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SUFFICIENT TURING INSTABILITY CONDITIONS FOR THE SCHNAKENBERG
SYSTEM

A classical reaction—diffusion system, the Schnakenberg system, is under consideration in a bounded do-
main ) C R™ with Neumann boundary conditions. We study diffusion-driven instability of a stationary
spatially homogeneous solution of this system, also called the Turing instability, which arises when the dif-
fusion coefficient d changes. An analytical description of the region of necessary and sufficient conditions
for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffu-
sionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary
conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover,
the intersection points of two consecutive curves of this family lie on a straight line whose slope depends
on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an
analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position
of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral
stability modes is countable, finite, or empty. It is shown that the semiaxis d > 1 can be represented as
a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace
operator; each half-interval is characterized by the minimum wavenumber of loss of stability.
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Introduction

Systems of semi-linear parabolic equations, also called reaction—diffusion systems, find nu-
merous applications in modeling of various physical, biological, and other processes [1]. Bifur-
cations of stationary solutions of such systems, as a result of which spatial-temporal structures
are formed, have been considered by many authors [2—13].

A special role in the processes of structure formation and self-organization is played by
the mechanism of diffusion instability, discovered by A. Turing [11] and reflected in modern
research [2—4,7-10]. In the classical monography of J. Murray [12], the Turing instability is used,
in particular, for modeling the color of animal skins.

The Schnackenberg system [13] was proposed to describe a two-component chemical reaction
and has the form

du

d
E:u%—u—l—a, Y w2, (0.1)

dt
where u(t), v(t) are time-dependent concentrations of chemicals; a, b are constant concentrations
that are assumed to be given.

Let us take into account the diffusion process, which leads to concentration equalization.
Suppose that the concentrations of the interacting substances v = u(x,t),v = v(x,t) depend not
only on time ¢, but also on a spatial variable x, and x changes in a bounded domain 2 C R™
for m = 1,2,3. We will assume that for m = 2, 3 the boundary 0f2 of the domain is sufficiently
smooth, 9Q € C?, or  is a rectangular parallelepiped.
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0? 0? : : :
Let A = 92 +...+ EISN be the Laplace operator and 1, be the eigenfunctions corresponding
5] T
to the eigenvalues yu;, of the operator —A under Neumann boundary conditions, kK = 0,1,2,....
0
Aty + =0, zeq, 2%l g 0.2)
on |yq

In this paper it is assumed that all eigenvalues 1, (0.2) are simple. In one-dimensional case, this
condition is fulfilled automatically; in the case of a rectangular parallelepiped, it is sufficient to
assume that the squares of its sides are incommensurable.

Let Dy, D, be the diffusion coefficients for the first and the second substances, respectively.
Then from (0.1) we arrive at the spatially distributed Schnackenberg system:

ur = DiAu+ f(u,v), v = DoAv + g(u, v), (0.3)
where

fu,v) = v?v —u +a, g(u,v) = —u?v +b. (0.4)
After change of variables x; — v/Dyz;, i = 1,2,...,m, and introduction of a new notation for

D
the diffusion coefficient d = 31, the system (0.3) takes the form
2

u = Au+ f(u,v), vy = dAv + g(u, v). (0.5)
We require Neumann boundary conditions on 0f:

@
on

o
a0 On

=0, (0.6)
[2)9]

where n is the outward normal to the boundary. In what follows, we will call the system (0.5)
with boundary conditions (0.6), in which the terms of the reaction f and g are given by (0.4), the
Schnackenberg system with diffusion.

