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THE NUMERICAL SOLUTION OF A NONLOCAL BOUNDARY VALUE PROBLEM
FOR AN ORDINARY SECOND-ORDER DIFFERENTIAL EQUATION BY THE FINITE
DIFFERENCE METHOD

In the article a numerical technique based on the finite difference method is proposed for the approximate
solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear
that a bridge designed with two support points at each end point leads to a standard two-point local bound-
ary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary
value condition. At the same time if non-local boundary conditions can be set up near each endpoint of
a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results
for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters
variation on the convergence of the proposed method is analyzed.
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Introduction

A second-order differential equation which models different physical situations arises in ap-
plied mathematics and physics subject to various boundary conditions. The standard boundary
conditions that are in general imposed on two points are Dirichlet, Neumann and Robin type. But
several phenomena in applied mathematics, and physics that modeled by the differential equation
cannot be described by standard boundary conditions. For example, consider a bridge which
is simply supported at many points other than end points. The modelling of this example will
yield second-order multi point boundary value problem [1]. In modelling of thermal conduction
phenomena, we get a second-order differential equation with integral boundary conditions [2—4].

In this article we consider the following second-order differential equation

u'(z) = f(z,u), a<xz<b, (0.1)

subject to the nonlocal boundary conditions

u(a) :/ i g(x)u(z)dz+A1, u(b) = / i r(z)u(x)de+ry, a <z <z <xN_9<Db.

1 1

where A\, A\, are parameters and f(z,u) is real and uniformly continuous with respect to (x, u).
We will define the nodal points z; and zy_5 in the domain (a, b) in next section.

Recently, many researchers have shown interest in the area of boundary value problems with
nonlocal boundary conditions. For the solution and positive solutions of the nonlocal problems
similar to considered boundary value problems with integral boundary conditions (0.1) in ordinary
differential equations, we refer the reader to [5—-8] and references therein. But a particular case
of boundary value problem with integral boundary condition/s is a multi point boundary value
problem. So multi point boundary value problem is also an interesting and important class of
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problems and the theoretical concepts of existence/nonexistence and uniqueness/multiplicity
solution of these problems can be found in [9-12] and references therein.

In this article, we have assumed the existence and uniqueness of the solution of the problem
(0.1). To the best of our knowledge, there is a rare work on the numerical solution of the problem
(0.1) reported in the literature. However, we found a numerical method based on the shooting
method for approximate solutions of nonlocal boundary value problems similar to the problem
(0.1) in [1]. Inspired by the shooting method, in this article we consider the finite difference
method for the numerical solution of the considered boundary value problems (0.1). Also, we
apply numerical computation methods to understand and study the effect of changes in parameters
in the approximate solution.

We have presented our work in this article as follows. In the next section we proposed a
finite difference method. We have discussed derivation and convergence of the proposed method
under the appropriate condition in Section 2 and Section 3 respectively. In Section 4, we give the
application of the proposed method on the model problems and numerical results so produced to
show the efficiency. Discussion and conclusion on the performance of the proposed method are
presented in Section 5.

§ 1. The Difference Method

Let us define the set of nodal points 2 = {xg,z1,...,2zx} such that z; = a+i-h, i =
0,1,..., N, in the interval [a, b]. The term h in the definition of nodal points is known as uniform
step size. We wish to determine the numerical solution of the problem at these nodal points.
We denote the numerical approximation of u(x) at the node x = x; as u; and the numerical
approximation of the forcing function f(z,u(x)) at the node x = x; as f;, i = 0,1,2,..., N.
Thus, we write problem (0.1) at these nodal points x = z; and the continuous problem transformed
into a discrete problem by the application of the finite difference. Thus,

uw'=fi, a<z;<b and i=0,1,...,N, (L.1)

and the boundary conditions are

IN-—-2

o — / T @u(@) dr+ A and uy = / r(@)u(z) dz + Do,

1 X1

Following the idea in [13], let us approximate the integrals that appeared in the boundary condi-
tions of the problem (1.1) by the composite/repeated trapezoidal quadrature method [15] which
will yield the following:

