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PROBLEM WITH DATA ON THE CHARACTERISTICS FOR A LOADED SYSTEM
OF HYPERBOLIC EQUATIONS

We consider a problem with data on the characteristics for a loaded system of hyperbolic equations of
the second order on a rectangular domain. The questions of the existence and uniqueness of the classical
solution of the considered problem, as well as the continuity dependence of the solution on the initial
data, are investigated. We propose a new approach to solving the problem with data on the characteristics
for the loaded system of hyperbolic equations second order based on the introduction new functions. By
introducing new unknown functions the problem is reduced to an equivalent family of Cauchy problems
for a loaded system of differential with a parameters and integral relations. An algorithm for finding an
approximate solution to the equivalent problem is proposed and its convergence is proved. Conditions for
the unique solvability of the problem with data on the characteristics for the loaded system of hyperbolic
equations of the second order are established in the terms of coefficient’s system.
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Introduction

Mathematical modeling of phenomena in the theory of predicting ground and groundwater,
the theory of wave propagation in dispersive media, the theory of shells lead to loaded differential
equations various type [1-15].

To date, various methods and approaches have been developed for solving boundary value
problems for such equations (see [2,4,5] and the bibliography therein). However, despite this,
there are still many problems and questions concerning problems for loaded differential equations,
for example, generalization of results and solution methods to systems of equations, development
of methods for finding approximate solutions and their convergence to an exact solution, con-
struction of numerical solutions, etc. [1,3,6-15].

In this paper, we study a class of loaded differential equations of hyperbolic type. The
existence of a unique solution to a problem with data on the characteristics for the loaded system
of hyperbolic equations is discussed.

We consider the problem with data on the characteristics for the loaded system of hyperbolic
equations in the following form

0? ul(t, ou(t, Jult,
o= A(t,x)% + B(t,x)% +C(t, p)ult,z) + D(t,x)% + f(t,x), (0.1)
u(0,z) =p(z), xe(0,u], (0.2)
u(t,0) =v(t),  te[0,T). (0.3)
where Q0 = [0,7] x [0,w], u(t,x) = col (u1(t,z),us(t, z), ..., u,(t,z)) is an unknown vector

function, the (n x n)-matrices A(t, x), B(t,z), C(t,x), D(t, x), and the n-vector function f (¢, x)
are continuous on 2, 0 < zy, < w, the n-vector function p(x) is continuously differentiable
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on [0, w]|, the n-vector function ¢ (¢) is continuously differentiable on [0, 7], and the compatibility
condition is valid: ¢(0) = ¢(0).
Let C'(Q2,R™) be the space of continuous on 2 vector functions u(¢,x) with the norm

ullo = max [[u(t, z)|[,  [|[u(t,2)]] = max [u;(t, z)|.
(t,x)e i=1,n
Ou(t Ou(t
The function u (¢, z) € C(Q,R") that has partial derivatives ué .2) e C(Q,R"), % €
T

2
e C(Q,R"), Fult,z) € C(Q,R") is called a classical solution to problem (0.1)—-(0.3) if it
satisfies the loaded system of hyperbolic equations (0.1) for all (¢, x) € €2 and the conditions on
the characteristics (0.2) and (0.3) for all x € [0,w] and ¢ € [0, T'], respectively.

It is well known that the problem with data on the characteristics for the system of hyper-
bolic equations with continuous initial data (0.1)—(0.3) always has a unique classical solution for
D(t,x) = 0. The loaded term D(¢, m)M
role for the unique solvability of the problem (0.1)—(0.3). Additional requirements for the coeffi-
cients of the system (0.1) allow us to distinguish a class of solvable problems (0.1)-(0.3). At the
same time, the imposed conditions must be verifiable and consistent with the theory of boundary
value problems for loaded differential equations [1-15]. The main method for solving problems
with data on the characteristics for the system of loaded hyperbolic equations is the Riemann
method [2]. However, the application of the Riemann method requires continuous differentiabil-
ity of the coefficients A(t,z) and B(t,z) of the system of equations (0.1). Earlier, in [9-15],
various boundary value problems were investigated and solved for loaded ordinary differential
equations and systems of loaded partial differential equations of hyperbolic type, when the loads
are given by a variable ¢. In contrast to the works [11-13], this paper considers the system of
loaded hyperbolic equations when the load is given by a variable x. The problems of solvability
of the problem with data on characteristics for a loaded hyperbolic equation are considered in [2].

