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THE PECULIARITIES OF THE PARALLEL IMPLEMENTATION OF

PARTICLE-IN-CELL METHOD

Particle-In-Cell (PIC) method is widely used for plasma simulation and the GPUs appear to be the most
efficient way to run this method. In this work we propose a technique that enables one to speed up one of the
most time-consuming operations in the GPU implementation of the PIC method. The operation is particle
reordering, or redistribution of particles between cells, which is performed after pushing. The reordering
operation provides data locality which is the key performance issue of the PIC method. We propose to
divide the reordering into two stages. First, gather the particles that are going to leave a particular cell into
arrays, the number of arrays being equal to the number of neighbor cells (26 for 3D case). Second, each
neighbor cell copies the particles from the necessary array to its own particle array. The second operation
is done in 26 threads independently with no synchronization or waiting and involves no critical sections,
semaphores, mutexes, atomic operations etc. It results in the more than 10 times reduction of the reordering
time compared to the straightforward reordering algorithm.
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Introduction

From the physical point of view this work has been inspired by the effect of anomalous heat
conductivity observed at the GOL-3 facility in the Budker Institute of Nuclear Physics [1]. The
GOL-3 facility is a long open trap where the dense plasma is heated up in a strong magnetic field
during the injection of the powerful relativistic electron beam of a microsecond duration. The effect
is a 100- or 1000-fold decrease in the the plasma electron heat conductivity compared to the classical
value for the plasma with the temperature and density observed in the experiment. Anomalous
heat conductivity arises because of the turbulence that is caused by the relaxation of the relativistic
electron beam in the high-temperature Maxwellian plasma. The physical problem is to define the
origin and mechanism of the heat conductivity decrease. This is of great importance for the fusion
devices because the effect of anomalous heat conductivity helps to heat the plasma and also to
confine it.

Like other plasma physics problems involving turbulence or, in general, non-Maxwellian veloc-
ity distribution, this problem requires kinetic treatment. It means either a direct finite-difference
solution of the Vlasov equation or Particle-In-Cell method. While PIC method is noisy and time-
consuming, still it is in many cases the only method that is able to treat the problem with no
nonphysical simplifications.

There are a lot of PIC packages, including those adopted for GPU, e.g., PIConGPU [2], ALaDyn
[3], and also some works devoted to particular problems of GPU implementation of the PIC method,
for example, [4] and [5], but since they are all problem-specific, we make an implementation on our
own.

The PIC method consists of two stages: field evaluation and particle pushing. Computational
experiments with general purpose computers (e.g., the Lomonosov supercomputer at the Moscow
State University) show that most time is spent on particle pushing (from 60% to 90%). Since the
total time is large: 2 weeks with 128 Intel Xeon cores for a 3D problem with just 100 × 4× 4 mesh
nodes and 10000 particles for each cell [6], and further research requires meshes of much larger size,
it requires optimization. It is clear that the optimization must be aimed mostly at the particle
pushing stage.
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The first optimization approach might be the GPU implementation of the PIC method. Such
an implementation resulted in a 30-fold speedup for Nvidia Kepler K40 compared to 4 cores of Intel
Xeon. But it appears that further optimization is possible in order to make the GPU implementation
more efficient.

The key performance issue for the PIC method is the data locality. This means that the particle
must be stored in the cell with respect to its coordinate, because it facilitates the use of cache
memory, and gives a speedup of 200% for general-purpose computers compared to the PIC method
implementation with particle stored with no respect to their coordinate [7]. But the problem is that
in the course of simulation the particles change their coordinates, as shown in Figure 1.

Figure 1. An example of particles in a cell after evaluating their new coordinates and impulses. The particles that
stay in the cell are indicated by filled circles and the particles that must leave the cell are indicated by arrows

pointing in the corresponding direction. Neighbor cells are shown with minor size squares. For simplicity,
the 2D case is displayed.

Therefore, they must be transferred to other cells according to their new coordinates. In the
present implementation this operation, called particle reordering, is performed involving atomic
operations of CUDA.

Let us once more clarify the difference between particle pushing and particle reordering. Particle
pushing is the evaluation of the new coordinates and impulses of the particles with no respect to the
cell the particle belongs to. Particle reordering is performed after pushing and it virtually moves
the particle (if necessary) to another cell in the cell array with respect to the particle’s coordinate.
Thus, pushing is moving the particle in the simulation domain and reordering is moving the particles
in the cell array.

The atomic operations provide data integrity, but they make it impossible for more than one
thread to work with particles of a cell. Moreover, it must be noted that reordering operation takes
most of the PIC method simulation time for GPUs. In such a way we are going to describe an
optimization which is capable of reducing reordering time.

This work continues the set of works on the optimization of PIC method implementation on
GPU [8–11].