N—-2

TN-2
v = / gu(t)ydt+ 3 = 3 lg65u; + By ] + (1.2)
T ]:1
and
S N-2 B
Uy = / r(tyu(t) dt+ dy = [riéu; + By ] + o, (1.3)
z1 j=1
where 21 = ¢ <y < ... <ty = xN-2, j = 1,2,..., M, using uniform step length / such
thatt; = o1+ (j —1)h, j = 1,2,...,M, N = M + 2, and E,,, I, are the truncation error in
the j interval. The numerical coefficients &;, j = 1,2,..., M are quadrature nodes and these

coefficients are
¢ = h/2 ifj=1M
"k otherwise j =2,...,. M — 1.



P. K. Pandey 343

Truncating the error terms in (1.2) and (1.3), we propose the following finite difference method
for the numerical solution of the problem (1.1) at nodes x;,

M
h? .
Zgjfjuj —2u; + Ui = =M+ E(fi—l +10f; + fir1), i=1,
j=1
h2
Ui — 2U; + Ui = E(fi—l +10f; + fiy1), 2<i< N -2 (1.4)

M
h? .
wiiy = 2ui+ Yy ri€juy = =g + E(fifl +10fi + fir1), i=N-1
=1

However the quadrature nodes and truncation errors depend on the number of nodal points in
[a,b] and for a large number of nodal points reduces truncation errors E;, and E, considerably.
Thus we have obtained a system of equations in the variable u;, i = 1,2,..., N — 1. The solution
of a system of equations is the approximate solution of the problem considered. We solved the
system of equations (1.4) using an appropriate iterative method.

§ 2. Development of the Finite Difference Method

In this section we will discuss the development of the proposed finite difference method (1.4).
Let us consider the following second-order differential equation:

u'(z) = f(z,u).

We consider the following linear combination of the solution u(x) of the problem and forcing
function f(x,u(x)) at nodes z;,

AoUi—1 + A1 U; + A2l 1 + hz(bofzel +bifi +bafiz1) =0, =1, (2.1)

where ag, aq, as, by, by, and b, are constant to be determined under appropriate conditions. Let us
write each term of (2.1) in a Taylor series about point x;. In Taylor series we apply u; = f; and
compare the coefficients of h”, p = 0, 1,...,5. Thus, we have the following system of equations:

ap+ ay + ag =0,
ag — as = 0,
ao 4 ag + 2(by 4 by + by) = 0, 2.2)
ap — ag + 6(bg — by) =0,
ag + as + 12(bg + be) = 0.

Solving the system of equations (2.2), we have

-1 —10 —1
bo,b1,b2) = (1,21, —, ——, — |.
(a'07a17a27 0, Y1, 2) < ; ) Ly 127 192 ) 12)
Substituting these constants in (2.1), we have

h? .
Ui—1 — 2U; + Ui = E(fi—l +10f; + fiz1), =1 (2.3)

Which is in fact the fourth-order Numerov method for the solution of two point second-order
BVPs in ODEs. Using the nonlocal boundary condition (1.2) in (2.3), we have

M
h? .
Zgjfjuj —2u; + U = — M + E(fi—l +10fi + fiy1), i=1

J=1
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In a similar manner, we may obtain a difference approximation for the boundary condition (1.3)
in the form

M
h? .
w1 — 2u; + Zl’f’jfjuj =—X + E(fz‘ﬂ +10fi + firr), i=N-1
J:
§ 3. Convergence analysis

For the discussion of the convergence of the proposed finite difference method (1.4), let us
consider the following linear test problem:

—u"(x) + f(z) =0, a<x<b,

TN—2 TN-—-2
subject to the boundary conditions 1y = / g(x)u(z)dr+ A, uy = / r(x)u(z) dr+ As.

xr1

The exact solution U of the (1.4) satisfies the matrix equation
JU+F+T=0, (3.1)

where the matrix T is truncation error terms in the method and

2—gi&1 —1— g8 —gN—2EN—2 0
-1 2 —1
-1 2 -1
J — )
-1 2 —1
—r1&1 —T1282 —1—ry2fn2 2 (N—1)x(N-1)

