defined as the ratio of the height of outflow border of the channel to
the height of its inlet segment. Boundary conditions are also of no less importance in the mathe-
matical formulation of the problem [1|. The fluid flow and heat transfer characteristics at the inlet
border and on the walls of the channel, as a rule, are known. So, it is not difficult to define bound-
ary conditions at these boundaries of the domain. An absolutely different situation takes place at
the outlet boundary of the channel where the field characteristics of heat and mass transfer are
unknown and need to be computed.

In general, formulation of a condition at the so called ‘open boundary’ (for the present problem it
is the outflow border) isn’t a fully resolved issue to the present day. The main feature of an ideal open
boundary condition is to allow a flux of any characteristic of the stream to exit the domain through
the open boundary without any upstream perturbances [2]. As to the present study, it means that
the heat waves must cross outflow border without any blocking or conversely fast escape. As a rule,


http://dx.doi.org/10.20537/vm170311

432 A_A. Fomin, L. N. Fomina
MECHANICS 2017. Vol. 27. Issue 3

it is expressed in a sharp increase or reduction of fluid flow temperature within a zone near the outlet
border of the channel.

Numerous investigations are devoted to studying incompressible fluid flows in domains with open
boundaries (see, for example, [3-8]). But in most cases it concerns the conditions for dynamic char-
acteristics of the flow. In regard to a transport unknown ® (i.e., temperature, mass concentration
and so on), there are only a few studies that investigate open boundary conditions for those quan-
tities. Although, as will be shown later, open boundary conditions for heat flux (temperature) can
substantially influence the field of temperature in the whole domain.

Thus, the objective of this study is a numerical investigation of the influence of open boundary
conditions for heat flux (temperature) on a solution of the problem of the 2D backward-facing step
flow of incompressible heat-conductive fluid.

Literature Survey

The fluid flow and heat transfer characteristics downstream of the backward-facing step in a plane
channel have been studied by many researchers. As usual, experimental studies are presented by
a relatively small amount of works [9-12]. Parameters of heat and mass transfer in these studies are
measured directly. Therefore, there is no problem of influence of boundary conditions on the research
results. At the same time practically in all theoretical studies the domain length is accepted so that
at the exit from a channel the fluid flow is, at least, a plain-parallel stream. It is considered that in
this case the reverse influence of an open boundary condition is negligible for transport quantity .
As a rule, a fee for the similar approach is a needless long size of the calculation domain.

Characteristics of heat transfer at the reattachment region downward a backward-facing step
were investigated experimentally by Kawamura et al. [9]. They reported that instantaneous heat
transfer distribution changed in a complex manner and, therefore, a temporal and spatial universal
distribution of a heat transfer coefficient was not found. But in average the peak value of the heat
transfer distribution shows a maximum at about one step height upstream from the time-averaged
reattachment point of the fluid flow. The same problem, namely, the location of Nusselt num-
ber maximum relative to the point of reattachment of the fluid flow, was investigated by Sparrow
et al. [10]. The results, both experimental and numerical, were obtained for Reynolds numbers
Re = 100, 200 and 300, and for a Prandtl number of 0.7. For most of the considered cases, the point
of heat transfer maximum was situated upstream of the reattachment point. This result confirmed
conclusions of the paper [9] about non-equivalence of these two points of the flow.

The spatio-temporal characteristic of heat transfer accompanied by the fluid flow separation
and reattachment was investigated experimentally by Nakamura et al. [11,12]. In these studies,
the heat transfer in the fluid flow reattaching region has a spot-like feature, which spreads with time
and overlaps with other ones to form a complex structure. They observed that the mean Nusselt
number distribution behind the reattaching region was approximately proportional to 2/3 power of
Reynolds number. Namely, behind the reattachment point the relation of local Nusselt number to
local Reynolds number in 2/3 degree can be approximated by a constant value of 0.13. They also
reported that the time-space distribution of the heat transfer has a typical spanwise wavelength and
a typical fluctuating frequency in the reattaching region. Furthermore, the origin of the spanwise
periodicity is not the instability upstream of the flow separation, but is due to some instability,
which is accompanied by the flow separation and reattachment.

Aung et al. [13] have presented theoretical results concerning the flow and heat transfer in laminar
flow past a backward-facing step. They reported that the size of the initial boundary layer in the inlet
part of the domain before step can have opposing effects on the reattachment distance, depending
on whether the Reynolds number is held constant. Also, it was shown that computed velocity and
temperature profiles had major discrepancies in the separated region after step with those given by
the simple theory.

Kondoh [14] studied laminar heat transfer in a separating and reattaching flow downstream
a backward-facing step. Three parameters governing the heat transfer: Re, ER, Pr were varied
in this research; Reynolds number from 10 to 500, Prandtl number from 0 to 1000, and expansion
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ratio from 1.25 to 2. Here it should be noted that solutions of the problem weakly differ from
each other at ER < 2, while at ER > 2 they change more strongly (see, for example, [15-17]).
According to the results obtained, the authors have claimed that the peak of the local Nusselt
number isn’t necessarily located at or very near the point of the flow reattachment. Moreover, its
location considerably depends upon both the Reynolds number and the channel expansion ratio.

Valencia et al. [15] studied the incompressible laminar flow and heat transfer of air in a channel
with a backward-facing step for steady and pulsatile inlet conditions. The Reynolds number was
varied from 100 up to 1250, and the expansion ratio from 0.25 up to 0.75. It was found that heat
transfer in the bottom wall of the channel had maximum value downstream the reattachment length
for steady flows. For the pulsating flow the primary vortex arose on the corner of the backward-
facing step wall at the maximum inlet velocity, and filled the channel at the minimal inlet velocity.
Also, the time-average pulsatile heat transfer at the channel walls was higher then with steady flow
at the same mean Reynolds number.

