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SUFFICIENT TURING INSTABILITY CONDITIONS FOR THE SCHNAKENBERG

SYSTEM

A classical reaction–diffusion system, the Schnakenberg system, is under consideration in a bounded do-

main Ω ⊂ R
m with Neumann boundary conditions. We study diffusion-driven instability of a stationary

spatially homogeneous solution of this system, also called the Turing instability, which arises when the dif-

fusion coefficient d changes. An analytical description of the region of necessary and sufficient conditions

for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffu-

sionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary

conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover,

the intersection points of two consecutive curves of this family lie on a straight line whose slope depends

on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an

analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position

of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral

stability modes is countable, finite, or empty. It is shown that the semiaxis d > 1 can be represented as

a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace

operator; each half-interval is characterized by the minimum wavenumber of loss of stability.
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Introduction

Systems of semi-linear parabolic equations, also called reaction–diffusion systems, find nu-

merous applications in modeling of various physical, biological, and other processes [1]. Bifur-

cations of stationary solutions of such systems, as a result of which spatial-temporal structures

are formed, have been considered by many authors [2–13].

A special role in the processes of structure formation and self-organization is played by

the mechanism of diffusion instability, discovered by A. Turing [11] and reflected in modern

research [2–4,7–10]. In the classical monography of J. Murray [12], the Turing instability is used,

in particular, for modeling the color of animal skins.

The Schnackenberg system [13] was proposed to describe a two-component chemical reaction

and has the form

du

dt
= u2v − u+ a,

dv

dt
= −u2v + b, (0.1)

where u(t), v(t) are time-dependent concentrations of chemicals; a, b are constant concentrations

that are assumed to be given.

Let us take into account the diffusion process, which leads to concentration equalization.

Suppose that the concentrations of the interacting substances u = u(x, t), v = v(x, t) depend not

only on time t, but also on a spatial variable x, and x changes in a bounded domain Ω ⊂ R
m

for m = 1, 2, 3. We will assume that for m = 2, 3 the boundary ∂Ω of the domain is sufficiently

smooth, ∂Ω ∈ C2, or Ω is a rectangular parallelepiped.

https://doi.org/10.35634/vm210306
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Let ∆ =
∂2

∂x21
+. . .+

∂2

∂x2m
be the Laplace operator and ψk be the eigenfunctions corresponding

to the eigenvalues µk of the operator −∆ under Neumann boundary conditions, k = 0, 1, 2, . . . .

∆ψk + µkψk = 0, x ∈ Ω,
∂ψk

∂n

∣∣∣∣
∂Ω

= 0. (0.2)

In this paper it is assumed that all eigenvalues µk (0.2) are simple. In one-dimensional case, this

condition is fulfilled automatically; in the case of a rectangular parallelepiped, it is sufficient to

assume that the squares of its sides are incommensurable.

Let D1, D2 be the diffusion coefficients for the first and the second substances, respectively.

Then from (0.1) we arrive at the spatially distributed Schnackenberg system:

ut = D1∆u+ f(u, v), vt = D2∆v + g(u, v), (0.3)

where

f(u, v) = u2v − u+ a, g(u, v) = −u2v + b. (0.4)

After change of variables xi →
√
D1xi, i = 1, 2, . . . ,m, and introduction of a new notation for

the diffusion coefficient d =
D1

D2

, the system (0.3) takes the form

ut = ∆u+ f(u, v), vt = d∆v + g(u, v). (0.5)

We require Neumann boundary conditions on ∂Ω:

∂u

∂n

∣∣∣∣
∂Ω

=
∂v

∂n

∣∣∣∣
∂Ω

= 0, (0.6)

where n is the outward normal to the boundary. In what follows, we will call the system (0.5)

with boundary conditions (0.6), in which the terms of the reaction f and g are given by (0.4), the

Schnackenberg system with diffusion.

By standard techniques, the system (0.4)–(0.6) is reduced to an ordinary differential equation

in the Hilbert space H of vector functions w = (u, v) with components u, v ∈ L2(Ω). Let an

operator A0 : H → H be defined on the set of vector functions w = (u, v), whose components

belong to the Sobolev space W 2
2 (Ω) and satisfy the boundary conditions (0.6), and acts according

to the rule A0 = −D∆, where D is a matrix of diffusion coefficients

D =

(
1 0
0 d

)
. (0.7)

Hence, the system (0.4)–(0.6) takes the form

wt = A0w +K(w), K(w) = (f, g); w ∈ H. (0.8)

The equation (0.8) is usually considered with some initial conditions. If the initial conditions

are spatially homogeneous, that is, do not depend on x, then the solution will be spatially homo-

geneous. Thus, R2 is an invariant subspace of the diffusion system for any diffusion coefficient.

In particular, the equilibrium position of the system (0.1),

(u0, v0) =

(
a+ b,

b

(a+ b)2

)
(0.9)
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is a spatially homogeneous solution to the diffusion system (0.8). According to the chemical

meaning of the system, we require the positivity of the solution (u0, v0)

a+ b > 0, b > 0. (0.10)

The Turing instability, or diffusion-driven instability, of a spatially homogeneous solu-

tion (u0, v0) of a diffusive system is characterized by the property of stability in the absence of

diffusion and instability in the presence of diffusion. Starting with Turing’s work [11], diffusion-

driven instability is established by analyzing linearized systems without diffusion and with diffu-

sion.