§ 1. Statement of the problem

The mathematical model employed for the solution of the problem of beam relaxation in plasma
consists of the Vlasov equations for ion and electron components of the plasma and also of the system
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of Maxwell equations. In standard notation, these equation are
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Here fi,e is the distribution function for ions and electrons, respectively, t is time, ~v is the velocity

vector, ~r is the coordinate vector, ~F is the Lorentz force, ~p is the impulse, ~E is the electric field, ~B

is the magnetic field, and ρ is the charge density.
Let us consider the following problem statement. The 3D computational domain has the shape

of a parallelepiped with the following dimensions:

0 ≤ x ≤ LX , 0 ≤ y ≤ LY , 0 ≤ z ≤ LZ .

Within this domain there is the model plasma. The model plasma particles are distributed uniformly
within the domain. The density of plasma and the electron temperature are set by the user. The
temperature of ions is considered to be zero. Beam electrons are also uniformly distributed along
the domain. Thus, the beam is considered to be already present in the plasma, and the effects that
occur, while the beam is entering the plasma, are beyond the scope of this study.

The particles simulating beam electrons differ from those simulating plasma electrons by the
value of their energy. Beam electrons initially have an energy of about 1 MeV, and the plasma
electrons have an energy of about 1 keV. Moreover, beam electrons have one direction of movement
strictly along the X axis, and plasma electron have the Maxwellian velocity distribution for all the
three dimensions.

There is one more difference between the particles simulating beam electrons and plasma elec-
trons. They have different weights when current and charge density is computed. Let us consider
the ratio of beam density to plasma density, α (usually α varies from 10−3 to 10−6), then the contri-
bution of a beam electron particle is α from the contribution of a plasma electron particle. In such
a way it is possible to provide a large number of beam particles.

§ 2. PIC method implementation for GPU

2.1. The idea of the PIC method.

Let us start with the problem written in the general operator form [12]:

∂q

∂t
+Aq = 0, (1)

where q is some characteristic function of the system (for plasma dynamics or gas dynamics this is
the distribution function), and A is the evolution operator.

The solution of the problem (1) is given by the following interpolation formula:

q =
N
∑

j=1

QjR(u,uj(t)). (2)

This is called the decomposition of the continuous medium into model particles. The function
R(u, ṽ) is called the particle form-factor. The interpolation formula (2) enables one to replace the
solution of the problem (1) by the integration of the dynamic particle system.
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2.2. Main principles of GPU implementation.

The programs for CPU and GPU are compiled from the source text. It is strongly necessary for
debugging. The following main operations were implemented for GPU implementation:

• copying mesh arrays and particles from CPU to GPU;

• copying mesh arrays and particles from GPU to CPU;

• comparing GPU results to CPU simulations results when available.

The following operation remained on CPU:

• initial distribution of particles and fields;

• physical diagnostics and data output.

And the following operations are performed only by GPU:

• particle pushing;

• particle reordering;

• field evaluation.

Moreover, the present GPU implementation has the following differences from the common ap-
proach for PIC method:

• particles are stored in arrays attached to cells in order to use the cache more efficiently;

• field and current values (8 of them for each field and the current component) are stored in
cells, that’s why:

– the current values are copied from each cell to the global 3D array used for field evaluation;

– field values after evaluation are copied to each cell from the global field array.

2.3. Particle reordering operation.

The main time is usually taken by the particle pusher. But, in this implementation of the PIC
method, the particle reordering stage appeared to be the most time-consuming. The reason is the
following. When a cell transmits its particles to another cell (writes the data to the particle array of
this another cell), the writer process must be sure that nobody else is writing there at the same time.
And this can easily happen since all the cells transmit their particles simultaneously, see Figure 2.

In such a way some write protection tool should be used. In the first implementation of the
algorithm a semaphore was given to each cell, and when it is “on” writing is prohibited. Thus many
cells are at the same time waiting to write their particles in some other cells which appear to be
busy. And everybody waits . . .

§ 3. Optimization of particle reordering operation

The following scheme is proposed to reduce reordering time.

1. The reordering kernel (kernel is a function executed directly on GPU) is divided into two parts.

2. Every cell constructs a list of the particles that will fly to another cells.

3. Then a 3D matrix of 33 size is filled, which says, how many particles are going to fly to each
neighbor cells (there are 26).

4. Then these flying away particles are copied to buffer arrays (a special buffer array for each of
the 26 neighbor cells), see Figure 3.
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Figure 2. Read and write conflicts for particles that are being transmitted to neighbor cells. Each dash-dotted line
demonstrates moving a particle to the neighbor cell. The particles that stay in the cell are indicated by filled circles
and the particles that must leave the cell are indicated by arrows pointing in the corresponding direction. Neighbor

cells are shown with minor size squares. For simplicity, the 2D case is displayed.

5. Synchronization point of time, since all the cells must finish this work.

6. Every cell calls its neighbor, gets how many particles are going to fly from that neighbor cells
and where they are exactly located, and writes these particles to its own particle array.