By standard techniques, the system (0.4)—(0.6) is reduced to an ordinary differential equation
in the Hilbert space H of vector functions w = (u,v) with components u,v € Ly(2). Let an
operator Ag: H — H be defined on the set of vector functions w = (u,v), whose components
belong to the Sobolev space WZ(12) and satisfy the boundary conditions (0.6), and acts according
to the rule Ay = —DA, where D is a matrix of diffusion coefficients

10
D= (0 d). (0.7)

Hence, the system (0.4)—(0.6) takes the form
w, = Agw +K(w),  Kw)=(fg); weH (0.8)

The equation (0.8) is usually considered with some initial conditions. If the initial conditions
are spatially homogeneous, that is, do not depend on z, then the solution will be spatially homo-
geneous. Thus, R? is an invariant subspace of the diffusion system for any diffusion coefficient.

In particular, the equilibrium position of the system (0.1),

b

(ug, Vo) = (a +b, m) (0.9)
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is a spatially homogeneous solution to the diffusion system (0.8). According to the chemical
meaning of the system, we require the positivity of the solution (g, vy)

a+b>0, b>0. (0.10)

The Turing instability, or diffusion-driven instability, of a spatially homogeneous solu-
tion (ug, vg) of a diffusive system is characterized by the property of stability in the absence of
diffusion and instability in the presence of diffusion. Starting with Turing’s work [11], diffusion-
driven instability is established by analyzing linearized systems without diffusion and with diffu-
sion.

Denote by J the Jacoby matrix of ordinary differential equations system (0.1) at the
point (ug, vg) (0.9):

J = <f” f”) (0.11)
Gu Yo (w0,v0)
Here
b—a 2
fu:a—Ma fvz(a+b)’
(0.12)
N = —(a+b)’
Gu = atb gv = —\a .
Then the system (0.1) linearized in a neighborhood of (ug, vg) has the form
dy 2
— =] R”. 0.13
g =Y YE (0.13)

Now consider the Schnackenberg system with diffusion. We linearize (0.8) in a neighborhood
of the equilibrium position (ug, vg):

w; = Aw, A=Ay+J, (0.14)

where the operator A is defined on the domain of the operator Ag. It is known that the spectrum
of the operator A is discrete because its resolvent is a compact operator in H [14].

Definition 1. An equilibrium (ug, vo) of a system with diffusion (0.8) is called Turing unstable
if two conditions are satisfied. First, the eigenvalues of the diffusion-free system (0.13) linearized
in the vicinity of the equilibrium state lie strictly in the left half-plane of the complex plane.
Second, there is an eigenvalue of the linearized diffusion system (0.14) lying in the right half-
plane.

Note that, strictly speaking, being interested in the bifurcations of the main solution, it is
necessary to justify the linearization for both the system in the diffusionless approximation and
the system in the presence of diffusion.

If the first condition of the Turing instability is satisfied, then the equilibrium position of
the nonlinear system (0.1) is exponentially asymptotically stable in a finite-dimensional phase
space. This implies exponential asymptotic stability of the steady state (ug,vp) in the invariant
subspace R? of the infinite-dimensional phase space H of the system with diffusion (0.8).

The justification of linearization in the stability problem for a wide class of parabolic systems
was substantiated in [15]. We will not dwell on checking the conditions of these theorems in this
paper.

The system (0.4)—(0.6) contains parameters a, b, satisfying conditions (0.10), and the diffusion
coefficient d. For practical applications, it is important to find the Turing instability region as
well as the critical value of the diffusion parameter.
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Definition 2. A region in the parameter plane (a, ) containing those parameters for which the
Turing instability takes place and the diffusion coefficient d is fixed is called the Turing instability
region.

Now let the parameters a and b be fixed, and the diffusion coefficient d be changed. Then the
eigenvalues of the linearized system (0.14) might be considered as functions of the parameter d.
It will be shown below that for d less than a certain value, all eigenvalues of the system (0.14)
lie strictly in the left half-plane of the complex plane.

We are interested in a critical case, when the eigenvalues cross the imaginary axis. In general
case, this is possible when either the imaginary axis is crossed by a pair of purely imaginary
eigenvalues (then an oscillatory loss of stability occurs), or the eigenvalue passes through zero
(which corresponds to a monotonic loss of stability). It is known that the Turing instability
corresponds to a monotonic loss of stability [11, 12].