The numerical prediction of the fluid flow and heat transfer characteristics for a backward-facing
step by discharging a jet through the roof wall of the channel perpendicularly to the main flow was
carried out by Yang et al. [18]. The predicted attachment point and local heat transfer coefficient
were in good agreement with the experiments. A dependence of local heat transfer coefficient from
the jet position has been found.

The heat transfer enhancements of backward-facing step flow in a channel through the solid or
slotted baffle installation on the roof channel wall have been studied by Tsay et al. [19]. The main
parameters of the investigation were Pr = 0.7, ER = 0.5, H, = 0.3, W, = 0.2,50 < Re < 500, and
0< Gr/Re2 < 1. Here H, is the baffle height, W} is the baffle thickness, and Gr is the Grashof
number. The authors reported that a slight movement of the baffle could cause a drastic change
in the fluid flow structure and temperature field in the channel. In addition, they stated that the
effects of baffle width on heat transfer were insignificant. Also, in these articles it was shown that
a slotted baffle can enhance the average Nusselt number for the heating section of the channel wall
by the maximum of 190 %. As for the solid baffle, the enhancement may be up by 230 %.

A study on mixed convective heat transfer for two-dimensional laminar flow in an inclined channel
with a backward-facing step was presented in [20]. The uniform heat flux came into the channel
through a wall behind a step. At the same time, the opposite wall of the channel was cold. The
inlet flow was fully developed and was at a uniform temperature. The investigation was carried out
at Re = 100, Grashof number Gr = 609, and expansion ratio £R = 2. The inclination angle v was
varied from 0 to 360° at Pr = 0.712, and Prandtl number Pr — from 0.07 to 100 at v = 0°. As
was shown, increasing « from 0 to 180° increased the reattachment length, but it decreased the wall
friction coefficient and Nu at the heated wall. Also, increasing Pr increased Nu and the reattachment
length, but it decreased the wall friction coefficient.

Forced convection heat transfer due to fluid flow over a backward-facing step with a porous
floor (bottom wall of the channel) segment for a wide range of the pressure loss coefficient was
investigated numerically by Abu-Hijleh [21]. The resulting Reynolds number based on the average
incoming stream velocity and step height was 100, the expansion ratio ER was 2. The porous
segment was positioned around the flow reattachment point on the floor. The main conclusions of
the study were that the addition of a porous segment resulted in an increase in the maximum Nusselt
number Nu, and maximum Nu was more affected by changes in the axial rather than the transverse
pressure loss coefficient of the porous floor segment.

Batenko et al. [22] carried out a numerical study of a laminar separated flow behind a rectangular
step on a porous bottom wall of a plane duct with uniform gas injection or suction through the
porous surface. The problem was solved for the following parameters: 10 < Re < 1000, FR = 2,
1074 < |F| <1071, where F is the ratio of the velocity of gas injection (suction) to the mean-mass
velocity at the cross inlet section of the duct. It was shown that mass transfer on the porous
surface caused strong changes in the flow structure and substantially affected the position of the
reattachment point, as well as friction and heat transfer.

Abu-Nada et al. [23] studied a heat transfer and fluid flow over a backward-facing step under the
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effect of suction and injection of warm fluid, which is implemented on the bottom wall of the channel
after the step. The investigation was carried out for the following values of problem parameters:
Pr = 0.71, 200 < Re < 800, 3/2 < ER < 3, —0.005 < F' < 0.005. It was shown that on the bottom
wall, and inside the primary recirculation zone, suction increased the coefficient of friction and
injection reduced it. The reattachment length of the primary recirculation zone was increased by
increasing the injection bleed coefficient F' and was decreased by increasing the suction bleed rate.
Also, the local Nusselt number on the bottom wall increased by suction and decreased by injection,
and the opposite occurred at the roof wall.

A steady-state conjugate heat transfer study of a wall and a fluid for a two-dimensional laminar
incompressible stream over a backward-facing step was carried out by Kanna et al. [16]. As main
results they demonstrated that the conjugate interface temperature value decreased along the step
length and height. The minimum Nu fell after the reattachment point position. At the same time,
the interface temperature value decreased when Re was increased and it decreased for higher Pr.
Also, the local Nusselt number had a peak value near the inlet cross section and the second peak
occurred after the reattachment point of the stream.

A somewhat unusual investigation was carried out by Saha et al. [24] in which a numerical analysis
of mixed convection was observed in a rectangular enclosure with different placement configurations
of the inlet and outlet openings. At the outlet of the computational domain a so-called ‘convective
boundary condition’ was used. The authors reported that the average Nusselt number and the
surface temperature on the heat source strongly depended on the positioning of the inlet and outlet
fluid flow.

An investigation of backward-facing step incompressible fluid flow, heat transfer and conjugated
heat transfer is presented in Teruel et al. [25]. Calculations were executed for the following pa-
rameters of the problem: Re = 107%,1072,1,500,800; Pr = 0.7; ER = 1.5. Excellent agreement
for fluid flow at Re = 800 was found with numerical data reported in the literature. However, the
results obtained for heat transfer and conjugate heat transfer have shown a few differences with
available data. As a result, further analysis was recommended in this paper to find the origin of this
disagreement. Here at once it should be noted that the test results of the present research are in
good agreement with data [25].

Gada et al. [26] have investigated different thermal boundary conditions for the fluid flow problem
in a plane channel without and with phase changes. The studies in a dimensional form were carried
out both by analytical and by numerical methods. Numerical 2D simulations were done for the
operating conditions proposed in the analytical part of the research. An excellent agreement was
found between the numerical and analytical results, with and without phase changes.

