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THE NUMERICAL SOLUTION OF A NONLOCAL BOUNDARY VALUE PROBLEM

FOR AN ORDINARY SECOND-ORDER DIFFERENTIAL EQUATION BY THE FINITE

DIFFERENCE METHOD

In the article a numerical technique based on the finite difference method is proposed for the approximate

solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear

that a bridge designed with two support points at each end point leads to a standard two-point local bound-

ary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary

value condition. At the same time if non-local boundary conditions can be set up near each endpoint of

a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results

for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters

variation on the convergence of the proposed method is analyzed.

Keywords: second-order boundary value problem, finite difference method, integral boundary conditions,

parameters and convergence.

DOI: 10.20537/vm190305

Introduction

A second-order differential equation which models different physical situations arises in ap-

plied mathematics and physics subject to various boundary conditions. The standard boundary

conditions that are in general imposed on two points are Dirichlet, Neumann and Robin type. But

several phenomena in applied mathematics, and physics that modeled by the differential equation

cannot be described by standard boundary conditions. For example, consider a bridge which

is simply supported at many points other than end points. The modelling of this example will

yield second-order multi point boundary value problem [1]. In modelling of thermal conduction

phenomena, we get a second-order differential equation with integral boundary conditions [2–4].

In this article we consider the following second-order differential equation

u′′(x) = f(x, u), a < x < b, (0.1)

subject to the nonlocal boundary conditions

u(a) =

∫ xN−2

x1

g(x)u(x) dx+λ1, u(b) =

∫ xN−2

x1

r(x)u(x) dx+λ2, a < x1 < x < xN−2 < b.

where λ1, λ2 are parameters and f(x, u) is real and uniformly continuous with respect to (x, u).
We will define the nodal points x1 and xN−2 in the domain (a, b) in next section.

Recently, many researchers have shown interest in the area of boundary value problems with

nonlocal boundary conditions. For the solution and positive solutions of the nonlocal problems

similar to considered boundary value problems with integral boundary conditions (0.1) in ordinary

differential equations, we refer the reader to [5–8] and references therein. But a particular case

of boundary value problem with integral boundary condition/s is a multi point boundary value

problem. So multi point boundary value problem is also an interesting and important class of
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problems and the theoretical concepts of existence / nonexistence and uniqueness / multiplicity

solution of these problems can be found in [9–12] and references therein.

In this article, we have assumed the existence and uniqueness of the solution of the problem

(0.1). To the best of our knowledge, there is a rare work on the numerical solution of the problem

(0.1) reported in the literature. However, we found a numerical method based on the shooting

method for approximate solutions of nonlocal boundary value problems similar to the problem

(0.1) in [1]. Inspired by the shooting method, in this article we consider the finite difference

method for the numerical solution of the considered boundary value problems (0.1). Also, we

apply numerical computation methods to understand and study the effect of changes in parameters

in the approximate solution.

We have presented our work in this article as follows. In the next section we proposed a

finite difference method. We have discussed derivation and convergence of the proposed method

under the appropriate condition in Section 2 and Section 3 respectively. In Section 4, we give the

application of the proposed method on the model problems and numerical results so produced to

show the efficiency. Discussion and conclusion on the performance of the proposed method are

presented in Section 5.

§ 1. The Difference Method

Let us define the set of nodal points Ω = {x0, x1, . . . , xN} such that xi = a + i · h, i =
0, 1, . . . , N , in the interval [a, b]. The term h in the definition of nodal points is known as uniform

step size. We wish to determine the numerical solution of the problem at these nodal points.

We denote the numerical approximation of u(x) at the node x = xi as ui and the numerical

approximation of the forcing function f(x, u(x)) at the node x = xi as fi, i = 0, 1, 2, . . . , N .

Thus, we write problem (0.1) at these nodal points x = xi and the continuous problem transformed

into a discrete problem by the application of the finite difference. Thus,

u′′
i = fi, a ≤ xi ≤ b and i = 0, 1, . . . , N, (1.1)

and the boundary conditions are

u0 =

∫ xN−2

x1

g(x)u(x) dx+ λ1 and uN =

∫ xN−2

x1

r(x)u(x) dx+ λ2.