U= (Uz’>(N—1)><1: F = (Fz’)(N—l)xla where

( h2 )
)\1+E(fi71+1ofi+fi+1>7 =1,
h2
Iy = E(fi—1+10fi+fi+1)> l<i<N-—1L
h? )
)\2+E(fi—1+10fi+fi+1)> i=N-1,

\

and T = (T;)(n—1)x1, where

NG

=9 i=1,... N—1.
% 240uz ’ ? ) )

Let matrix u = (u;)(v—1)x1 be the approximate solution of the (1.4) satisfying the matrix equation

JutF=0. (3.2)

Subtracting (3.1) from (3.2) and defining an error ¢; = w; — U(z;) at each node z;, i =
1,2,...,N — 1, we have

Je =T, (3.3)

where matrix € = (€;)(v—1)x1-
Let



P. K. Pandey 345

where
2 -1 0
-1 2 -1
A= . )
-1 2 -1
0 -1 2 (N=1)x(N-1)
%91 g2 %9N72 0
B=~nh 0
1 1
o’ T2 3"N—2 0 (N=1)x(N—1)
Let us assume that
M,, = | max {g(x),r(x)}), M = max ‘U(G)(x) ;
z€[a,b) z€[a,b]
and b (b—a)?M
—Qa — Qa
_3 <.
( h ) 8h

Then matrix J is invertible [14] and hence from (3.3) we have,

1

lell < - 1A (3.4)
1 —[|A~H][B]

Estimating ||A™!|| in (3.4) by [15] and simplifying, we obtain

lel] < hi(b — a)? (1 N (b—a)sMgr) M (3.5)

1920 8h?

It follows from (3.5) that the error in the proposed finite difference method is bounded and
€|l — 0 as h — 0. Thus, we have established the convergence of the proposed method (1.4) and
the order of convergence of the proposed method (1.4) is at least O(h?).

§ 4. Numerical results

To verify the theoretical development and computational efficiency of the proposed method,
we have considered three linear and nonlinear model problems. We have presented numerical
results in Tables. In each tabulated numerical results, we have shown y* and ,x respectively
for the maximum and minimum absolute error in the approximate solution u(z) of the problems
(0.1) for different values of N and uniform step size 4. We have used the following formulas in
computation of x* and ,x:

X = max [Ulz:) —wl, x= min [Ulz;) -,

where U(x;) and u; are respectively exact and computed value of the solution u(z). In the tables
we have used the computer notation, i.e., .19714534e — 2 for .19714534 x 10~2. For the solu-
tion of the system of equations (1.4), we have used Gauss Seidel and Newton—Raphson methods
respectively for linear and nonlinear systems of equations. All computations were performed on
a Windows 2007 Home Basic operating system in the GNU FORTRAN environment version 99
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compiler (2.95 of gecc) on Intel Core 13-2330M, 2.20 Ghz PC. The solutions are computed on
N nodes and iteration is continued until either the maximum difference between two successive
iterates is less than 107'° or the number of iterations reached 10%.

Problem 1. The nonlinear model problem in [1] with different boundary conditions is given
by
u'(z) = (x — 0.5")u?(z) + f(z), O0<z<l,

subject to the boundary conditions

TN_2 TN—-2
u(0) = / g(x)u(z)dr+ X and wu(l) = / r(z)u(z) de + Mo,
1 1
x r?—1 . . .
where g(x) = 1332 r(z) = = r and f(z) is calculated so that the analytical solution of

the problem is u(z) = (x — 1) sin(x). In the boundary conditions, A\; and A, are parameters. The
MAFE and MIFE computed by method (1.4) for different values of N, \; and A\, are presented in
Table 1.