The aim of the paper is to develop a constructive method for solving the problem with data
on the characteristics for the loaded system of hyperbolic equations (0.1)-(0.3) and propose
algorithms for finding its solutions. We establish criteria for an existence and uniqueness of the
classical solution of the considered problem, as well as the continuity dependence of the solution
on the initial data.

For this we use the method of introduction new functions [16].

Introducing a new unknown functions, we reduce problem (0.1)-(0.3) to an equivalent family
of Cauchy problems for the loaded system of differential equations with parameters and integral
relations. We propose an algorithm for finding an approximate solution to problem (0.1)—(0.3)
and prove its convergence to the exact solution. Conditions for the existence and uniqueness of
the classical solution are established in the terms of the initial data.

in the system of equations (0.1) plays an essential

§ 1. Scheme of the method and family of Cauchy problems

Let us introduce a new functions in the following form:

v(t,x) = %, w(t,r) = dult, 2) for all (t,z) € 2.
Then problem (0.1)—(0.3) is reduced to an equivalent problem
g—: = B(t, x)w(t,x) + D(t, x)w(t, o) + AL, x)v(t, z) + C(¢, 2)ult, x) + f(t,x),  (1.1)

w(t,0) = (t), telo,1], (1.2)
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¢ ow(r, x)

u(t,z) = p(r) + /Otw(T, x)dr, v(t, ) = o(x) —l—/o Tdﬂ (t,x) € Q. (1.3)

In the problem (1.1)—(1.3) the condition u(0, z) = () is taken into account in relation (1.3).

A triple {w(t, z),v(t,x),u(t, )} of continuous on €2 functions is called a solution to problem
(1.1)—~(1.3) if the function w(t, ) belonging to C'(€2, R™) has a continuous derivative with respect
to = on () and satisfies the one-parameter family of Cauchy problems for a loaded differential
equations (1.1), (1.2), where the functions u(t,z) and v(t,z) are connected with w(t,z) and
ow(t, x)

Ox

Let u*(t, x) be a classical solution of problem (0.1)~(0.3). Then the triple {w*(¢, x), v*(¢, x),
u*(t, x)}, where w*(t,z) = M, vi(t,x) = dult,z)
Conversely, if a triple {w(t, x),v(t,z),u(t,z)} is a sofution of problem (1.1)—(1.3), then u(¢, x)
is a classical solution of problem (0.1)—(0.3).

For fixed v(¢,x), u(t,z) in problem (1.1)~(1.3) it is necessary to find a solution of a one-
parameter family of Cauchy problems for the system of loaded ordinary differential equations
with an integral condition [16].

We represent the solution of the family of Cauchy problems for the system of loaded differen-
tial equations (1.1), (1.2) using a fundamental matrix ®(¢, x) of the family system of homogeneous

by the integral relation (1.3).

, 1s a solution of problem (1.1)—(1.3).

differential equations 0_w = B(t,z)w(t,x). The fundamental matrix ®(¢, z) is continuously dif-
x

ferentiable on €2, invertible for all (¢,z) € , and ®(¢,0) = I, where [ is the unit matrix on

dimension 7.

For fixed v(¢,x) and wu(¢, x), the family of Cauchy problems (1.1), (1.2) has the solution in
the following form

w(t,z) = O(t, 2)Y(t) + (L, x) /Ox O(t,6)D(t, £)dE - w(t, z) +

. . (1.4)
L a(t ) / SY1, )AL E)o(L.€) + Ot E)ult, E)dE + B(t, ) / (1,601, ).
From here, for x = x(, we obtain
[I B (t,20) / "o ,eD(1,€) ds} w(t, z0) = B(t, 20) / T o6 f(1,€) de +
0 0 (1.5)

T B(t, 20)(t) + Bt x0) / T (1A Oo(t, €) + Ot Eult, ©)] de,

where [ is the identity matrix of dimension n.
z0
Suppose that the (n x n)-matrix Q(t,x¢) = I — @(t,xo)/ d(t,€)D(t, &) dE is invertible
0
for all ¢ € [0, 7. Then, from (1.5), we have

w(t, zo) = [Q(t, x0)] ' (t, x0) /m O (1, €) [ (t,€) dE + [Q(t 0)] T R(t, wo)db(t) +
xoo (1.6)
+ [Q(t7 xO)]_lq)(ta xO) /0 (I)_l(tv f) [A(ta f)U(t, g) + C<t7 f)u(t, 5)] df