Mitsoulis et al. [27] have tested the ‘free’ (the same as ‘open’) boundary condition in several
benchmark problems of viscous flow. This condition was proposed by Papanastasiou et al. [28]
to handle truncated domains with so-called ‘synthetic’ (artificial) boundaries, where the outflow
conditions were unknown. They reported that the condition was primarily suitable for flows in
cases where the boundary conditions were not known and the flow phenomena downstream were
determined by the conditions upstream (convective flows). At the same time, it was not suitable for
the problems of flow with gravity or surface-tension effects.

The investigation by Dimakopoulos et al. [29] also concerned the use of Papanastasiou free
boundary condition at the synthetic borders. But contrary to the previous research [27] the bound-
ary condition was used not only at the outflow border of a domain, but also at inflow one. The
authors stated that the open boundary condition was a very attractive alternative for imposing
inflow boundary conditions in all cases of fluid flow.

As mentioned above, a quantity of types of boundary conditions at open borders for a heat
flux (temperature) is less than a quantity of similar types of the boundary conditions for dynamic
parameters of a fluid flow. Moreover, there are only a few works where the influence of different
kinds of open boundary conditions on a problem solution was studied. In the present reference list
only articles of Sani et al. [5] and Papanastasiou et al. [28] deal with this subject.

In [28] a backward-facing step flow in a plane duct problem was solved using two kinds of outflow
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conditions: zero flux of an unknown and free boundary condition. It was shown that the second
condition was useful not only at a far distance from the zone with eddies but it worked even when
the flow was not developed at the synthetic outflow border.

Results of the solution of four fluid flow problems by using five types of open boundary conditions
for the normal momentum equation at outflow border, which were obtained by nine research groups,
are discussed in [5]. The main conclusion of this complex report is that the problem of implemen-
tation of an open boundary condition is still far from final solution. The authors consider that the
most important issue for incompressible flows is that the incompressibility constraint is all-pervasive
and reaches up both open boundaries and all other ones. As a result, the instantaneous interaction
of the pressure and the normal component of the velocity define the structure of incompressible fluid
flow.

In this situation, the problem of an open boundary condition for non-dynamic transport un-
known @, as a rule, is not so dramatic. Here the standard recommendation concerning the location
of the open border is to position it as far as possible from a zone of eddy perturbations of stream [30].
In this position the open boundary condition should have no significant effect on the solution inside
the calculation domain. That is why a range of variants of boundary conditions for ® is not so wide
as it is for dynamic unknowns because the kind of an open boundary condition for ® isn’t of great
importance. Moreover, the zero first derivative of ® along the normal direction to the open border
is the most usable condition. For example, the zero second derivative of temperature is used as an
open boundary condition in [14,20,22,24], and in [27,29] these conditions were obtained from the
truncated form of an energy equation. In all the other articles of the present reference list, where
the energy equation is solved, the zero first derivative of temperature is used as the open boundary
condition at the outflow border.

This paper is structured as follows. The physical assumptions, geometry of the domain, govern-
ing equations, and boundary conditions for viscous heat-conductive incompressible backward-facing
step flow problem and definitions of main characteristic parameters of the stream are described in
Section 1. In Section 2, the details of the numerical solution technique are given. Then the results
of code validation in terms of mesh refinement and comparisons of present solutions with numerical
ones found in the literature are presented in Section 3. Next, Section 4 contains the main results of
the investigation such as the fields of streamlines and temperature as well as the profiles of Nusselt
numbers which are demonstrated and discussed. Finally, in Section 5 conclusions are drawn.

§ 1. Mathematical formulation
§ 1.1. Physical assumptions and geometry of the domain of the flow and heat transfer

An incompressible heat-conductive Newtonian fluid with constant fluid properties such as den-
sity p, viscosity p, and thermal conductivity A is assumed. The flow in the problem is two-
dimensional, laminar and stationary. The basic scheme of the flow and heat transfer in Cartesian
coordinates is shown in Figure 1. Here all distances are dimensionless. The height of the outlet sec-
tion of the channel is chosen as the characteristic length. The notations of the length and the height
of the backward-facing step are [. and h,, respectively. According to its definition, the expansion
ratio FR is calculated by the formula ER = 1/(1 — h.) in the present investigation. Designations
of the domain borders B1, B2, ..., B6 are accepted in the same way as in Roache [1].

A fully developed stream with constant temperature 7 flows into the inlet section of the channel
through the left border of the domain and flows out through its right border. The bottom wall is
heated uniformly with constant temperature T;,. Hereafter the subscript ‘w’ denotes the bottom
wall B1. The walls B2, B3, and B5 are heat insulated surfaces. In addition to a primary recirculation
zone behind the step whose length is x1, a secondary recirculation zone exists at the upper wall of
the channel. Tt is assumed that the flow at the inlet border of the channel is fully developed, and
conversely, because a short channel takes place in the problem, the stream in the outlet section of
the channel can’t be considered as the fully developed flow in the general case. In other words,
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Fig 1. Geometry of domain and scheme of the flow and heat transfer

the stream is not only outlet flow but, in general, can have inlet part of flow at the border B6 (see
Figure 1).

§1.2. Governing equations
The non-dimensional, non-conservative form of the continuity, momentum, and energy equations

in 2D Cartesian coordinates is as follows:

ou, Ou  Ou_ Op 1 (u Ou
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where u and v are the horizontal and vertical components of the velocity, respectively, p is the
pressure, 6 is the relative difference of temperature defined as 0 = (T' — Tp) /(Tw — To)-

The Reynolds number is defined as Re = pU H/p and Prandt]l number is defined as Pr = pC)p /.
Here H is the full height of the channel, U denotes the average velocity of the incoming flow, which
corresponds in the laminar case to two-thirds of the maximum inlet velocity, C), is specific heat at
constant pressure. Time and pressure were nondimensionalized with H/U and pU?, respectively.