Denote by J the Jacoby matrix of ordinary differential equations system (0.1) at the

point (u0, v0) (0.9):

J =

(
fu fv
gu gv

)∣∣∣∣
(u0,v0)

. (0.11)

Here

fu =
b− a

a+ b
, fv = (a+ b)2,

gu = − 2b

a+ b
, gv = −(a+ b)2.

(0.12)

Then the system (0.1) linearized in a neighborhood of (u0, v0) has the form

dy

dt
= Jy, y ∈ R

2. (0.13)

Now consider the Schnackenberg system with diffusion. We linearize (0.8) in a neighborhood

of the equilibrium position (u0, v0):

wt = Aw, A = A0 + J, (0.14)

where the operator A is defined on the domain of the operator A0. It is known that the spectrum

of the operator A is discrete because its resolvent is a compact operator in H [14].

Definition 1. An equilibrium (u0, v0) of a system with diffusion (0.8) is called Turing unstable

if two conditions are satisfied. First, the eigenvalues of the diffusion-free system (0.13) linearized

in the vicinity of the equilibrium state lie strictly in the left half-plane of the complex plane.

Second, there is an eigenvalue of the linearized diffusion system (0.14) lying in the right half-

plane.

Note that, strictly speaking, being interested in the bifurcations of the main solution, it is

necessary to justify the linearization for both the system in the diffusionless approximation and

the system in the presence of diffusion.

If the first condition of the Turing instability is satisfied, then the equilibrium position of

the nonlinear system (0.1) is exponentially asymptotically stable in a finite-dimensional phase

space. This implies exponential asymptotic stability of the steady state (u0, v0) in the invariant

subspace R
2 of the infinite-dimensional phase space H of the system with diffusion (0.8).

The justification of linearization in the stability problem for a wide class of parabolic systems

was substantiated in [15]. We will not dwell on checking the conditions of these theorems in this

paper.

The system (0.4)–(0.6) contains parameters a, b, satisfying conditions (0.10), and the diffusion

coefficient d. For practical applications, it is important to find the Turing instability region as

well as the critical value of the diffusion parameter.
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Definition 2. A region in the parameter plane (a, b) containing those parameters for which the

Turing instability takes place and the diffusion coefficient d is fixed is called the Turing instability

region.

Now let the parameters a and b be fixed, and the diffusion coefficient d be changed. Then the

eigenvalues of the linearized system (0.14) might be considered as functions of the parameter d.

It will be shown below that for d less than a certain value, all eigenvalues of the system (0.14)

lie strictly in the left half-plane of the complex plane.

We are interested in a critical case, when the eigenvalues cross the imaginary axis. In general

case, this is possible when either the imaginary axis is crossed by a pair of purely imaginary

eigenvalues (then an oscillatory loss of stability occurs), or the eigenvalue passes through zero

(which corresponds to a monotonic loss of stability). It is known that the Turing instability

corresponds to a monotonic loss of stability [11, 12].

Nevertheless, a large number of works are devoted to an oscillatory loss of stability in reac-

tion–diffusion systems, as a result of which the Hopf bifurcation arises [2–8]. The emergence

of spatially inhomogeneous regimes in reaction–diffusion systems as a result of the oscillatory

or monotonic loss of stability of the stationary solution of the system has been studied by many

authors. For instance, [3, 4, 7, 8] follow the approach given in [2] for diffusive predator–prey

system. In [5] critical values of a control parameter, corresponding to the oscillatory and mono-

tonic loss of stability are found for a two-component reaction–diffusion Rayleigh system under

Dirichlet and mixed boundary conditions. In [6] spatially-inhomogeneous auto-oscillations and

stationary regimes are found which are stable in infinite–dimensional invariant subspaces of the

Rayleigh system under Neumann boundary condition. In [7] Turing–Hopf bifurcation as a result

of diffusion and time delay is investigated.

In [8] bifurcations of an equilibrium, such as Turing, steady state and Hopf bifurcations, have

been studied for Schnakenberg-type system. In particular, sufficient conditions for the Turing

instability are given.

In [9], for a three-variable system of reaction–diffusion equations, it is shown that the in-

teraction of two types of diffusive instabilities, namely Turing and wave instabilities, leads to

formation not only pure stationary and autowave structures, but also more complicated mixed

regimes. In present work, as in [7], the role of the bifurcation parameter is played by the ratio of

the diffusion coefficients d =
D1

D2

.

Definition 3. A critical value of the parameter d is a value of dc such that the spectrum of the

linearized problem (0.14) lies strictly in the left half-plane of the complex plane, except for the

eigenvalue λ(dc) = 0, and the intersection of the imaginary axis occurs transversely:

λ′|d=dc
6= 0, (0.15)

where prime ′ means differentiation with respect to the parameter d.

The aim of this paper is to find an explicit analytical representation of the boundary of the

Turing instability region for the Schnackenberg system with diffusion, as well as the critical value

of the diffusion coefficient, and to determine the range of Turing instability wavenumbers so that

it depends on the diffusion coefficient. Some preliminary results are formulated in [9].