Using (1.6), we can rewrite (1.4) in the following form
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w(tsa) = 0(t,0)| 1+ [" 07 (0.6)D(0.€) delQlt )] (e |10 +
#0(ta) [ BP0 Htan) [0 F 1€ de +
Fo(ta) [ 07O+ Bt [ 0O Ou(t.€) + Clt ult )] +
#0(ta) [ 87D delQl 0]
< @t0) [ QA ult €) + CltOult )]

(1.7)
If the (n x n)-matrix Q(t, zo) is invertible for all ¢ € [0, 7], then the family of Cauchy problems

for the system of loaded differential equations (1.1), (1.2) has a unique solution. The solution and
its derivative satisfy the following inequalities:

[lw(t, 2)]] < ¢()a(t, 2)|[¢(t)]] + e za(t, zo) Joax || f(t @)l +

- (1.8)
+ e O%at, ) (a(t) maxe [o(t,2)l| + (1) max. [lu(t, 2)])
17452 | < pie) (3010t 2) + SOADIIFO + (BOO"s + att,z0) ma (156,21 +
+ (B0 4+ Da(t, z0) (a(t) max [[o(t, )] +5(t) max [[u(t,2)]]),
(1.9)
where
oft) = max ||t 2)ll, () = max Bt x)ll, 3(t) = max [|D(t, )],
1(t) = max [IC(2)l|, o) = max [|2(2)l|, 6) = [[[Q(tzo)]

at,r) = 1+ 86(t)0(t)e’ D7z,

From the integral relations (1.3), we have

[lu(t, z)[| < lle()]] +/ |lw(7, z)]| dr,

. 3w
[v(t, )| < [lg(x)]| + ; Hd

Taking into account (1.8) and (1.9), from the inequalities (1.10) and (1.11), we obtain
max{ mas. [fo(t, )|, ma [Ju(t, )|
z€[0,w z€[0,w

(1.10)

(1.11)

b < s ma )] e 01} +
+ [a@lEldr+ [ aar) max (170l +

< max{ max [lo(x)]], max ||
z€[0,w]

max <>||} / 1(T)|I¢(T)|Id7+/0az(T)mrg[gg]IV(ﬂx)lldTJr
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¢
+/ as(7)as(T) max{ max ||v(7, x)||, max ||u(T, ac)H} dr
0 z€[0,w] x€[0,w]
where

ai(t) = ¢(t) max{ max a(t,x), f(t) max a(t,z) + 5(15)9(15)},

z€[0,w] z€[0,w]

aﬁ%jgﬁﬂ xﬁmﬁax+@dt%% as(t) = a(t) +~(t).

From here, using the Gronwall-Bellman inequality, we set

max{ maX llo(t, z)||, max ||u(t, :U)H} eb(t){max{ max ||p(z)]], max |o(x )H} +
z€[0,w z€[0,w z€[0,w] z€[0,w

, , (1.12)
# [Calimlar+ [ w1l ar ),

where

b@:A@m%mw

§ 2. Algorithm and main result

We propose an algorithm for finding a solution of the problem (1.1)-(1.3) and show its
convergence.

If we know v(t,z), u(t,z), then from the family of Cauchy problems (1.1), (1.2) we find
ow(t, x)

integral relations (1.3) we can determine v(¢, z) and wu(t,z) for all (¢,z) € . Siglclce the v(t, z),
u(t,z) and w(t,x) are unknown to find a solution of problem (1.1)~(1.3), we use the itera-
tive method. A triple {w*(¢,z),v*(t, ), u*(t,z)} is determined as a limit sequence {w™® (¢, z),
v® (¢, ), u®(t, 1)}, and k = 0,1,2, ..., by the following algorithm.

Step 0.

w(t,x) for all (¢,x) € Q. Conversely, if we know w(t, z) and its derivative

, then from

zo

1. Let the (n X n)-matrix Q(t,xy) = I — (I)(t,:vo)/ O1(t,€)D(t,€) d¢ be invertible for
0

all t € [0,T]. Assuming that v(t,x) = ¢(z), u(t,z) = @(x) for all (t,z) € Q in the

system (1.1), we solve the family of Cauchy problems for the loaded system of differ-

ential equations (1.1), (1.2), and find the zero approximation w® (¢, z) and its derivative

©0) (¢
%a—i’x) for all (¢,z) € Q.

ow(t,z)  owO(t,x)
or Ox
determine v (¢, 2) and u (¢, ) for all (¢,z) € Q.