Problem 2. The nonlinear model problem in [1] with different boundary conditions is given
by
u'(z) = (2° + 2+ DuP(z) + f(z), O0<z<l,

subject to the boundary conditions

ITN-2

TN_2
u(0) = / g(x)u(z)dr+ X and wu(l) = / r(z)u(x) de + Ao,
1 1
exp(x — .8659)
l‘ —
solution of the problem is u(z) = x(1 — x) exp(x). In the boundary conditions, A\; and A, are
parameters. The M AE and M I E computed by method (1.4) for different values of N, \; and A,

are presented in Table 2.

where g(z) = , r(x) = exp(—=z), and f(x) is calculated so that the analytical

Problem 3. The nonlinear model problem is given by
u”(z) = exp(x)u?(z) + f(z), O0<z<l,

subject to the boundary conditions

TN—2 TN-—-2
u(0) = / g(z)u(x)dx + X and wu(l) = / r(z)u(x) dr + A,
—1
where g(z) = i, r(z) = 11:6_7\/5 and f(x) is calculated so that the analytical solution of

the problem is u(z) = x? exp(—z). In the boundary conditions, A\; and )\, are parameters. The
MAEFE and M1FE computed by method (1.4) for different values of N, A\; and )\, are presented in
Table 3 and Table 4.

We have considered second-order nonlocal boundary value problems in ordinary differential
equations to test the computational efficiency of the proposed finite difference method (1.4). We
observed in numerical experiments for different values of NV presented in tables that maximum
and minimum absolute errors in the solution decrease as h decreases. Since composite/ repeated
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Table 1. Maximum and minimum absolute error (Problem 1)

N
A2 A1 8 16 32 64

X*  |35345e-1| .12714e-1|.27907¢e-2| .48769¢-3

113 | Orden - 1.4750 | 2.1878 | 2.5166
-0.0765 X |119714e-2| .30860e-3|.27254¢e-4| .42914e-3
X* |135829e-1| .13243e-1|.33306e-2.59750e-3

1135 Order - 1.4359 1.9913 | 2.4786
X |119026e-2| .25209e-3|.17702e-4/ .50663¢-6

Table 2. Maximum and minimum absolute error (Problem 2)

N
A2 A1 8 16 32 64

x* |38335e-1| .13717e-1|.31396e-2| .14375¢e-2,

1513 Order - 1.4827 | 2.1274 | 1.1270
-0.1671 X |193517e-4) .24139e-3|.66737e-4| .22988e-3
X*  [.34112e-1] .13794e-1|.32165¢e-2|.14048e-2

15140 Order - 1.4774 | 2.1005 | 1.1951
X |113263e-3| .20229¢-3|.22898¢e-4| .15278e-3

Table 3. Maximum and minimum absolute error (Problem 3)

N
A2 A1 8 16 32 64

xX*  |41119¢e-1| .23717e-1|.98905¢e-2| .86497¢-3

-0.0845| Order - .7939 1.2618 | 3.5153
5181 X |11667e-2| .54356e-3|.19939¢e-4 .86685¢e-5
x*  |41150e-1| .23905e-1|.10085¢e-1| .10630e-2,

-0.0847 Order - 7836 1.2450 | 3.2461
X |-11032e-2| .50055e-3|.12753e-4 .42046¢e-5
x* |40993e-1| .23744e-1|.99205¢e-2| .89694e-3

0.5179-0.0845| Order - 1878 1.2591 | 3.4673
X 110990e-2| .47101e-3|.55043¢e-4/.10555¢-4
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Table 4. Maximum and minimum absolute error (Problem 3)

N
A1 A2 8 16 32 64
X |38199e-1| .19783e-1|.58304e-2| .32314e-2
0.5146| Order| - 9493 1.7626 8514
-.0798 X |114733e-2| .28487e-3| .15447¢e-4/ .20409¢e-4
X |38324e-1| .19756e-1|.58004e-2| .32635¢-2
0.5148 Order - 9560 1.7681 .8297

X |15411e-2| .35748e-3|.97209¢e-4 .47137¢e-4
X |38277e-1| .19863e-1|.59129¢-2| .31482¢-2
-.0799.5147| Order - 9464 1.7482 9093

X |14755e-2| .29963e-3|.48006e-4| .13286¢-4

trapezoidal quadrature method has better computational performance for the larger no. of subin-
tervals N, i.e., F;, and Etj decreases as NV increases. It is evident from the tabulated results that
method (1.4) is convergent. Since we discretized boundary conditions using composite / repeated
quadrature method, this may be the possible reason for variation in order of the convergence of
the proposed method for the finer mesh.