Nevertheless, a large number of works are devoted to an oscillatory loss of stability in reac-
tion—diffusion systems, as a result of which the Hopf bifurcation arises [2-8]. The emergence
of spatially inhomogeneous regimes in reaction—diffusion systems as a result of the oscillatory
or monotonic loss of stability of the stationary solution of the system has been studied by many
authors. For instance, [3,4, 7, 8] follow the approach given in [2] for diffusive predator—prey
system. In [5] critical values of a control parameter, corresponding to the oscillatory and mono-
tonic loss of stability are found for a two-component reaction—diffusion Rayleigh system under
Dirichlet and mixed boundary conditions. In [6] spatially-inhomogeneous auto-oscillations and
stationary regimes are found which are stable in infinite—dimensional invariant subspaces of the
Rayleigh system under Neumann boundary condition. In [7] Turing—Hopf bifurcation as a result
of diffusion and time delay is investigated.

In [8] bifurcations of an equilibrium, such as Turing, steady state and Hopf bifurcations, have
been studied for Schnakenberg-type system. In particular, sufficient conditions for the Turing
instability are given.

In [9], for a three-variable system of reaction—diffusion equations, it is shown that the in-
teraction of two types of diffusive instabilities, namely Turing and wave instabilities, leads to
formation not only pure stationary and autowave structures, but also more complicated mixed
regimes. In present work, as inD [7], the role of the bifurcation parameter is played by the ratio of

1

the diffusion coefficients d = —.
2

Definition 3. A critical value of the parameter d is a value of d. such that the spectrum of the
linearized problem (0.14) lies strictly in the left half-plane of the complex plane, except for the
eigenvalue A(d.) = 0, and the intersection of the imaginary axis occurs transversely:

Nlg—a, 70, (0.15)

where prime ' means differentiation with respect to the parameter d.

The aim of this paper is to find an explicit analytical representation of the boundary of the
Turing instability region for the Schnackenberg system with diffusion, as well as the critical value
of the diffusion coefficient, and to determine the range of Turing instability wavenumbers so that
it depends on the diffusion coefficient. Some preliminary results are formulated in [9].

Let us dwell briefly on the differences between the present work and the works [4, 7], which
are the closest in the subject, in the part in which they interact with our work. In [4], bifurcations
of the steady state solutions of the Schnackenberg system in a neighbourhood of the equilibrium
position are studied, the statements are proved in one-dimensional case = € (0, ¢7). In [4], the
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monotonic loss of stability as a whole is under consideration, the parameter a plays the role of
a bifurcation parameter, while the parameter b and the diffusion coefficient d remain fixed. In
contrast, in the present work, the results do not depend on the dimension of the spatial domain.
As in [4], we consider the case of one-dimensional expanding domains, but only as a special case.
We also use the substitution of variables proposed in [4] to simplify the calculations. This will be
discussed in the next section.

The results of [7] refer, in particular, to the Schnackenberg system (0.3) in one-dimensional
case x € (0,1) with the boundary conditions (0.6) under the assumption that the diffusion coef-
ficients are given as Dy = ed, D, = d. For this system an explicit expression is obtained for one
of the boundaries of the region of sufficient conditions for Turing instability on the parameter
plane (d, ¢) for fixed values of the parameters (a,b) and the wavenumber k£ € N.

In the present paper, the region of necessary and sufficient conditions for the Turing instability
on the plane of the initial parameters (a, b) is explicitly found. These conditions are found for an
arbitrary domain () and are expressed in terms of the eigenvalues of the Laplace operator with
Neumann boundary conditions.

For any value of the diffusion coefficient satisfying the condition d > 1, the range of wave-
numbers k at which the Turing instability occurs is indicated. In the particular case of positive
values of the parameters a and b, it is shown that the range of wavenumbers is finite, and the
values of this range are explicitly found.