2. Assuming w(t,z) = w (¢, ),

in the integral relations (1.3), we

Step k.

1. Assuming that v(t,2) = v*D(t, 2), u(t,z) = u*~Y(t,x) for all (t,x) € Q in the system
(1.1), we solve the family of Cauchy problems for the loaded system of differential equa-
ow® (t, 1)

tions (1.1), (1.2), and find the k-th approximation w(® (¢, 2) and its derivative 5
x

for all (¢,z) € Q.
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Ow(t ow® (¢

2. Assuming w(t,z) = w®(t, ), wt, ) - v 8< .T) in the integral relations (1.3), we
x x

determine v®) (¢, z) and u® (¢, z) for all (t,2) € Q; k = 1,2, .. ..

At each step of the algorithm: 1) solve the family of Cauchy problems for the loaded system
of differential equations (1.1), (1.2) with respect to the function w(t, x); 2) determine from the
integral relations (1.3) the functions v(¢, z) and u(t, x).

The convergence conditions of the algorithm provide assumptions about the initial data.

Theorem 1. Let the following conditions be met:

(a) the (n x n)-matrices A(t,x), B(t,z), C(t,x), D(t,x), and the n-vector function f(t,x)
are continuous on §1;

(b) the n-vector function ¢(x) is continuously differentiable on [0,w], the n-vector function
W(t) is continuously differentiable on [0,T], and the compatibility condition is valid:

©(0) = ¥(0);

0
(c) the (n x n)-matrix Q(t,xy) = I — q)(t,xo)/ OY(t,E)D(t,€) d€ is invertible for all
0
t €10,T), where 0 < zp < w.

Then the problem with data on the characteristics for the system of loaded hyperbolic equa-
tions (0.1)~(0.3) has a unique classical solution u*(t,x) defined as the limit u'*) (¢, z) as k — oo,
where the sequences of functions u'¥)(t, ) and its derivatives v*) (t, z), w*) (¢, x) are found from
the algorithm constructed above for all (t,z) € ).

P r o o f. By virtue of the equivalence of problems (0.1)—(0.3) and (1.1)—(1.3), it suffices to
justify the unique solvability of problem (1.1)-(1.3). We find a solution {w(¢, z), v(t, x), u(t, x)}
of problem (1.1)—~(1.3) by the algorithm proposed above. As the initial approximation v(¢, z) and
u(t, r) we take p(x) and (z), respectively, and then find w(® (¢, z) from the family of Cauchy
problems in the next form

g—: = B(t,x)w(t,z) + D(t,x)w(t, o) + f(t,x) + A(t,x)o(x) + C(t, z)p(x), (2.1)

w(t,0) =1(t),  tel0,T). (2.2)
Let condition (c) be fulfilled. Then, the family of Cauchy problems for the loaded system of
differential equations (2.1), (2.2) has a unique solution v(?) (¢, z). We find the solution w(® (¢, z)
of the family of Cauchy problems for the loaded system of differential equations (2.1), (2.2) in
the form (1.7), where v(t, x) = ¢(z) and u(t, z) = ¢(x).
owO(t, )

ox
owO (t, x) ‘ ’
ox

For w(® (¢, x) and its derivative , the following estimate is valid:

max{ max [[w® (¢, 2)]], max } < OISO+ oate) max (1700, +

z€[0,w] z€[0,w]

+ az(t)as(t) max{ max [|p()]], max |lp(x)]|}.
z€[0,w] z€[0,w]

Then, from the integral relations (1.3), we determine v¥) (¢, z) and u(®) (¢, z):

u(t,2) = o(x) +/0 w® (7, 2) dr, VO (t,z) = () +/0 —
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for all (¢, ) €  and the following estimate is true:

max{ ma (|1, 2)||, ma [u (¢, )|} < max{ max [[o(o)]], max [l +
z€[0,w] z€[0,w] z€(0, €lo,

! ) ow O (1, x
+ [ maxq max [[w™ (7, x)||, max H—H
0

z€[0,w] z€[0,w]

Suppose v*~V (¢, z) and u* =V (¢, z) are known. Then w¥)(¢, ) can be found from the family
of Cauchy problems in the next form

g;u = B(t,z)w(t,z) + D(t,z)w(t, o) + f(t,z) + A(t,2)o* (¢, z) + C(t, z)u*V(t, ),
2.3)
w(t,0) =(t),  te[0,T]. (2.4)