Following the idea in [13], let us approximate the integrals that appeared in the boundary condi-

tions of the problem (1.1) by the composite / repeated trapezoidal quadrature method [15] which

will yield the following:

u0 =

∫ xN−2

x1

g(t)u(t) dt+ λ1 =

N−2
∑

j=1

[gjξjuj + Etj ] + λ1 (1.2)

and

uN =

∫ xN−2

x1

r(t)u(t) dt+ λ2 =
N−2
∑

j=1

[rjξjuj + Etj ] + λ2, (1.3)

where x1 = t1 < t2 < . . . < tM = xN−2, j = 1, 2, . . . ,M , using uniform step length h such

that tj = x1 + (j − 1)h, j = 1, 2, . . . ,M , N = M + 2, and Etj , Etj are the truncation error in

the jth interval. The numerical coefficients ξj , j = 1, 2, . . . ,M are quadrature nodes and these

coefficients are

ξj =

{

h/2 if j = 1,M

h otherwise j = 2, . . . ,M − 1 .
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Truncating the error terms in (1.2) and (1.3), we propose the following finite difference method

for the numerical solution of the problem (1.1) at nodes xi,

M
∑

j=1

gjξjuj − 2ui + ui+1 = −λ1 +
h2

12
(fi−1 + 10fi + fi+1), i = 1,

ui−1 − 2ui + ui+1 =
h2

12
(fi−1 + 10fi + fi+1), 2 ≤ i ≤ N − 2 (1.4)

ui−1 − 2ui +
M
∑

j=1

rjξjuj = −λ2 +
h2

12
(fi−1 + 10fi + fi+1), i = N − 1.

However the quadrature nodes and truncation errors depend on the number of nodal points in

[a, b] and for a large number of nodal points reduces truncation errors Etj and Etj considerably.

Thus we have obtained a system of equations in the variable ui, i = 1, 2, . . . , N −1. The solution

of a system of equations is the approximate solution of the problem considered. We solved the

system of equations (1.4) using an appropriate iterative method.

§ 2. Development of the Finite Difference Method

In this section we will discuss the development of the proposed finite difference method (1.4).

Let us consider the following second-order differential equation:

u′′(x) = f(x, u).

We consider the following linear combination of the solution u(x) of the problem and forcing

function f(x, u(x)) at nodes xi,

a0ui−1 + a1ui + a2ui+1 + h2(b0fi−1 + b1fi + b2fi+1) = 0, i = 1, (2.1)

where a0, a1, a2, b0, b1, and b2 are constant to be determined under appropriate conditions. Let us

write each term of (2.1) in a Taylor series about point xi. In Taylor series we apply u′′
i = fi and

compare the coefficients of hp, p = 0, 1, . . . , 5. Thus, we have the following system of equations:

a0 + a1 + a2 = 0,

a0 − a2 = 0,

a0 + a2 + 2(b0 + b1 + b2) = 0, (2.2)

a0 − a2 + 6(b0 − b2) = 0,

a0 + a2 + 12(b0 + b2) = 0.

Solving the system of equations (2.2), we have

(a0, a1, a2, b0, b1, b2) =

(

1,−2, 1,
−1

12
,
−10

12
,
−1

12

)

.

Substituting these constants in (2.1), we have

ui−1 − 2ui + ui+1 =
h2

12
(fi−1 + 10fi + fi+1), i = 1. (2.3)

Which is in fact the fourth-order Numerov method for the solution of two point second-order

BVPs in ODEs. Using the nonlocal boundary condition (1.2) in (2.3), we have

M
∑

j=1

gjξjuj − 2ui + ui+1 = −λ1 +
h2

12
(fi−1 + 10fi + fi+1), i = 1.
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In a similar manner, we may obtain a difference approximation for the boundary condition (1.3)

in the form

ui−1 − 2ui +

M
∑

j=1

rjξjuj = −λ2 +
h2

12
(fi−1 + 10fi + fi+1), i = N − 1.

§ 3. Convergence analysis

For the discussion of the convergence of the proposed finite difference method (1.4), let us

consider the following linear test problem:

−u′′(x) + f(x) = 0, a < x < b,

subject to the boundary conditions u0 =

∫ xN−2

x1

g(x)u(x) dx+ λ1, uN =

∫ xN−2

x1

r(x)u(x) dx+ λ2.

The exact solution U of the (1.4) satisfies the matrix equation

JU + F + T = 0, (3.1)

where the matrix T is truncation error terms in the method and

J =



















2− g1ξ1 −1 − g2ξ2 −gN−2ξN−2 0
−1 2 −1

−1 2 −1
. . .

. . .

−1 2 −1
−r1ξ1 −r2ξ2 −1− rN−2ξN−2 2



















(N−1)×(N−1)

,

U = (Ui)(N−1)×1, F = (Fi)(N−1)×1, where

Fi =



























λ1 +
h2

12
(fi−1 + 10fi + fi+1), i = 1,

h2

12
(fi−1 + 10fi + fi+1), 1 < i < N − 1,

λ2 +
h2

12
(fi−1 + 10fi + fi+1), i = N − 1,

and T = (Ti)(N−1)×1, where

Ti =
h6

240
u
(6)
i , i = 1, . . . , N − 1.