One should notice that this algorithm does not need using the same data at the same time. This
means that all cells can work concurrently. That’s why in the optimized version reordering work
much better.

Figure 3. Read and write conflicts are resolved by means of buffer arrays (shown by hatching. Each dash-dotted
line demonstrates moving a group of particles to the neighbor cell. The particles that stay in the cell are indicated

by filled circles and the particles that must leave the cell are indicated by arrows pointing in the corresponding
direction. Neighbor cells are shown with minor size squares. For simplicity, the 2D case is displayed.

§ 4. Results

In this section the result of the applied optimization technique is shown. It is shown by the example
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of Nvidia Kepler K40 GPU, for which we present both optimized version of the reordering algorithm
(with no synchronization) and the old, non-optimized version (with synchronization). The time for
the non-optimized version is shown by the bold font. For the modern GPUs (Kepler K80 and Pascal
P100), there is only the optimized version. As it is seen from Table 1, the optimized version of the
reordering operation works more than 10 times faster.

4.1. Dimensions and sizes.

The size of the 3D mesh in the presented computations is Nx ×Ny ×Nz = 100× 4× 4. In fact,
2 more nodes are added for each dimension to make the domain periodic, so it is 102× 6× 6 = 3672
cells. The number of particles is 6.4 million for the whole domain, 1742 particles are average for
each cell. The size of each 3D array in double precision is 30 Kilobyte, and since 9 such arrays are
necessary (three components of electric field, magnetic field and current), it results in 0.3 MB. Each
particle has 6 attributes, so the size of each particle is 48 bytes, and 6.4 million particles will need
300 MB of RAM. One can see that such test problem will fit into almost any GPU.

The size of all the buffer arrays per each cell is now set to 270 particles. In such a way it is 20%
of the particles present, but one must note that this rather big buffer size must be set only for 3D
problems involving turbulence, and is not necessary for steady flows.

The present 3D mesh size is just a test size. The real 3D plasma simulations will require at least
1003 nodes with a similar number of particles per cell (∼ 1000). Thus, in the real case, the size of
the mesh array will be 48 MB, and for particles one will need 48 GB RAM, and considering the 20%
overhead will need almost 50 GB. Thus, even for the modern Tesla V100 with 32 GB onboard one
will need more than one GPU in order to conduct the real simulation. This is surely possible since
MPI parallelization is implemented to the present code, yet not discussed in this paper.

Table 1. The main parts of the algorithm with different GPUs (optimized version) and also
non-optimized version for Kepler K40 (the bold font); time is in microseconds

Device name Kepler K40 Kepler K40 Kepler K80 Pascal P100

Reordering algorithm non-optimized optimized optimized optimized

Particle pushing 433.8 433.8 348.06 338.1

Field evaluation 31.7 31.7 25.4 19.3

Particle reordering 27167 1131.5 446.43 98.9

§ 5. Conclusion

An optimization technique for the GPU implementation of the Particle-in-Cell method is proposed.
The technique eliminates synchronization from particle reordering operation. Synchronization is
eliminated by splitting the reordering into two steps: first, construction of lists of the particles that
will fly to another cells, and second, concurrently moving particles to neighbor cells. Since particle
reordering appears to be the most time-consuming part of the particle pushing stage, and pushing
takes up to 90% of the total simulation time, the proposed optimization results are in significant
reduction of the total PIC computing time with GPUs.
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Метод частиц в ячейках широко используется для моделирования плазмы, в то время как графические
процессоры представляются наиболее эффективным инструментом для проведения расчетов с помощью
этого метода. В данной работе предлагается подход, позволяющий ускорить один из наиболее затрат-
ных по времени этапов в проведении расчетов по методу частиц в ячейках на графических ускорителях.
Этот этап представляет собой переупорядочивание модельных частиц, или перераспределение их меж-
ду ячейками сетки. Переупорядочивание модельных частиц позволяет обеспечить локальность данных,
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которая в первую очередь определяет эффективность реализации метода частиц в ячейках. В данной
работе предлагается разделить переупорядочивание на два этапа. На первом этапе для каждой ячейки
нужно собрать все модельные частицы, которые должны покинуть данную ячейку, в массивы, число
которых равно количеству соседних ячеек (в трехмерном случае имеется 26 соседних ячеек). На вто-
ром этапе каждая из соседних ячеек копирует частицы из соответствующего массива рассматриваемой
ячейки в ее собственный массив частиц. Так как второй этап может выполняться одновременно двадца-
тью шестью нитями без синхронизации и ожиданий, и при этом не используются критические секции,
семафоры, мутексы, атомарные операции и другие подобные инструменты, то в результате время вы-
полнения переупорядочивания сокращается более чем в 10 раз по сравнению с неоптимизированной
реализацией переупорядочивания с использованием синхронизации.
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