The time-dependent form of the momentum equations is caused by using a relaxation technique
for reaching the stationary solution of the dynamic part of the problem (equations (1)-(3)) by time
marching. It is clear, that when the field of velocity is defined, arbitrary quantity of stationary heat
transfer problems can be solved on the basis of this field. In particular, various solutions obtained
under different open boundary conditions for the thermal flux (temperature) can be analyzed.

As is well known, the main characteristic of heat transfer at a surface within a fluid flow is
Nusselt number that is the ratio of convective heat exchange to conductive one along the normal
direction to a surface. For the bottom wall in the problem this number is defined as follows [22]:

aH 00
M= == (), ®)

where « is a local heat transfer coefficient in the formula for the heat flux ¢ between heated surface
and fluid stream ¢ = (T}, — Tp). Because ¢ is a function of the z—coordinate, Nu in equation (5)
is a function of x too.
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§ 1.3. Initial and boundary conditions

Initial conditions for components of velocity are v = v = 0. Further in the range of time
0 <t <ty asmooth increase in stream intensity through the left border of the channel up to its
maximum takes place. For ¢ > ¢,, all boundary conditions become stationary allowing one to seek the
solution of the problem using a relaxation method. Also for the inlet boundary B4 time-dependent
fully developed velocity field is specified as a parallel flow with a parabolic horizontal component
and a zero vertical component of velocity given by

u= f(t) (H_}(LC)Q : (6)
v =0; (7)

where

0.5 {sin [0.57 (2t/t;, — 1)] + 1}, 0 <t <tp;
f@t)=

1, tm < t.

In all calculations of the current research ¢,, is equal 1. It is not difficult to understand that the
boundary condition (6) at ¢ > ¢,, sets at the inlet border B4 the value of average velocity which is
equal to 1, mass flow rate @ = 1 — h., and maximum incoming velocity umax = 1.5.

No-slip and impermeability boundary conditions for components of velocity are used at all walls.
As mentioned above, in general it is assumed that flow isn’t fully developed at the outlet border B6.
In this sense any open boundary conditions have to be considered as rough ones. So, in the present
investigation Neumann boundary conditions owing to their simplicity and usability are used for both
velocity components at this border:

ou Ov
—=—=0. 8
Jxr Oz (®)
Boundary conditions for 6 are specified as follows: at the inlet border B4 § = 0, at the heated
bottom wall § = 1, at the other walls 96/0n = 0 where n is a normal direction to the wall. According
to the objective of the present research declared above, several kinds of open boundary conditions
at the outlet border B6 are formulated here:
— the assumption of constancy of a conductive heat flux
020
— =0 9
=0, )

this is the linear condition;
— the assumption of constancy of a full heat flux [1]

0 1 00
—(wg——=") =0 10
ox <u RePr 3x> ’ (10)
this is the linear condition;
— the assumption of constancy of a relative difference of temperature
00
— =0 11
Ox ’ (11)

this is the linear condition;
— and the assumption of constancy of a flux of a reciprocal relative difference of temperature

2
% =0, (12)

unlike the above conditions, this one is the nonlinear condition.
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§ 2. Numerical technique

Since there is no direct coupling between the continuity equation (1) and momentum equa-
tions (2)—(3) for incompressible flows, a well-known approach is to derive the Poisson equation for
pressure from equations (1)—(3) and to use it instead of the continuity equation (1). As a result, the
technique of splitting of physical factors [31] can be applied to solving the Navier-Stokes equations
(1)—(3). In particular, this technique means that the solution should converge to a steady-state one
through iterations in time. In contrast to [31], two modifications of this computational technology
are used herein. First, an implicit difference scheme is used for momentum equations. Second, the
Poisson equation is formulated for the increment of pressure (instead of pressure, as it was made
in the original work) with zero Neumann boundary conditions at all borders of the domain. The
convergence of the solution to a stationary one is checked by means of the condition

p, = =t
F IV,

Here 7 is a time step, the superscript ‘k’ is an index of a time level, Dy is a rate of relative
change of velocity vector V¥. The criterion of accuracy of solution convergence is equal to € = 107°.
This value of criterion provides the accuracy of the numerical solutions up to 6th decimal.

As pointed out above, the outlet boundary conditions in equation (8) are rough ones. Therefore,
the profile of u component of velocity at this border can be changed a little in accordance with some
additional condition. Details of the technology for the correction of the velocity components which
allows one to put an open border in any place are given in [32].

For the approximation of time derivative terms in the momentum equations, the first-order
accurate Euler implicit time-stepping scheme is applied. And for the spatial discretization of equa-
tions (1)—(4), the control-volume method with fifth-order power-law scheme of second-order accuracy
is used [30]. In all calculations uniform grids are used. The resulting linear system of finite difference
equations is solved with the use of the original so-called line-by-line recurrence method, accelerated
in Krylov subspaces [33].

Since the governing equations for u-v-p and the energy equation are uncoupled, the u-v-p equa-
tions are first solved and their results are stored. The stored information (fields of velocity compo-
nents) is then used to obtain various solutions of the energy equation.