We find the solution w*) (¢, 2) of the family of Cauchy problems for the loaded system of differen-
tial equations (2.3), (2.4) in the form (1.7), where v(t, ) = v~V (t, ) and u(t, z) = u*V (¢, z).
ow® (¢, x)

T

a—ff’)H} < ar (IO + axft) mas 1/ +

+ as(t)as(t) maxc{ max [[o* D¢, )], max [[u(t,2)]|}.
z€[0,w] z€[0,w]

For w® (¢, ) and its derivative the following estimate is true:

max{ max ||w® (¢, z)||, max
z€[0,w] z€[0,w]

Then, from the integral relations (1.3), we determine v*) (¢, 2) and u™® (¢, z):

L ow® (1, z)

ub (t, 2) = o(x) —|—/0 w® (1, 2) dr, v M (t,2) = ¢(x) +/0 TdT

for all (t,z) € 2 and the following estimate is valid:

max{ mas ([ (1, 2)]|, maxe [[u®(r,2)||} < max{ max [|(2)]|. mas [lo(@)]|} +
z€[0,w] TE

ow®(r, z) H} dr. k=172

t
+/0 max{ max |w® (7, 2)||, max e

z€[0,w] z€[0,w]
Analogously, for differences

k k k
Aw (k)(t ) = (kH)(t,:L') _ w(k)(t,x), IAwW' )(t, ) _ o' +1)(t,ac) B o' )(t’x),

AvW® (t, ) = oD (¢, 1) — B (8, 2), AuP (t,2) = uFV (¢, 2) — uP® (¢, 2),

we obtain the following estimates

OAw ) (¢, 2) H} <

max{ max ||Aw™(t, z)||, max

€[0,w] 2€[0,w] (2.5)
< as(t)as(t) maX{ max_[|Ao®=D(t, z)||, max HAu(’“’l)(t,x)H},
z€[0,w] z€[0,w]
max{ max [|Ao®(t, z)||, max ||Au(k)(t,93)||} <
z€[0,w] z€[0,w]
(2.6)

z€[0.w]

¢ Aw®)
< / max{ m[gux] [ Aw® (7, 2)||, max 0w—(7,$)H} dr
0 xe|0,w
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Taking into account (2.5) in (2.6), we set

mac{ mas (|80 (¢, ), max 1au®t, )1} <
re|0,w

z€[0,w] (2 7)
t )
</ as(T)as(T )max{ max HAU (k= 1)(7' x)ll, max ||Au(k 1)(7',:10)H}d7'
0 z€[0,w] z€[0,w]
And using (2.6) in (2.5), we also obtain
OAw® (¢
max{ max ||Aw® (¢, 2)||, max MH} <
€0,w] z€[0,w] (2 8)

t
< CLQ(t)CLg(t)/ max{ max ||[Aw* Y (7, 2)||, max
0

z€[0,w] z€[0,w]

aAw(ka;)(T, T) H} ir

)(t z)

space C'(2,R"™) as k — oo. Then the uniform convergence on Q of the sequences {v¥) (¢, z)}
and {u® (¢, )} follows from the estimate (2.6) (or (2.7)).
ow*(t, x)

From (2.8) it follows that the sequences {w*)(¢,z)} and { } are convergent in the

In this case, the limit functions w*(¢, x),

and the triple {w*(¢,z), v*(t,x), u*(¢t,x)} is a solution to problem (1.1)—(1.3). Using the esti-
mates (1.8), (1.12), we obtain

max{ o [lo. 0" o [0 } < & - ma{ |1 7llo. ma. (0], max [lo(@)ll. max [lo()]]}.
€[0,T] z€[0,w)] z€[0,w
(2.9)

v*(t, ) and u*(t, z) are continuous on {2,

where

T T

K = max{ max ¢(t)a(t,x),/ al(T)dT} - max{ max eﬁ(t)xa:a(t,xg),/ (ZQ(T)dT} + @
(t,x)eQ 0 (t,z)eQ 0

and independents of f, and v, and .