Let us dwell briefly on the differences between the present work and the works [4, 7], which

are the closest in the subject, in the part in which they interact with our work. In [4], bifurcations

of the steady state solutions of the Schnackenberg system in a neighbourhood of the equilibrium

position are studied, the statements are proved in one-dimensional case x ∈ (0, ℓπ). In [4], the
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monotonic loss of stability as a whole is under consideration, the parameter a plays the role of

a bifurcation parameter, while the parameter b and the diffusion coefficient d remain fixed. In

contrast, in the present work, the results do not depend on the dimension of the spatial domain.

As in [4], we consider the case of one-dimensional expanding domains, but only as a special case.

We also use the substitution of variables proposed in [4] to simplify the calculations. This will be

discussed in the next section.

The results of [7] refer, in particular, to the Schnackenberg system (0.3) in one-dimensional

case x ∈ (0, 1) with the boundary conditions (0.6) under the assumption that the diffusion coef-

ficients are given as D1 = εd,D2 = d. For this system an explicit expression is obtained for one

of the boundaries of the region of sufficient conditions for Turing instability on the parameter

plane (d, ε) for fixed values of the parameters (a, b) and the wavenumber k ∈ N.

In the present paper, the region of necessary and sufficient conditions for the Turing instability

on the plane of the initial parameters (a, b) is explicitly found. These conditions are found for an

arbitrary domain Ω and are expressed in terms of the eigenvalues of the Laplace operator with

Neumann boundary conditions.

For any value of the diffusion coefficient satisfying the condition d > 1, the range of wave-

numbers k at which the Turing instability occurs is indicated. In the particular case of positive

values of the parameters a and b, it is shown that the range of wavenumbers is finite, and the

values of this range are explicitly found.

§ 1. Necessary conditions for Turing instability

In this section, based on well-known results on the necessary conditions for the Turing insta-

bility [12], we introduce definitions that will be convenient in what follows.

Let us find the trace and the determinant of the matrix J (0.11)–(0.12) and write down the

conditions under which the eigenvalues of the system without diffusion (0.13) lie strictly in the

left half-plane of the complex plane:

Tr(J) ≡ b− a− (a+ b)3

a+ b
< 0, Det(J) ≡ (a+ b)2 > 0. (1.1)

From the assumption (0.10) it follows that the condition Det(J) > 0 is always satisfied.

Therefore, the stability conditions (1.1) for the diffusionless approximation take the form:

b− a < (a+ b)3. (1.2)

Let’s introduce new variables:

Y = b− a, X = a+ b. (1.3)

Hence, taking into account (0.10), the condition (1.2) takes the form:

X > 0, Y < X3. (1.4)

The convenience of change of variables (1.3) is fairly obvious. These variables are also used

in [4]. We introduced it independently of this paper.

Now we consider a linear spectral problem for the operator A (0.14) in H:

Aϕ = λϕ, ϕ 6= 0. (1.5)

Let us derive the necessary conditions under which the operator A has an eigenvalue in the right

half-plane.
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It is known [16] that the operator A has a matrix representation in the basis consisting of

the eigenvectors {e1ψk, e2ψk}+∞

k=0 of the operator A0 (here e1 = (1, 0), e2 = (0, 1); ψk are the

eigenfunctions (0.2)). The matrix of the operator A has a block-diagonal form with the matrices

Jk = J− µkD on the diagonal, where D is defined in (0.7):

Jk =



b− a

a+ b
− µk (a+ b)2

− 2b

a+ b
−(a+ b)2 − dµk


. (1.6)

Looking for an eigenvector ϕ in the form of eigenfunctions series

ϕ =
+∞∑

k=0

Ckψk, Ck = (c1k, c
2
k), (1.7)

after substitution the series (1.7) into (1.5) and equating the coefficients of the same eigenfunc-

tions, for each fixed k we obtain a linear system with the matrix Jk (1.6), which corresponds to

the eigenvalue λk and the eigenvector Ck:

JkCk = λkCk, Ck 6= 0.

Being interested in the instability of the equilibrium position (u0, v0), we find the trace and

the determinant of the matrix Jk:

Tr(Jk) = Tr(J)− (1 + d)µk,

Det(Jk) = dµ2
k +

(
(a+ b)2 − d · b− a

a+ b

)
µk +Det(J).

(1.8)

Since Det(J) = (a + b)2 > 0 due to (0.10), the loss of stability can occur only for k > 0. In

this case µk > 0. Therefore, the inequality Tr(Jk) < Tr(J) < 0 is fulfilled, and the equilibrium

position (u0, v0) can become unstable only if Det(Jk) = 0. In particular, it follows that only a

monotonic loss of stability corresponds to diffusion driven instability.