§ 1. Necessary conditions for Turing instability

In this section, based on well-known results on the necessary conditions for the Turing insta-
bility [12], we introduce definitions that will be convenient in what follows.

Let us find the trace and the determinant of the matrix J (0.11)—(0.12) and write down the
conditions under which the eigenvalues of the system without diffusion (0.13) lie strictly in the
left half-plane of the complex plane:

b—a—(a+0b)?
Tr(J) = a+(b )

<0, Det(J) = (a + b)* > 0. (1.1)

From the assumption (0.10) it follows that the condition Det(J) > 0 is always satisfied.
Therefore, the stability conditions (1.1) for the diffusionless approximation take the form:

b—a< (a+0b)> (1.2)
Let’s introduce new variables:
Y =b-—a, X =a+b. (1.3)
Hence, taking into account (0.10), the condition (1.2) takes the form:
X >0, Y < X°. (1.4)

The convenience of change of variables (1.3) is fairly obvious. These variables are also used
in [4]. We introduced it independently of this paper.
Now we consider a linear spectral problem for the operator A (0.14) in H:

Ap = Ap, ¢ #0. (1.5)

Let us derive the necessary conditions under which the operator A has an eigenvalue in the right
half-plane.
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It is known [16] that the operator A has a matrix representation in the basis consisting of
the eigenvectors {elwk,ezwk};;’f) of the operator Ag (here e; = (1,0),e2 = (0,1); ¢, are the
eigenfunctions (0.2)). The matrix of the operator A has a block-diagonal form with the matrices
Jx = J — D on the diagonal, where D is defined in (0.7):

b—
S (a+b)
ho=| 2F0, 2 . (1.6)
—(a+b)" — dug

Ca+b

Looking for an eigenvector ¢ in the form of eigenfunctions series

“+o00
©=Y Citp, Ci=(c}c}), (1.7)
k=0

after substitution the series (1.7) into (1.5) and equating the coefficients of the same eigenfunc-
tions, for each fixed £ we obtain a linear system with the matrix Jy (1.6), which corresponds to
the eigenvalue \; and the eigenvector C:

Being interested in the instability of the equilibrium position (ug, vg), we find the trace and
the determinant of the matrix Jy:

Tr(Ji) = Tr(J) = (1 + d)pu;

b= a) e + Det(J).

1.8
Det(Jk)zdﬂiJr((a+b)2—d~a+b (1.8)

Since Det(J) = (a + b)? > 0 due to (0.10), the loss of stability can occur only for k& > 0. In
this case ;> 0. Therefore, the inequality Tr(Jy) < Tr(J) < 0 is fulfilled, and the equilibrium
position (ug, v9) can become unstable only if Det(Jy) = 0. In particular, it follows that only a
monotonic loss of stability corresponds to diffusion driven instability.

By h(u) we denote the polynomial

b—a
h(w) = dp? b)? —d-
=dit+ (0 -a- 225

>u+(a+b)2, (1.9)

where h(u) = Det(Jx) (1.8). After change of variables (1.3), h(u) takes the form:

Y
h(p) = dp® + (XZ—dy);wX?. (1.10)

X3
If the condition d < a is satisfied, then all the coefficients of the trinomial h(yu) (1.10) are

3
positive, and, therefore, its roots lie strictly in the left half-plane. For d = —, the trinomial A (u)
has a pair of purely imaginary roots. Being interested only in the case of real and positive roots
of the polynomial h(u), we require the second coefficient to be negative

X3

d > S (1.11)
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and the discriminant of i (x) to be non-negative:
dY — X3 > 4dX*. (1.12)
Taken together, the conditions (1.11) and (1.12) lead to the inequality:
dy — X* > 2VdX2. (1.13)

Taking into account the inequalities (1.4), which are satisfied in the diffusionless approxima-
tion, and (1.13), the necessary conditions for the Turing instability in the variables (X,Y’) have
the form:

, 1 2
X >0, Y < X?, Y>3X3+WX2. (1.14)

Note that (1.14) implies a restriction on Y (and parameters a and b)
Y=0—-—a>0,
and also on the diffusion coefficient d
d>1.