§ 3. Fluid flow and heat transfer verification
§3.1. Grid testing

The grid refinement of solution was investigated by detailed mesh testing that was carried out
for the following parameters of the problem: L = 10, ER = 2,1, = 0.5,Re = 1000, and Pr = 0.71.
As is shown in Figure 2, five different meshes were examined. This testing used uniform grids of
1001 x 101,2001 x 201, 3001 x 301,4001 x 401, and 5001 x 501.

In the figure it is clearly shown that the curves for the grid steps from 1/300 to 1/500 are almost
the same with graphical accuracy. The most significant relative distinctions between solutions for
the grid step of 1/100 and for the other grid steps reach 5-10 % for v-component of velocity and
Nusselt number. For the grid step of 1/200 distinctions are noticeable too, but are very negligible.
Thus, to increase the reliability of computing results, a grid with a step of 1/300 is chosen as a basis
for further calculations.

§ 3.2. Comparisons with literature data

The adequacy of the present numerical technique is evaluated by comparing the present pre-
dictions of some flow and heat transfer parameters with the experimental and numerical published
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Fig 2. Evaluation of grid independency for (a) u-component of velocity at x = 5.5, (b) v-component of velocity
at = 5.5, (c) relative difference of temperature 6 at y = 0.5, (d) Nusselt number at y = 0

data [17,23,25,34-38]. As typical results of these comparisons, Figure 3 shows the predicted and
published dependencies of length of the primary recirculation zone behind the step on Reynolds
number, and profiles of Nusselt number at the heated bottom wall B1.

For the range of moderate Re from 100 to 500 (Figure 3, a) a predicted length of the primary
recirculation zone matches well with experimental as well as computational results. For higher Re
it agrees well with computational data (especially with Erturk [36] and Rogers et al. [37]) and much
less with the experimental one. The differences of the theoretical and experimental results for higher
Reynolds numbers can be explained by the presence of three-dimensional effects in the experiments.

Comparisons of heat fluxes at B1 (Figure 3, b) demonstrated a good agreement of predicted Nu-
profiles with those presented in the literature.Almost exact coincidence of results can be considered
as a proof of the correctness of the thermal problem solution even if one takes into account a small
divergence about 8-10 % at local maximum of Nu profiles at Re = 800 (a curve 4). The use of
quantity « — [, instead of x in both fragments of Figure 3 indicates an insignificant dependence of
the step length on the final result of the study. However, as test calculations showed, this insignificant
dependence takes place for [, > 0.5. But, for example, for the case [, = 0 the solution will be different
from the one for the case I, > 0 (see, for example, [39]).

§ 4. Computed results and discussion

The technique of the study consists in the following. The constant parameters of all calculations
are Re = 1000, Pr = 0.71, L = 20,l. = 0.5, the resolution of a uniform difference grid is 6001 x 301.
For these conditions the fields of velocity components were obtained for h. = 0.5 and h, = 0.9. In
the second case of h. a very specific flow field takes place. A series of solutions of the heat transfer
problem for different kinds of the outlet open boundary condition is calculated for each variant of
the step height. The solutions are compared with each other for every series in such parameters as
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fields of isotherms and profiles of heat flux (Nusselt number) at the heated wall B1. On the basis
of these comparisons the conclusions about the degree of correctness of the used open boundary
conditions at the outlet border of the channel for the energy equation are drawn.

§4.1. The step height h, = 0.5 (ER = 2)

The fields of streamlines and isotherms for ER = 0.5 are presented in Figure 4. The patterns
are zoomed out along the horizontal direction.
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Fig 4. Fields of the fluid flow and heat transfer for ER = 2. (a) Pattern of the streamlines. Patterns of the
isotherms for different boundary conditions at B6: () condition (9), (¢) condition (10), (d) condition (11),
(e) condition (12). Levels of 6 are: from 0.95 to 0.05 with decrement of 0.05, and 0.001

Predictably, two significant recirculation zones are situated in the flow: the first one is at the
bottom wall immediately behind the step; the second one is a little further at the roof wall (Fig-
ure 4, a) compare, for example, with Erturk [36]). Fluid flow near the outlet border is unidirectional.
However, its streamlines aren’t absolutely parallel to each other there. Therefore, the flow is not
fully developed, i.e., the cross-channel profile of the u-component of the velocity is not parabolic
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and v-component is not zero. In the figure it is clearly shown that patterns of isotherms for different
boundary conditions at B6 almost coincide in general. The insignificant exception arises in the case
of using the boundary condition (10) (Figure 4, ¢) where a sharp curvature of isotherms in the very
narrow zone at the outlet border takes place.

Additional important information about differences between solutions of the heat transfer prob-
lem depending on a kind of the open boundary condition at the outlet border can be obtained
from analysis of Nusselt number profiles. In Figure 5 the profiles of Nusselt number at ER = 2 are
demonstrated for different open boundary conditions for the whole length of the channel behind the
backward-facing step and for the narrow region near the outlet border B6.

Nu [a] Nu (5]
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Fig 5. Profiles of Nusselt number for ER = 2 for different boundary conditions at B6: (a) the whole length of the
domain downstream behind the step, (b) near the outflow boundary of the domain. 1 — condition (9),
2 — condition (10), 3 — condition (11), 4 — condition (12)

It is clearly seen that there are few differences between Nu-profiles for condition (9), on the one
hand, and for conditions (10)—(12), on the other hand, in Figure 5, a. However, the sharp downturn
of the Nu profile for condition (10) (a curve 2) near the output border is more interesting. Beyond all
doubt this downturn of the curve is connected with the sharp curvatures of isotherms in Figure 4, c.
Much more detailed behaviors of Nu-profiles close to the outlet border are presented in Figure 5, b.
It should be noted that every second the node of the grid is marked on the curves by a ‘diamond’
bullet. The conclusion that the effect of the boundary condition (10) on the solution inside the
domain covers no more than two dozen nodes of the grid follows from the behavior of curve 2 in
Figure 5, b.