By h(µ) we denote the polynomial

h(µ) ≡ dµ2 +

(
(a+ b)2 − d · b− a

a+ b

)
µ+ (a+ b)2, (1.9)

where h(µk) = Det(Jk) (1.8). After change of variables (1.3), h(µ) takes the form:

h(µ) ≡ dµ2 +

(
X2 − d · Y

X

)
µ+X2. (1.10)

If the condition d <
X3

Y
is satisfied, then all the coefficients of the trinomial h(µ) (1.10) are

positive, and, therefore, its roots lie strictly in the left half-plane. For d =
X3

Y
, the trinomial h(µ)

has a pair of purely imaginary roots. Being interested only in the case of real and positive roots

of the polynomial h(µ), we require the second coefficient to be negative

d >
X3

Y
, (1.11)
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and the discriminant of h(µ) to be non-negative:

(dY −X3)
2
> 4dX4. (1.12)

Taken together, the conditions (1.11) and (1.12) lead to the inequality:

dY −X3
> 2

√
dX2. (1.13)

Taking into account the inequalities (1.4), which are satisfied in the diffusionless approxima-

tion, and (1.13), the necessary conditions for the Turing instability in the variables (X, Y ) have

the form:

X > 0, Y < X3, Y >
1

d
X3 +

2√
d
X2. (1.14)

Note that (1.14) implies a restriction on Y (and parameters a and b)

Y = b− a > 0,

and also on the diffusion coefficient d

d > 1.

Now we present the definitions that we introduced to describe the boundary of the Turing

instability region.

Definition 4. Zero trace curve is the curve Y = X3 in the plane (X, Y ) corresponding to

vanishing of the trace of the matrix J.

Definition 5. The curve Y0 = Y0(X) in the plane (X, Y ) corresponding to vanishing of the

discriminant of the trinomial h(µ) will be called a discriminant curve:

Y0 =
1

d
X3 +

2√
d
X2. (1.15)

Thus, in the half-plane X > 0, the region of necessary conditions for the Turing instability

is bounded by zero trace curve and the discriminant curve. Using the change of variables (1.3),

in a similar way one can define zero trace curve and the discriminant curve in the plane of the

original parameters (a, b) of the Schnackenberg system.

Obviously, zero trace curve and the discriminant curve intersect at X = 0, Y = 0. Let’s find

the intersection point N∗ = (X∗, X
3
∗
) of these curves with positive coordinates. The abscissa of

this point is found by the formula

X∗ =
2
√
d

d− 1
. (1.16)

It is easy to verify that for X > X∗ zero trace curve lies above the discriminant curve in the

(X, Y )-plane and, therefore, the region of necessary conditions for the Turing instability (1.14) is

not empty. The formula (1.16) has not been encountered in the literature yet.

Let us find the values of the diffusion coefficient at which the point with coordinates (X, Y )
lies not below the discriminant curve. To do this, solve the inequality Y > Y0 with respect to

parameter d. We have: d > d0, where d0 is the value of d corresponding to the case when the

point (X, Y ) lies on the discriminant curve. We find d0 :

√
d0 =

X2 +
√
X3(X + Y )

Y
. (1.17)
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Considering the trinomial h(µ) (1.9) as a function of not only the parameter µ, but also the

diffusion coefficient d, we conclude that for d = d0 the vertex of the parabola y = h(µ) crosses

the µ-axis. In [12], the value of d0 (1.17) was defined in the variables a, b, and this value of d0 was

called the critical diffusion coefficient. In addition, the region in the plane of parameters (a, b),
in which the necessary conditions for Turing instability are satisfied, was called Turing space.

We emphasize that for d > d0 the necessary conditions for the Turing instability are satisfied,

but, generally speaking, the sufficient conditions are not satisfied.

If the polynomial h (1.9) depended not on a discrete set of eigenvalues µk, but on a continuous

nonnegative parameter µ, then the necessary condition (1.14) would be sufficient. This follows

from the fact that the spectrum of the operator −∆ defined in the whole space (R1,R2 or R3) fills

the non-negative semiaxis. The discreteness of the spectrum {µk}∞k=1 for bounded domains leads

to the fact that one of the boundaries of the domain of sufficient conditions does not coincide

with the discriminant curve. Indeed, for d = d0, the vertex of the parabola h(µ) is touching the

µ-axis, but the abscissa of the vertex should not coincide with some eigenvalue µk.

The discreteness of the spectrum of the Laplace operator for bounded domains has been taking

into account in the literature to describe the region of the Turing instability [4, 7]. Nevertheless,

no explicit formulas of the boundary of the sufficient conditions region have been obtained.

§ 2. Sufficient conditions for Turing instability

The sufficient conditions for the Turing instability are the necessary conditions supplemented

by the condition for the existence of such a value of k ∈ N for which

Det(Jk) = h(µk) 6 0.

Definition 6. Let the parameters a and b be fixed, and the diffusion coefficient take on a critical

value d = dc. A critical wavenumber is a value of k ∈ N for which the eigenvalue of the Laplace

operator µk is a root of the trinomial h(µ) : h(µk) = 0.

Let us denote by dk such value of d for which µk coincides with one of the roots of the

quadratic trinomial h(µk). Find dk by equating the expression for h(µk) to zero:

dk =
X3

Y − µkX
· µk + 1

µk

. (2.1)

Since dk is positive, it follows a restriction on the system parameters:

µ1 6 µk <
Y

X
. (2.2)

We denote by Y = Yk(X) the curves corresponding to the coincidence of the values of µk

with the roots of the quadratic trinomial h(µk) for different k. The case when the point (X, Y )
belongs to one of these curves corresponds to the equality d = dk. Solving (2.1) for Yk(X), we

obtain the equation of the required curves:

Yk(X) =
µk + 1

µk · d
·X3 + µkX. (2.3)

Definition 7. Let F (X, Y, k) = 0 be a one-parameter family of curves in the half-plane X > 0
depending on a natural parameter k. A smooth curve Φ is called an envelope of this family if

each curve of the family has a common point with the curve Φ, and at this point the curve of the

family has a common tangent line with Φ.
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Using the explicit expressions for discriminant curve Y0(X) (1.15) and the curves Yk(X),
k > 1 (2.3), it is easy to prove the statement.