Now we present the definitions that we introduced to describe the boundary of the Turing
instability region.
Definition 4. Zero trace curve is the curve Y = X? in the plane (X,Y) corresponding to
vanishing of the trace of the matrix J.

Definition 5. The curve Yy = Y5(X) in the plane (X,Y") corresponding to vanishing of the
discriminant of the trinomial h(u) will be called a discriminant curve:
Los, 2 4o
Yo dX + \/c_ZX . (1.15)
Thus, in the half-plane X > 0, the region of necessary conditions for the Turing instability
is bounded by zero trace curve and the discriminant curve. Using the change of variables (1.3),
in a similar way one can define zero trace curve and the discriminant curve in the plane of the
original parameters (a,b) of the Schnackenberg system.
Obviously, zero trace curve and the discriminant curve intersect at X = 0,Y = 0. Let’s find
the intersection point N, = (X,, X2) of these curves with positive coordinates. The abscissa of
this point is found by the formula

2v/d
d—1"

It is easy to verify that for X > X, zero trace curve lies above the discriminant curve in the
(X,Y)-plane and, therefore, the region of necessary conditions for the Turing instability (1.14) is
not empty. The formula (1.16) has not been encountered in the literature yet.

Let us find the values of the diffusion coefficient at which the point with coordinates (X,Y)
lies not below the discriminant curve. To do this, solve the inequality Y > Y with respect to
parameter d. We have: d > dy, where d; is the value of d corresponding to the case when the
point (X, Y) lies on the discriminant curve. We find dj:

X, = (1.16)

X2+ /XX LY
Q= Y( Y (1.17)
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Considering the trinomial h(x) (1.9) as a function of not only the parameter p, but also the
diffusion coefficient d, we conclude that for d = d, the vertex of the parabola y = h(u) crosses
the p-axis. In [12], the value of dy (1.17) was defined in the variables a, b, and this value of dy was
called the critical diffusion coefficient. In addition, the region in the plane of parameters (a,b),
in which the necessary conditions for Turing instability are satisfied, was called Turing space.

We emphasize that for d > d; the necessary conditions for the Turing instability are satisfied,
but, generally speaking, the sufficient conditions are not satisfied.

If the polynomial A (1.9) depended not on a discrete set of eigenvalues 1, but on a continuous
nonnegative parameter i, then the necessary condition (1.14) would be sufficient. This follows
from the fact that the spectrum of the operator —A defined in the whole space (R!, R? or R?) fills
the non-negative semiaxis. The discreteness of the spectrum {1 },-, for bounded domains leads
to the fact that one of the boundaries of the domain of sufficient conditions does not coincide
with the discriminant curve. Indeed, for d = dj, the vertex of the parabola h(u) is touching the
(-axis, but the abscissa of the vertex should not coincide with some eigenvalue f.

The discreteness of the spectrum of the Laplace operator for bounded domains has been taking
into account in the literature to describe the region of the Turing instability [4,7]. Nevertheless,
no explicit formulas of the boundary of the sufficient conditions region have been obtained.

§ 2. Sufficient conditions for Turing instability

The sufficient conditions for the Turing instability are the necessary conditions supplemented
by the condition for the existence of such a value of £k € N for which

Definition 6. Let the parameters a and b be fixed, and the diffusion coefficient take on a critical
value d = d.. A critical wavenumber is a value of k € N for which the eigenvalue of the Laplace
operator /i, is a root of the trinomial A(u): h(u) = 0.