One more noticeable feature of the distributions of Nusselt number along the channel length is
coincidence of positions of the Nu profiles maxima and the flow reattachment point (Figure 5, a).
There is coincidence or almost coincidence of these two points in literature for the 2D computer
modeling [14]. But in experiments the point of Nu profile maximum as a rule is localized at some
distance upstream from the reattachment point of the flow [9, 10].

On the basis of Figure 5 a need arises to study the detailed structure of isotherms in the narrow
zone near the outlet border for all four conditions (9)-(12). It is not difficult to see in Figure 6
that conditions (9) and (11)—(12) for the almost plane-parallel flow provide within a short distance
a plane-parallel behavior of isotherms from the grid node to the node near the boundary. Whereas
condition (10) leads to a sudden increase of the heat flux in vertical direction in this zone.

The reason for such behavior of the solution is obvious: condition (10) demands preservation of
the full heat flux along the channel, which is the sum of convective and conductive fluxes. In other
words, condition (10) doesn’t allow the heat to spread horizontally near B6 boundary. Hence, the
additional heat flux which arrives from the lower more heated layers of fluid (or the wall B1) can
move only up. It is clear that in this case the vertical gradient of temperature (Nusselt number)
decreases.

Of course, in the issue it is possible to reduce a little the length of the calculation domain and
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Fig 6. Patterns of the isotherms near outflow boundary of the domain for ER = 2 for different boundary conditions
at B6: (a) condition (9), (b) condition (10), (¢) condition (11), (d) condition (12). Levels of 6 are: from 0.95 to 0.05
with decrement of 0.05

to draw the conclusion about the correctness of all the considered open boundary conditions for
the variant of the problem EFR = 2. In other words, in the case considered the choice of an open
boundary condition for temperature has no basic value at least among widespread ones. As for the
actually pattern of warming up of fluid for the channel length considered here, it is clear that a split
of the stream into the top cold part of flow and the lower warm one takes place (see Figure 4).
Namely, there is a localization of heat near the lower heated wall B1.

§4.2. The step height h, = 0.9 (ER = 10)

A fundamentally different solution takes place in the case ER = 10 (see Figure 7). In this figure
the patterns are zoomed out along the horizontal direction in the same way as in Figure 4. The flow
has a complex circulation structure in Figure 7, ¢ which consists of four eddies. It is interesting
that there are two centers of rotation in the primary recirculation zone immediately behind the step
and a saddle point between them, respectively. At the same time the structure of outlet stream is
plane-parallel, i.e., it coincides with the outlet flow in the previous case (compare with Figure 4, a).
As to solution of the energy problem, here another situation takes place: the patterns of isotherms
for the first two variants for conditions (9)—(10) are drastically different from the other ones for the
second two variants for conditions (11)—(12).

Here it should be kept in mind that all four patterns of the isotherms are correct solutions of the
mathematical formulations of the problem which differ only by output boundary conditions. But
the physical correctness of solutions in Figures 7, b—c raises doubts for the following reasons. Firstly,
this is a weak warming up of fluid in a top part of the region immediately behind the step for the
range of = from 0.5 to 3. Although the presence of two eddies behind the step has to cause intensive
heat exchange as it was in Figure 4. Secondly, this is a downstream fall of temperature in the right
top part of the channel for 10 < < 20. For the given boundary conditions on the bottom B1 and
top B3 walls this is possible only in the case of presence of the source term which plays the role of
heat outflow in the energy equation. But such a term in equation (4) is absent. Hence, in these
cases the boundary conditions (9)-(10) act as some kind of artificial heat outflow.

Due to the relative smallness of mass flow rate @ for h. = 0.9 (as was mentioned above,
@ = 1— h, in dimensionless presentation) the mean velocity of stream for this case is less than
the one for the previous case h. = 0.5. Therefore, fluid downstream here has to warm up more
quickly. These are the patterns of warming up of the liquid one can see in Figures 7, d—e. Whereas
the fields of the heat transfer in Figures 7, b—c have structures similar to the patterns of isotherms in
Figure 4, i.e., flow separation into the cold top part and the warm bottom one takes place. It turns
out that despite of decrease in the flow velocity, heat continues to remain in a narrow lower region of
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Fig 7. Fields of the fluid flow and heat transfer for ER = 10. (a) Pattern of the streamlines. Patterns of the
isotherms for different boundary conditions at B6: (b) condition (9), (¢) condition (10)), (d) condition (11),
(e) condition (12). Levels of 6 are: from 0.95 to 0.05 with decrement of 0.05, and 0.001

the channel. Such a picture of warming up of the fluid flow contradicts common sense. As a result,
the solutions in Figures 7, b—c cannot be considered to be correct enough from the point of view
of physical legitimacy of the process. Here it is necessary to pay attention to one very important
feature of the consideration: the unsuccessful open boundary conditions (9)-(10) have distorted the
solutions in the whole calculation domain, but not just in a small outlet boundary region.

The profiles of Nusselt number at heated wall B1 for the whole length of the channel and for the
very small part near the outlet channel border are observed in Figure 8.