Let matrix u = (ui)(N−1)×1 be the approximate solution of the (1.4) satisfying the matrix equation

Ju + F = 0. (3.2)

Subtracting (3.1) from (3.2) and defining an error ǫi = ui − U(xi) at each node xi, i =
1, 2, . . . , N − 1, we have

Jǫ = T, (3.3)

where matrix ǫ = (ǫi)(N−1)×1.

Let

J = A − B,
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where

A =















2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2















(N−1)×(N−1)

,

B = h













1
2
g1 g2

1
2
gN−2 0

0

1
2
r1 r2

1
2
rN−2 0













(N−1)×(N−1)

.

Let us assume that

Mgr =

∣

∣

∣

∣

max
x∈[a,b]

{g(x), r(x)}
∣

∣

∣

∣

, M = max
x∈[a,b]

∣

∣u(6)(x)
∣

∣ ,

and
(

b− a

h
− 3

)

(b− a)2Mgr

8h
< 1.

Then matrix J is invertible [14] and hence from (3.3) we have,

‖ǫ‖ ≤ 1

1− ‖A−1‖‖B‖‖A−1‖‖T‖. (3.4)

Estimating ‖A−1‖ in (3.4) by [15] and simplifying, we obtain

‖ǫ‖ ≤ h4(b− a)2

1920

(

1 +
(b− a)3Mgr

8h2

)

M. (3.5)

It follows from (3.5) that the error in the proposed finite difference method is bounded and

‖ǫ‖ → 0 as h → 0. Thus, we have established the convergence of the proposed method (1.4) and

the order of convergence of the proposed method (1.4) is at least O(h2).

§ 4. Numerical results

To verify the theoretical development and computational efficiency of the proposed method,

we have considered three linear and nonlinear model problems. We have presented numerical

results in Tables. In each tabulated numerical results, we have shown χ∗ and ∗χ respectively

for the maximum and minimum absolute error in the approximate solution u(x) of the problems

(0.1) for different values of N and uniform step size h. We have used the following formulas in

computation of χ∗ and ∗χ:

χ∗ = max
1≤i≤N

|U(xi)− ui|, ∗χ = min
1≤i≤N

|U(xi)− ui|,

where U(xi) and ui are respectively exact and computed value of the solution u(x). In the tables

we have used the computer notation, i.e., .19714534e − 2 for .19714534 × 10−2. For the solu-

tion of the system of equations (1.4), we have used Gauss Seidel and Newton–Raphson methods

respectively for linear and nonlinear systems of equations. All computations were performed on

a Windows 2007 Home Basic operating system in the GNU FORTRAN environment version 99
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compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC. The solutions are computed on

N nodes and iteration is continued until either the maximum difference between two successive

iterates is less than 10−10 or the number of iterations reached 104.

Problem 1. The nonlinear model problem in [1] with different boundary conditions is given

by

u′′(x) = (x− 0.5x)u2(x) + f(x), 0 < x < 1,

subject to the boundary conditions

u(0) =

∫ xN−2

x1

g(x)u(x) dx+ λ1 and u(1) =

∫ xN−2

x1

r(x)u(x) dx+ λ2,

where g(x) =
x

1.33− x
, r(x) =

x2 − 1

2−√
x

and f(x) is calculated so that the analytical solution of

the problem is u(x) = (x− 1) sin(x). In the boundary conditions, λ1 and λ2 are parameters. The

MAE and MIE computed by method (1.4) for different values of N, λ1 and λ2 are presented in

Table 1.

Problem 2. The nonlinear model problem in [1] with different boundary conditions is given

by

u′′(x) = (x3 + x+ 1)u2(x) + f(x), 0 < x < 1,

subject to the boundary conditions

u(0) =

∫ xN−2

x1

g(x)u(x) dx+ λ1 and u(1) =

∫ xN−2

x1

r(x)u(x) dx+ λ2,

where g(x) =
exp(x− .8659)

x− 2
, r(x) = exp(−x), and f(x) is calculated so that the analytical

solution of the problem is u(x) = x(1 − x) exp(x). In the boundary conditions, λ1 and λ2 are

parameters. The MAE and MIE computed by method (1.4) for different values of N, λ1 and λ2

are presented in Table 2.