Theorem 1 (about discriminant curve). The discriminant curve Y0 = Y0(X) has the following

properties:

(a) it lies no higher than one-parameter family of curves Yk(X) in the half-plane X > 0;

(b) it has with each curve Yk(X) a unique common point Tk = (Xk,0, Yk,0), whose coordinates

are found by the formulas

Xk,0 = µk

√
d, Yk,0 = µ2

k(µk + 2)
√
d; (2.4)

(c) it is an envelope of one-parameter family of the curves Yk(X);

(d) the curves Yk(X) and the curve Y0(X) are convex downward for any X > 0.

From (2.4) it follows that the common points of the discriminant curve and the curve Yk(X)
for fixed k are located on a straight line with the slope γk,0 = µk(µk + 2) which does not depend

on the diffusion coefficient d. It will be shown below that an analogous property holds for the

intersection points of the curves Yk(X).
Our goal is to find a region in which not only necessary, but also sufficient conditions for the

Turing instability are satisfied. Further, it will be shown that one of the boundaries of this region

consists of fragments of the curves Yk(X), and the other boundary coincides with zero trace

curve. To describe a mutual arrangement of the curves Yk(X), we use the following statement.

Theorem 2 (about Yk(X) and Ym(X)). Let 1 6 k < m. Then

(a) in the half-plane X > 0 the curves Yk(X) and Ym(X) have one intersection point

(Xk,m, Yk,m), and its coordinates are found by the formulas:

Xk,m =
√
µkµmd, Yk,m = γk,mXk,m, γk,m = µk + µm + µkµm;

(b) for X < Xk,m, the curve Yk(X) is located below the curve Ym(X) :

Yk(X) < Ym(X);

for X > Xk,m,, the curve Yk(X) is located above the curve Ym(X).

P r o o f. Both statements follow from the inequality Yk(X) 6 Ym(X) considered in the

half-plane X > 0. This inequality takes the form:

(µk − µm)

(
X2

dµkµm

− 1

)
> 0.

Taking into account the assumption that the eigenvalues µk are simple and µk < µm for

1 6 k < m, we obtain the required statement. �

For convenience, we introduce the following notation. By γ0 we denote the first nonzero

eigenvalue of the operator −∆, by X0,m we denote the abscissa of the intersection point N of the

curve Ym(X) with zero trace curve Y = X3 :

γ0 = µ1, X2
0,m =

X2
m,0

µm(d− 1)− 1
, (2.5)

where Xm,0 is defined in (2.4); the intersection point N = (X0,m, X
3
0,m). Theorem 2 implies the

properties of a mutual arrangement of two consecutive curves Yk(X) and Yk+1(X).
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Theorem 3 (about Yk(X) and Yk+1(X)). The curves Yk(X), k > 1, have the following prop-

erties:

(a) in the half-plane X > 0 the curves Yk(X) and Yk+1(X) have a unique intersection point

Ck = (Xk,k+1, Yk,k+1), whose coordinates are found by the formulas

Xk,k+1 =
√
µkµk+1d, Yk,k+1 = γkXk,k+1, (2.6)

γk = µk + µk+1 + µkµk+1; (2.7)

(b) common points Ck = (Xk,k+1, Yk,k+1) of the curves Yk(X) and Yk+1(X) are located on a

straight line with slope γk, which does not depend on the diffusion coefficient;

(c) for X ∈ [Xk−1,k, Xk,k+1], the curve Yk(X) is located in the sector bounded by straight lines

with slopes γk−1 and γk (2.7):

γk−1X 6 Yk(X) 6 γkX; (2.8)

(d) for X ∈ [Xk−1,k, Xk,k+1], the curve Yk(X) is located below all other curves Ym(X),
m 6= k :

Yk(X) = min
m

Ym(X).

For any fixed diffusion coefficient d, one can indicate the set of the critical wavenumbers k

corresponding to the neutral stability modes ψk, and describe the structure of the Turing instability

region. It will be shown below that under conditions (0.10), the set of wavenumbers corresponding

to neutral modes is countable. If we additionally require the positiveness of the parameter a, then

this set will be finite or empty.

By Z1(X) we denote the union of the curves Yk(X) for X ∈ [Xk−1,k, Xk,k+1], k > 1,

Z1(X) =
⋃

k>1

{Yk(X), X ∈ [Xk−1,k, Xk,k+1]}, (2.9)

here X0,1 is defined in (2.5) at m = 1 and Xk,k+1 is found in (2.6). Let Nk be an intersection

point of the straight line Y = γkX and zero trace curve Y = X3 : Nk = (
√
γk, (

√
γk)

3).