Nu @ Nu| @
18F 1,2
Nu=394 /

16 F 000000 0 0000000 v v os
14F Nu=340
12+
10 .

the reattachment point
8»
6,
42
2»
0 2 4 6 8 1012 14 16 18 «x 1980 19.85 1990 1995  «x

Fig 8. Profiles of Nusselt number for ER = 10 for different boundary conditions at B6: (a) the whole length of the
domain downstream behind the step, (b) near outflow boundary of the domain. 1 — condition (9),
2 — condition (10), 3 — condition (11), 4 — condition (12)

It is obvious that for the reasons discussed above, Nu-profiles for conditions (9)-(10) (curves 1, 2)
differ from such profiles for conditions (11)-(12) (curves 3, 4). It is not difficult to understand that
due to a closer position of the cool layers of the liquid to the heated wall B1 curves of Nu 1 and 2
are situated higher than curves 3 and 4. The curve 2 (condition (10)) has a sharp downturn close
to the outlet border due to the same reasons as for the case ER = 2 because these reasons do not
depend on the height of the backward facing step.
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The detailed patterns of isotherms in the outlet part of the channel in Figure 9 explain the
behaviors of Nu profiles in Figure 8, b. Really, the dense arrangement of the isotherms in Figure 9, a
near the bottom wall is indicative of a thin warming up layer, therefore, the heat flux from the wall
to the fluid flow has to be considerable (curve 1 in Figure 8, b). Very curved isotherms in the narrow
region close to the outlet border (see Figure 9, b) suggest a sharp change of Nu value in this region
(curve 2 in Figure 8, b). And finally, the rare plane-parallel isotherms in Figures 9, ¢—d correspond
to a moderate constant Nusselt number (curves 3 and 4 in Figure 8, b).
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Fig 9. Patterns of the isotherms near the outflow boundary of the domain for ER = 10 for different boundary
conditions at B6: (a) condition (9), (b) condition (10), (¢) condition (11), (d) condition (12). Levels of ¢ are:
from 0.95 to 0.05 with decrement of 0.05

The analysis carried out above allows a conclusion that conditions (11)—(12) are more acceptable
than conditions (9)-(10). But both ER cases have a common specific feature, namely, a plane-
parallel (or almost plane-parallel) structure of the stream near the outlet border of the channel (see
Figures 4, a and 7, a). The natural question arises: what will be the solution of the energy equation
if the flow at the exit from the channel is not a plane-parallel one?

To obtain the answer on this matter, the following problem has been solved. From the whole
domain of fluid flow data (0 < x < 20, see Figure 7, a) a subset of the flow data has been extracted
(0 < x <8, see Figure 10, a) for which the energy equation (4) was solved for two kinds of open
boundary conditions (11) and (12) at the outlet border of the restricted domain. The results of these
solutions are demonstrated in Figures 10, c—d. At the same time in Figure 10, b an input part of
the isotherms field which is an extraction from the solution for the whole length of the channel (see
Figure 7, d), is presented.

It is not difficult to see that the heat fields in Figures 10, b—d coincide well, whereas solutions
in Figures 10, b—c differ essentially. Hence, of the two open boundary conditions (11) and (12),
nonlinear condition (12) is a more preferable one. It should be noted that the deformations of the
solution in Figure 10, ¢ are very similar to the ones in Figures 7, b—c. This means that the reasons
which have generated these deformations are the same.

Before making a final choice of the open boundary condition, it makes sense to explore the results
of application to the heat problem of open conditions which belong to the class of so-called radiation
methods. In particular, the well-known ‘Orlanski-type’ [2-4,7,40] open boundary conditions belong
to this class. In the present investigation an implicit variant of two-layer Orlanski condition [4] and
two-layer modification of simplified Orlanski method [3] are examined. These conditions in relation
to the given study are written as follows:

— on the base Han et al. [4]

«92“(1 +c(t/Az) — C(T/Ax)HfLﬂ = Hﬁ, (13)

where
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c, 0<é¢<Azx/T,
c=1 Ax/T, ¢é> Azx/T,
0, ¢ <0;

— on the base Camerlengo et al. [3]

oF é>0
0k+1 _ { n—1» z; 07 (14)

Here ¢ = —(Ax/7)(0% | — 0"=1)/(6% | — 6% ,), n — the number of grid nodes along the -

n

coordinate, Ax — a grid step.
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Fig 10. Fields of the fluid flow and heat transfer for ER = 10. (a) Pattern of the streamlines. Patterns of the
isotherms for different boundary conditions at B6 and lengths of the domain: (b) condition (11), L = 20;
(¢) condition (11), L = 8; (d) condition (12), L = 8. Levels of # are: from 0.95 to 0.05 with decrement of 0.05

The patterns of isotherms for the problem just considered (see Figure 10) but for the outlet
boundary conditions (13) and (14) both for the whole length of the calculation domain and for
the narrow zone at the outlet border B6 are presented in Figure 11. First of all one can see that
these patterns coincide with the heat field for condition (12) as a whole (compare Figure 10, d with
Figures 11, a—b). Especially the pattern of isotherms for condition (14) almost completely repeats
the one for condition (12), whereas the pattern for condition (13) at the outflow border has more
significant differences (see the top right part of the pattern in Figure 11, a and ¢).

Nevertheless, there are differences between solutions for conditions (12) and (14) and it is well
visible in Figure 12 where Nusselt number profiles for different kinds of open boundary conditions
and lengths for the channel are demonstrated.

It is not difficult to see that all Nu profiles for the channel with length L. = 20 are the same
and do not depend on the open boundary conditions (dashed curves). Hence, this dashed profile
can be regarded as a true solution of the problem both for the whole length of the channel and for
the region 0 < z < 8. Distinctions between the Nu-profile for condition (12), on the one hand, and
the curves for conditions (13) and (14), on the other hand, begin at a distance of 15-20 % from the
output section of the ‘short’ channel with L = 8 (curves 5 and 6). Moreover, profile 5 ‘shoots up’ at
the exit from the channel because of the non-physical behavior of isotherms there (see Figure 11, ¢).