§ 5. Conclusion

A second-order boundary value problem with nonlocal boundary conditions in ODEs was con-
sidered for the numerical solution in this article. A finite difference method has been developed
and discussed for the problem considered. The proposed finite difference method is a system of
equations in solution u(z) at discrete nodes x;, ¢ = 1,..., N — 1. The numerical results those
we obtained by the application of the proposed method (1.4) approve the theoretical development
of the proposed method. Improvement in proposed finite difference method is possible. Work in
this direction is in progress.
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I1. K. Ianou
YnciaeHHOe pelIeHHe HEJNOKAJBHOM KpaeBoil 3aga4yM [Jisi O0OBIKHOBEHHOro Iu¢¢epeHInaIbLHOro

YPAaBHEHUSA BTOPOIo NMOpsiAKa METOA0OM KOHECYHBIX pa3HOCTeI7[

Knroueswie cnosa: KpaeBasd 3ajiaqya BTOPOIo mopsjakKa, METO] KOHECYHBIX pa3HOCTeﬁ, HUHTCTPAJIbHBIC I'PaHUY-
HbIC YCJIOBUSA, TApaMETPbl U CXOOAUMOCTD.

VIK 519.624
DOI: 10.20537/vm190305

B crarpe mpeanokeHa 4HMcIeHHAs METOAMKA, OCHOBaHHAs Ha METOAE KOHEUHBIX pasHOCTEH, Uil mpuoiu-
JKEHHOTO peIIeHHUs HeJIOKAIbHOW KPaeBOW 3aadqi BTOPOTO TMOpsKa sl 0OBIKHOBEHHBIX Auddepennans-
HBIX YPaBHEHUU. SICHO, 4YTO MOCT, IOCTPOEHHBIN C JBYMs ONOPHBIMH TOYKAMU B KaXJI0H KOHEYHOU TOYKE,
MPUBOAMUT K CTAHJAPTHOMY JIByXTOYEYHOMY JIOKAJIbHOMY I'PAHHUYHOMY YCJIOBHUIO, & MOCT, CO3/IaHHBIN C I0-
MOILBI0 MHOTOTOYEUYHBIX OIOP, COOTBETCTBYET MHOTOTOYEYHOMY I'DaHUYHOMY YCIOBHIO. B TO ke Bpems,
€CJI HEJIOKAIbHBIE TPAHWYHBIE YCIOBUSA MOTYT OBITh YCTaHOBIIEHBI BOIM3N KaXT0H KOHEYHONH TOYKH MHO-
TOTOYEYHOIO OIOPHOIO MOCTA, BO3HHUKAET ABYXTOYEUHOE HEJIOKAIBHOE I'PAaHUYHOE YCIOBHE. Pe3ynbrarsl
pacyeToB JJisi HEJIMHEMHOM MOJIENIbHOW 3aJlaud MpeJCTaBIEHbl ISl TPOBEPKH MpeasiokeHHon uueu. [Ipo-
AHAIM3UPOBAHO BIMSHUE U3MEHEHUS [1apaMeTPOB HA CXOAUMOCTD MPEAJIOKEHHOIO METO/A.

[Tocrynuna B pepakiuto 11.05.2019

ITangu Ilpamox Kymap, Yuusepcurer [emm, aitan Cunrx Komnemxk, yn. Jlomxu, Hero-Jemu, 110003,
Wnnus.
E-mail: pramod_10p@hotmail.com

Huruposanue: 1. K. [Tanan. YucnenHoe pemieHHe HENOKaTbHOM KpaeBOW 3aladd AJsi OOBIKHOBEHHOTO
I pepeHIaIHLHOTO YpaBHEHUS BTOPOTO MOPsKa METOOM KOHEUHBIX pazHocTei // BectHUK YaMyprcko-
ro ynusepcurera. Maremaruka. Mexanuka. Komnerorepusie Hayku. 2019. T. 29. Bein. 3. C. 341-350.


https://doi.org/10.20537/vm190305
mailto:pramod_10p@hotmail.com

	.The Difference Method 
	.Development of the Finite Difference Method  
	.Convergence analysis  
	.Numerical results  
	.Conclusion  