Theorem 4 (about Turing region for large d). Let the following inequality hold

d > 1 +
1

µ1

+
1

µ2

. (2.10)

Then the region of necessary and sufficient conditions for the Turing instability in the (X, Y )-
plane is given by the inequalities

X > 0, Y < X3, Y 6 Z1(X),

where Z1(X) is defined in (2.9), and it consists of a curved triangle NN1C1 bounded by the

curves NN1, NC1 and the straight line N1C1 :

Y = X3, X0,1 6 X 6
√
γ1;

Y = Y1, X0,1 6 X 6 X1,2;

Y = γ1X,
√
γ1 6 X 6 X1,2;

(2.11)

and a union of curved quadrangles Ck−1Nk−1NkCk, k > 2, bounded by the curves Nk−1Nk,

Ck−1Ck, and the straight lines Nk−1Ck−1, NkCk :

Y = X3,
√
γk−1 6 X 6

√
γk; Y = Yk, Xk−1,k 6 X 6 Xk,k+1;

Y = γk−1X,
√
γk−1 6 X 6 Xk−1,k; Y = γkX,

√
γk 6 X 6 Xk,k+1. (2.12)
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P r o o f. Note that the condition (2.10) is equivalent to the following inequality

dµ1µ2 > µ1 + µ2 + µ1µ2,

or, which is the same, the inequality

X2
1,2 > γ1, (2.13)

which means that the abscissa of the intersection point C1 of the curves Y1 and Y2 is greater

than the abscissa of the intersection point N1 of zero trace curve and the straight line Y = γ1X:

X1,2 >
√
γ1. At the same time, the inequality (2.13) implies the inequality

X2
2,3 > γ2. (2.14)

Indeed, the inequality (2.14) is equivalent to the following inequality d > 1 +
1

µ2

+
1

µ3

. Since

µ3 > µ1, it follows from the assumption (2.10). Thus, the abscissa of C2 is greater than the

abscissa of N2. We conclude that the quadrangle C1N1N2C2 (2.12) for k = 2 belongs to the

Turing instability region.

Similarly, the inequality (2.14) implies the inequality X2
3,4 > γ3. Repeating the previous

reasoning, we find that all quadrangles Ck−1Nk−1NkCk (2.12) belong to the Turing instability

region for k > 2.
The region of instability will also include the triangle NN1C1 (2.11), the two vertices of

which, N1 and C1, as shown in (2.13), are different. The third vertex N is an intersection of zero

trace curve and Y1. Indeed, it is easy to show that the following inequality holds:

X2
0,1 < γ1. (2.15)

Then from (2.14) and (2.15) it follows that the intersection point N of zero trace curve and Y1 is

located to the left of the intersection point C1 of the curves Y1 and Y2: X
2
0,1 < X2

1,2. �

Thus, if the diffusion coefficient satisfies the inequality (2.10), then the Turing instability

region is bounded by zero trace curve and fragments of the curves Yk(X), starting from k = 1.
Similarly, if the following inequality holds

1 +
1

µ2

+
1

µ3

< d 6 1 +
1

µ1

+
1

µ2

, (2.16)

then the Turing instability region is bounded by zero trace curve and fragments of the curves

Yk(X), starting from k = 2. Indeed, it follows from the condition (2.16) that the sign is reversed

in the inequalities (2.10) and (2.14). Therefore, the quadrangles (2.12) belong to the Turing

instability region, starting from k = 3. Similarly, in the case of (2.16), the abscissa X0,1 of the

vertex N of the triangle (2.11) is replaced by X0,2.

For all m > 2 we define

Zm(X) =
⋃

k>m+1

{Yk(X), X ∈ [Xk−1,k, Xk,k+1]}
⋃

{Ym(X), X ∈ [X0,m, Xm,m+1]}. (2.17)

The next statement is proved similarly to Theorem 4, taking into account the remark above.

Theorem 5 (about Turing region). Let m > 2 be fixed and the following inequality hold

1 +
1

µm

+
1

µm+1

< d 6 1 +
1

µm−1

+
1

µm

. (2.18)
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Then the region of necessary and sufficient conditions for the Turing instability in the (X, Y )-
plane is given by the inequalities

X > 0, Y < X3, Y > Zm(X),

where Zm(X) is defined in (2.17), and it consists of a curved triangle NNmCm bounded by the

curves NNm, NCm and the straight line NmCm :

Y = X3, X0,m 6 X 6
√
γm;

Y = Ym, X0,m 6 X 6 Xm,m+1;

Y = γmX,
√
γm 6 X 6 Xm,m+1;

(2.19)

and a union of curvilinear quadrangles Ck−1Nk−1NkCk (2.12) for k > m+ 1.

If the conditions (0.10) are strengthened by the assumption that the parameter a is positive

a > 0, b > 0, (2.20)

then the range of wavenumbers corresponding to neutral modes becomes finite. Note that the

positiveness of a is equivalent to the following inequality in the variables X and Y :

Y < X. (2.21)

Let A = (1, 1) and Bk = (X̃k, X̃k) be the intersection points of Y = X with zero trace curve

Y = X3 and Y = Yk respectively. Here

X̃2
k =

1− µk

1 + µk

µkd, µk < 1.