However, it should be noted that differences of the solutions for conditions (13) and (14) (curves 5
and 6) from the correct solution under condition (12) (curve 4) are much less than the differences
between the solutions for conditions (11) and (12) (curves 3 and 4). Especially that distinctions
between solutions for ‘radiation-type’ boundary conditions (13), (14) and nonlinear one (12) are
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Fig 11. Patterns of the isotherms for different boundary conditions at B6. For the whole length of the domain:
(a) condition (13), (b) condition (14); at the outflow boundary of the domain: (¢) condition (13), (d) condition (14).
Levels of 6 are: from 0.95 to 0.05 (a)—(b), and to 0.15 (¢)—(d) with decrement of 0.05
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Fig 12. Profiles of Nusselt number for ER = 10 for different boundary conditions at B6 and the domain lengths:
solid lines — L = 8, dashed lines — L = 20; 3 — condition (11), 4 — condition (12), 5 — condition (13),
6 — condition (14)

localized in rather a small region at the exit from the channel. Hence, at a good choice of a channel
length a solution in the similar region can just be neglected.

§ 5. Conclusions

The solutions of the 2D laminar steady incompressible flow and heat transfer over backward-
facing step flow test problem for the short channel have been studied. The objective of this study
was numerical investigation of the effect of the open boundary conditions on the solution of the
heat transfer problem. The numerical technique of splitting of the physical factors and the authors’
original method for solving the systems of linear algebraic equations with sparse matrix were used
to obtain solutions of the problem. The test numerical results obtained within this research are in
a very good agreement with those presented in the literature.

All calculations had been carried out for the following parameters of the problem statement:
Re = 1000, Pr = 0.71. During the investigation such problem parameters as the channel length,
the backward facing step height, and the kind of open boundary condition at the outlet border of
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the channel were varied: the channel length L = 8, 10, and 20; the expansion ratio FR = 1.5, 2,
and 10. On the whole, six kinds of open boundary conditions were examined. It is possible to draw
the following conclusions on the basis of analysis of the obtained solutions in the considered range
of change of the problem parameters and the kinds of open boundary condition:

1.

10.

11.

12.

13.

14.

15.

16.

For the expansion ratio ER = 10 the solution of Navier—Stokes equations has a complex circu-
lation structure. In particular, immediately behind the step two large eddies are situated one
above the other. Moreover, one of them has two centers of rotation and a saddle point between
them.

. An unsuccessful open boundary condition can substantially distort the heat field in the whole

calculation domain, and not just in a narrow zone near the output border.

. The nonlinear condition (12) is the most preferable to stationary heat problems from the con-

sidered variants of open boundary conditions.
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YucJsieHHOE pellleHne 3a[avi TeIJIONIepeHOoCa B KOPOTKOM KaHajie ¢ 06paTHBIM YCTYIIOM
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Karouesvie crosa: HecKMMaeMoe TeYeHHe KUJIKOCTHU, TEILIONEePEHOC, BHIXOIHOEe I'PAHIYHOE YCIOBHE.
YIK 532.516.5, 536.24
DOT: 10.20537/vm170311

B crarhe paccMaTpuBaeTcss MoIeabHas 330a9a HeCKUMAEMOTO TEYEHUsT KUIKOCTH W TEPEeHOCa TEerIa B KO-
POTKOM ILTIOCKOM KaHaJe ¢ 0OpaTHBIM ycTymoM. Llemb paboThl COCTOUT B MCCIEIOBAHNN BAUAHIS TPAHATIHOTO
YCJIOBHsI JIjisi HOTOKA Tela (TeMIeparypbl) Ha BBIXOJE U3 KaHAJA HA XapPaKTEPUCTUKY TEIJIONEePEHOCa BHYT-
pu kanana. Cucrema ypasuenuii Hapre—Crokca u OajaHca Teljia pPelaloTcs YUCJIEHHO C UCIIOJIb30BaHUEM
paBHOMepHO# ceTku paspererneM 6001 x 301 y3moB. [I1g pa3HOCTHONW amMpPOKCUMAIINN TTPOCTPAHCTBEHHBIX
MTPOM3BOIHBIX UCTOIB3YETCS METO KOHTPOJIHLHOTO 00'beMa BTOPOTO MOPsiAKa. JJ0CTOBEPHOCTH MOy Ya€MbIX Pe-
HIeHUi MOATBEPXKIeHa JJisl IMPOKOro auana3ona ducia Peiinonbaca (100 < Re < 1000) u uucna [pawaris
Pr = 0.71 myrem cpaBHEHHs C 3KCIEPUMEHTATLHBIMA W TEOPETUIECKUMHU PE3yIbTATAMH, HANIEHHBIMA B JIH-
Teparype. AHAIU3UPYIOTCA KAPTUHBLI TEYEHHUsI, IO/ U30TePM IeperpeBa MOTOKA U IOBEIEHHE JIOKAJILHOIO
quciaa Hyccenbra BIOSH HATPETON HUXKHEH CTEHKN KAHAJA B 3aBUCUMOCTH OT BBIOOPA BBIXOIHOTO TDAHUY-
HOT'O YCJIOBHUsI JIJIs TIOTOKa Teria (TeMreparypsl). II0Ka3aHo, 9TO 3TOT BLIOOP MOYKET OKa3aTh CYIIECTBEHHOE
BJIMSTHYE HA XapPaKTEP MPOrPEeBa TeUEHUsI BHYTPU BCEro KaHAA. 110 pe3yapraTtaM UCCIeI0BaHus BHIOOD CIe/TaH
B MOJIb3Y HEJTMHEHHOrO TPAHUTIHOrO YCIOBUSA.
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