Now let {w(t,x), v(t,x), u(t,x)} be a solution to problem (1.1)—(1.3), where f(¢,z) = 0,
Y(t) = 0, and ¢(x) = 0 for all (¢,z) € Q. Then the unique solvability of family of Cauchy
problems (1.1), (1.2) together with (1.3) imply that w(¢t,z) = 0, v(t,z) = 0, and u(t,z) = 0
for all (t,z) € €. Thus, it follows from the estimate (2.9) that problem (0.1)—(0.3) is uniquely
solvable. The proof of Theorem 1 is complete. ]

Remark 1. For the case D(¢,z) = 0, we have the problem on the characteristics for the system
of hyperbolic equations. In this case the matrix Q(¢, zo) has the form D(¢,xy) = I and is always
invertible for all ¢ € [0, 7.

Remark 2. We can establish a conditions for unique solvability problem (0.1)—(0.3) without
fundamental matrix ®(¢, z). For this, we use Dzhumabaev’s parameterization method [17]. This
method was proposed to solve boundary value problems for system of ordinary differential equa-
tions. By using this method, necessary and sufficient conditions for a unique solvability to
considered problem were obtained. Algorithms for finding approximate solution of problem were
offered and their convergence to exact solution were proved.

Funding. This research is funded by the Science Committee of the Ministry of Education and
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A. T. Acanosa, A. ZKonamanxuizut

3ajaya ¢ JAaHHBIMHM HA XapaKTEPUCTHKAX /ISl HATPY:KEHHOH CHCTeMbl THNEePO0JIHMYeCKHX YPaBHEHMI

Kniouesvie cnosa: HarpyKeHHbIE CHCTEMBI THIIEPOOINYECKUX YpaBHEHUH, 3a1a4a ¢ JaHHBIMHU Ha XapakTe-
pHUCTHKaX, cemeiicTBa 3anay Koy, anroput™, Kputepuil pa3pelmMoCTH.

YIK 517.956
DOI: 10.35634/vm210301

PaccmarpuBaeTcs 3amaya ¢ JaHHBIMHM Ha XapaKTePUCTHKAX IJIsl HArpy>KeHHOH CHCTEMBI THIIEPOOINYECKUX
YpaBHEHHI BTOPOTO MOPSAKA B IPSAMOYTOIBHOM 06macTu. MccnemyroTes BOnpoCs! CyIIeCTBOBAHUS U IHH-
CTBEHHOCTH KJIACCHYECKOTO PELICHHUs] pacCMaTpUBAEMON 3aJa4H, a TAaK)Ke HEINPEPhIBHOW 3aBUCUMOCTH pe-
IIeHHS OT UCXOIHBIX NaHHBIX. [IpearaeTcss HOBBIM MOAXOM K PEIICHHIO 3a/1a4 C JaHHBIMH Ha XapaKTepH-
CTHKaX JAJIsl HArpy>KCHHON CHUCTEMBI TUIepOOIMYECKUX YPaBHEHUH BTOPOTO MOPSIKA HA OCHOBE BBEACHUS
HOBBIX (yHKuui. IlyTeM BBeneHWsI HOBBIX HEM3BECTHBIX (DYHKIMH 3ajjada CBOAMTCSA K SKBHBAJCHTHOMY
ceMeiicTBy 3anay Komw a1 HarpyeHHOH cucteMbl AuddepeHInalbHbIX YPaBHEHUH ¢ HapaMeTpamMu U
WHTETPAILHBIM COOTHOWIEHUSM. IIpeyioxkeH aaropuTM HaXOXIEHUS MPUOIMKEHHOTO pEIIeHHs SKBHUBA-
JICHTHOH 3a/1auyl U J0Ka3aHa €ro CXOAUMOCTh. YCTAHOBIJICHB! YCJIOBHS OJHO3HAYHON Pa3pelIMMOCTH 3a1a4i
C JJaHHBIMHU Ha XapaKTEpUCTHKAX JJIs HArpy>KEeHHOM CHCTEMBI THIEpOOIMYECKUX YpaBHEHHH BTOPOIo IO-
psAaka B TepMUHAX KOI(D(OUITMEHTOB CHCTEMBI.

@duHaHCcMpoBaHWe. JTO HCCIEIOBAaHNE BBITONHEHO MpH (UHAHCOBOH moanepxkke Komurera Haykn Mu-
HUCTEpCTBa 0Opa3oBaHus U Hayku PecnyOnukn KazaxcraH B paMkax TpaHTOBOTO (PMHAHCHPOBAaHUS (TpaHT

Ne AP08855726).
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