Problem 3. The nonlinear model problem is given by

u′′(x) = exp(x)u2(x) + f(x), 0 < x < 1,

subject to the boundary conditions

u(0) =

∫ xN−2

x1

g(x)u(x) dx+ λ1 and u(1) =

∫ xN−2

x1

r(x)u(x) dx+ λ2,

where g(x) =
x

2− x
, r(x) =

x− 1

1.1−√
x

and f(x) is calculated so that the analytical solution of

the problem is u(x) = x2 exp(−x). In the boundary conditions, λ1 and λ2 are parameters. The

MAE and MIE computed by method (1.4) for different values of N, λ1 and λ2 are presented in

Table 3 and Table 4.

We have considered second-order nonlocal boundary value problems in ordinary differential

equations to test the computational efficiency of the proposed finite difference method (1.4). We

observed in numerical experiments for different values of N presented in tables that maximum

and minimum absolute errors in the solution decrease as h decreases. Since composite / repeated
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Table 1. Maximum and minimum absolute error (Problem 1)

N

λ2 λ1 8 16 32 64

χ∗ .35345e-1 .12714e-1 .27907e-2 .48769e-3

.113 Order - 1.4750 2.1878 2.5166

-0.0765 ∗χ .19714e-2 .30860e-3 .27254e-4 .42914e-3

χ∗ .35829e-1 .13243e-1 .33306e-2 .59750e-3

.1135 Order - 1.4359 1.9913 2.4786

∗χ .19026e-2 .25209e-3 .17702e-4 .50663e-6

Table 2. Maximum and minimum absolute error (Problem 2)

N

λ2 λ1 8 16 32 64

χ∗ .38335e-1 .13717e-1 .31396e-2 .14375e-2

.1513 Order - 1.4827 2.1274 1.1270

-0.1671 ∗χ .93517e-4 .24139e-3 .66737e-4 .22988e-3

χ∗ .34112e-1 .13794e-1 .32165e-2 .14048e-2

.1514 Order - 1.4774 2.1005 1.1951

∗χ .13263e-3 .20229e-3 .22898e-4 .15278e-3

Table 3. Maximum and minimum absolute error (Problem 3)

N

λ2 λ1 8 16 32 64

χ∗ .41119e-1 .23717e-1 .98905e-2 .86497e-3

-0.0845 Order - .7939 1.2618 3.5153

.5181 ∗χ .11667e-2 .54356e-3 .19939e-4 .86685e-5

χ∗ .41150e-1 .23905e-1 .10085e-1 .10630e-2

-0.0847 Order - .7836 1.2450 3.2461

∗χ .11032e-2 .50055e-3 .12753e-4 .42046e-5

χ∗ .40993e-1 .23744e-1 .99205e-2 .89694e-3

0.5179-0.0845 Order - .7878 1.2591 3.4673

∗χ .10990e-2 .47101e-3 .55043e-4 .10555e-4
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Table 4. Maximum and minimum absolute error (Problem 3)

N

λ1 λ2 8 16 32 64

χ∗ .38199e-1 .19783e-1 .58304e-2 .32314e-2

0.5146 Order - .9493 1.7626 .8514

-.0798 ∗χ .14733e-2 .28487e-3 .15447e-4 .20409e-4

χ∗ .38324e-1 .19756e-1 .58004e-2 .32635e-2

0.5148 Order - .9560 1.7681 .8297

∗χ .15411e-2 .35748e-3 .97209e-4 .47137e-4

χ∗ .38277e-1 .19863e-1 .59129e-2 .31482e-2

-.0799 .5147 Order - .9464 1.7482 .9093

∗χ .14755e-2 .29963e-3 .48006e-4 .13286e-4

trapezoidal quadrature method has better computational performance for the larger no. of subin-

tervals N , i.e., Etj and Etj decreases as N increases. It is evident from the tabulated results that

method (1.4) is convergent. Since we discretized boundary conditions using composite / repeated

quadrature method, this may be the possible reason for variation in order of the convergence of

the proposed method for the finer mesh.

§ 5. Conclusion

A second-order boundary value problem with nonlocal boundary conditions in ODEs was con-

sidered for the numerical solution in this article. A finite difference method has been developed

and discussed for the problem considered. The proposed finite difference method is a system of

equations in solution u(x) at discrete nodes xi, i = 1, . . . , N − 1. The numerical results those

we obtained by the application of the proposed method (1.4) approve the theoretical development

of the proposed method. Improvement in proposed finite difference method is possible. Work in

this direction is in progress.
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В статье предложена численная методика, основанная на методе конечных разностей, для прибли-

женного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциаль-

ных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке,

приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с по-

мощью многоточечных опор, соответствует многоточечному граничному условию. В то же время,

если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки мно-

готочечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты

расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Про-

анализировано влияние изменения параметров на сходимость предложенного метода.
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