From (2.2) and (2.21) it follows that under the conditions of Theorem 4 for γ0 = µ1 > 1 the

Turing instability does not arise. Similarly, under the conditions of Theorem 5, (2.2) and (2.21)

imply that for γm−1 > 1 the Turing instability region is empty. In this case, the range of critical

wavenumbers is determined by the condition γk−1 < 1. Thus, under the assumption (2.20), from

Theorems 4 and 5, we deduce the following statements.

Theorem 6 (about Turing region for positive a and large d). Suppose that the diffusion coeffi-

cient satisfies the inequality (2.10), and the parameters a and b satisfy the conditions (2.20), then

the following statements are true:

(a) if γ0 > 1, then the set of critical wavenumbers k is empty and the Turing instability does

not arise;

(b) if γ0 < 1, but γ1 > 1, then the Turing instability region consists of a curvilinear trian-

gle NAB1 bounded by the curves NA,NB1 and the straight line AB1 :

Y = X3, X0,1 6 X 6 1; Y = Y1, X0,1 6 X 6 X̃1; Y = X, 1 6 X 6 X̃1;

(c) if γ1 < 1, but γ2 > 1, then the Turing instability region consists of a curvilin-

ear triangle NN1C1 (2.11) and a curvilinear quadrilateral C1N1AB2 bounded by the

curves N1A,C1B2 and the straight lines N1C1, AB2 :

Y = X3,
√
γ1 6 X 6 1; Y = Y2, X1,2 6 X 6 X̃2;

Y = γ1X,
√
γ1 6 X 6 X1,2; Y = X, 1 6 X 6 X̃2;
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(d) if γk < 1 for any k ∈ [0,M − 1], where M > 3, but γM > 1, then the Turing in-

stability region consists of a curvilinear triangle NN1C1 (2.11), a union of curvilin-

ear quadrangles Ck−1Nk−1NkCk (2.12) for k ∈ [2,M − 1] and a curvilinear quadri-

lateral CM−1NM−1ABM bounded by the curves NM−1A,CM−1BM and the straight

lines NM−1CM−1, ABM .

Theorem 7 (about Turing region for positive a). Let m > 2 be fixed and the inequality (2.18)

hold, the parameters a and b satisfy the condition (2.20), then the following statements are true:

(a) if γm−1 > 1, then the set of critical wavenumbers k is empty and the Turing instability does

not arise;

(b) if γm−1 < 1, but γm > 1, then the Turing instability region consists of a curvilinear

triangle NABm bounded by the curves NA,NBm and the straight line ABm :

Y = X3, X0,m 6 X 6 1; Y = Ym, X0,m 6 X 6 X̃m; Y = X, 1 6 X 6 X̃m;

(c) if γm < 1, but γm+1 > 1, then the Turing instability region consists of a curvilinear

triangle NNmCm (2.19) and a curvilinear quadrilateral CmNmABm+1 bounded by the

curves NmA,CmBm+1 and the straight lines NmCm, ABm+1 :

Y = X3,
√
γm 6 X 6 1; Y = Ym+1, Xm,m+1 6 X 6 X̃m+1;

Y = γmX,
√
γm 6 X 6 Xm,m+1; Y = X, 1 6 X 6 X̃m+1;

(d) if γk < 1 for any k ∈ [m − 1,M − 1], where M > m + 2, but γM > 1, then the

Turing instability region consists of a curvilinear triangle NNmCm (2.19), a union of

curvilinear quadrangles Ck−1Nk−1NkCk (2.12) for k ∈ [m,M − 1] and a curvilinear

quadrilateral CM−1NM−1AB bounded by the curves NM−1A,CM−1BM and the straight

lines NM−1CM−1, ABM .

Under the conditions of Theorems 4, 5, 6, 7, we find the critical value of the diffusion

coefficient.

Theorem 8 (about critical diffusion coefficient). The critical value of the diffusion coefficient

for X ∈ [Xk−1,k, Xk,k+1], Y = Yk is determined by the equality

dc = dk,

where dk is found by the formula (2.1).

P r o o f. It follows from the properties of the curves Yk(X) (2.8) that for X∈ [Xk−1,k, Xk,k+1]
the inequality (2.2) is satisfied and the diffusion coefficient dk is positive. Moreover, for d < dc,

the stability spectrum of the linearized problem (0.14) lies strictly in the left half-plane.

For d = dc, the determinant Det(Jk) (1.8) becomes zero, which corresponds to the appearance

of a zero eigenvalue λ(dc) = 0. It remains to prove that the transversality condition (0.15) is

satisfied.

The eigenvalue λ(d) of the linearized problem (0.14), which vanishes for d = dc, is found by

the formula:

λ(d) =
1

2

(
Tr(Jk) +

√
Tr2(Jk)− 4Det(Jk)

)
.

Since Tr′(Jk) = −µk, Tr(Jk) < 0, then

2λ′(dc) = Tr′′(J) +
Tr(Jk) · Tr′(J)− 2Det′(Jk)

|Tr(J)| = −2Det′(Jk)

|Tr(J)| .
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0

Fig. 1. Turing instability region NAB1 for d = 10 and ℓ = 2π
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A

T2
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0

C2N2

Fig. 2. Turing instability region NAB3 for d = 10 and ℓ = 4π
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0

C4
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Fig. 3. Turing instability region NAB6 for d = 10 and ℓ = 9π
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From the equality

Det′(Jk) = µ2
k −

Y

X
µk = µk

(
µk −

Y

X

)

and the conditions (2.2), it follows that the derivative Det′(Jk) < 0, and, therefore, λ′(dc) > 0.
Thus, the transversality condition is satisfied. �

Example 1. In one-dimensional case, when Ω = (0, ℓ), substituting µk =

(
πk

ℓ

)2

into (2.3),

we get the expression for the curves Yk(X)

Yk(X) =
π2k2 + ℓ2

π2k2 · d ·X3 +

(
πk

l

)2

·X.

The inequality γ0 > 1 is equivalent to the condition ℓ 6 π. In this condition the Turing instability

does not arise.

Putting d = 10 and assuming that conditions (2.20) are satisfied, we will consider three cases:

ℓ = 2π, ℓ = 4π and ℓ = 9π.
In the first case, condition (b) of Theorem 6 is satisfied. Consequently, the critical value of

the wavenumber k = 1 and the region of the Turing instability has the form of a curvilinear

triangle NAB1.

In the second case, condition (c) of Theorem 7 is satisfied for m = 2. Consequently, the

range of wavenumbers is k ∈ [2, 3], and the Turing instability region consists of a curvilinear

triangle NN2C2 and a curvilinear quadrangle C2N2AB3.

In the third case, condition (d) of Theorem 7 is satisfied for m = 4. Consequently, the

range of wavenumbers is k ∈ [4, 6], and the Turing instability region consists of a curvilinear

triangle NN4C4 and two curvilinear quadrangles C4N4N5C5, and C5N5AB6.

Figures 1, 2, 3 show the Turing instability region for the examples under consideration in the

plane (a, b) of original parameters.

Using the matrix representation (1.6) of the operator A (0.14), it is easy to prove the following

statement.

Theorem 9 (about the simplicity of zero eigenvalue). Suppose that the diffusion coefficient sat-

isfies the inequality (2.10) (or the inequality (2.18)), and the parameters a and b are such that

the point (X, Y ) belongs to the boundary of the Turing instability region Z1(X) (or Zm(X),
respectively). Then the operator A has a zero eigenvalue. This eigenvalue is simple for X ∈
∈ (Xk−1,k, Xk,k+1) as k > 1 (or k > m, respectively), and corresponding eigenvector has a

form

ϕk = gkψk(x); gk =

(
X2, µk −

Y

X

)
, (2.22)

where ψk is an eigenfunction of the Laplace operator found by the formula (0.2), and for

X = Xk,k+1 as k > 1 (or k > m, respectively) this zero eigenvalue has the multiplicity 2
with two eigenvectors ϕk and ϕk+1.

A similar result on the simplicity of the eigenvalue of the linearized problem is formulated

in [7], but, as we mentioned above, the dependence on other parameters, namely the diffusion

coefficients, is considered.



S. V. Revina, S. A. Lysenko 439

Based on the linearization method [15], we present a scheme for analyzing a nonlinear equa-

tion. The nonlinear perturbation equation has the form

wt = Aw +Kw, w = (w1, w2) ∈ H,

here the linear operator A is defined in (0.14), and the nonlinear operator K is represented as a

sum of quadratic and cubic terms

Kw = K1w +K2w,

K1w = (v0w
2
1 + 2u0w1w2,−v0w2

1 − 2u0w1w2),

K2w = (w2
1w2,−w2

1w2)

with (u0, v0) (0.14). The linear operator A could be represented as a sum of the Laplacian A0

and a bounded operator J, so it generates an analytical semigroup in the functional space H

of vector-functions with L2(Ω) components. The nonlinear operator K acting from the vector

space W 2
2 to H is compact in accordance with the Sobolev embedding theorems.

In addition, as shown in Theorems 8 and 9, for the critical value of the diffusion parameter

and the parameters a, b belonging to the boundary of the Turing instability region, except for

the piecewise points, the operator A has a simple zero eigenvalue that intersects the imaginary

axis transversally. Together, these conditions make it possible to apply the Lyapunov–Schmidt

reduction or the center manifold method to find secondary spatially inhomogeneous solutions

in the vicinity of the boundary of the first loss of stability. The perturbations of the basic

solution (u0, v0) can be parameterized as

w(s) = sϕk +O(s2), s→ 0,

where ϕk is defined in (2.22). A larger value of the wavenumber k corresponds to a more

complex structure of the secondary solutions arising as a result of the Turing bifurcation.
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Достаточные условия неустойчивости Тьюринга для системы Шнакенберга
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Классическая система реакции–диффузии — система Шнакенберга — рассматривается в ограничен-

ной области m-мерного пространства, на границе которой предполагаются выполненными крае-

вые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-

однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая

при изменении коэффициента диффузии d. Путем анализа линеаризованной системы в бездиффузи-

онном и диффузионном приближениях получено аналитическое описание области необходимых и

достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что

одна из границ области необходимых условий является огибающей семейства кривых, ограничива-

ющих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на

прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рас-

сматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение

критического коэффициента диффузии, при котором происходит потеря устойчивости положения

равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соот-

ветствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось

d > 1 можно представить в виде счетного объединения полуинтервалов, каждому из которых со-

ответствует минимальное волновое число, при котором происходит потеря устойчивости, причем

точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматри-

ваемой области.
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