Let us denote by dj such value of d for which p; coincides with one of the roots of the
quadratic trinomial h(uy). Find dj, by equating the expression for h(uy) to zero:

X3 1
dy = Ny 2.1)
Y —w X
Since dy, is positive, it follows a restriction on the system parameters:
Y
1S e < (2.2)

We denote by Y = Y (X) the curves corresponding to the coincidence of the values of 1
with the roots of the quadratic trinomial h(uy) for different k. The case when the point (X, Y)
belongs to one of these curves corresponds to the equality d = dj. Solving (2.1) for Y;(X), we
obtain the equation of the required curves:

RS

HlX) po; - d

X3 X (2.3)

Definition 7. Let F/(X,Y, k) = 0 be a one-parameter family of curves in the half-plane X > 0
depending on a natural parameter k. A smooth curve ® is called an envelope of this family if
each curve of the family has a common point with the curve ®, and at this point the curve of the
family has a common tangent line with ®.
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Using the explicit expressions for discriminant curve Yy(X) (1.15) and the curves Y (X),
k >1(2.3), it is easy to prove the statement.

Theorem 1 (about discriminant curve). The discriminant curve Yy = Yy(X) has the following
properties:

(a) it lies no higher than one-parameter family of curves Yy (X) in the half-plane X > 0

(b) it has with each curve Yy, (X) a unique common point T), = (Xy 0, Yk 0), whose coordinates
are found by the formulas

Xko = Nd, Yieo = (1 + 2)Vd; (2.4)

(c) it is an envelope of one-parameter family of the curves Yi(X);
(d) the curves Yi(X) and the curve Yo(X) are convex downward for any X > 0.

From (2.4) it follows that the common points of the discriminant curve and the curve Y;(X)
for fixed k are located on a straight line with the slope vy o = pu (% + 2) which does not depend
on the diffusion coefficient d. It will be shown below that an analogous property holds for the
intersection points of the curves Yy (X).

Our goal is to find a region in which not only necessary, but also sufficient conditions for the
Turing instability are satisfied. Further, it will be shown that one of the boundaries of this region
consists of fragments of the curves Y;(X), and the other boundary coincides with zero trace
curve. To describe a mutual arrangement of the curves Y (X), we use the following statement.

Theorem 2 (about Y (X) and Y,,,(X)). Let 1 < k < m. Then

(@) in the half-plane X > 0 the curves Y (X) and Y,,(X) have one intersection point
(Xk.m, Ye.m), and its coordinates are found by the formulas:

X = Vittmd,  Yim = YemXem,  Vem = i+ flon + flkfm;
(b) for X < Xy, the curve Yi(X) is located below the curve Y,,(X):
Vi (X) < Vi (X);
Jor X > Xy m,, the curve Yi.(X) is located above the curve Y,,(X).

Proof Both statements follow from the inequality Y;(X) < Y,,(X) considered in the
half-plane X > 0. This inequality takes the form:

(Mk—ﬂm)( X —1> > 0.

Taking into account the assumption that the eigenvalues p; are simple and pp < p,, for
1 < k < m, we obtain the required statement. U

For convenience, we introduce the following notation. By 77 we denote the first nonzero
eigenvalue of the operator —A, by X ,, we denote the abscissa of the intersection point N of the
curve Y,,(X) with zero trace curve Y = X3:

2
Xm,O

pafd=1) =T =

Yo = M1, Xg,m =

where X, is defined in (2.4); the intersection point N = (X, Xg”m). Theorem 2 implies the
properties of a mutual arrangement of two consecutive curves Y (X) and Y1 (X).
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Theorem 3 (about Y, (X) and Yy 11(X)). The curves Yi(X), k > 1, have the following prop-
erties:

(a) in the half-plane X > 0 the curves Yj,(X) and Yy 1(X) have a unique intersection point
Cr = (Xkk+1, Yi k+1), whose coordinates are found by the formulas

Xe k1 = V Hrprs1d, Yikr1 = Xk kr1, (2.6)
Ve = Mk + M1 T Hrefgt (2.7)

(b) common points Cy, = (Xy k41, Yek+1) of the curves Yi.(X) and Yi1(X) are located on a
straight line with slope ~;., which does not depend on the diffusion coefficient,

(c) for X € [Xp—1 4, X gt1), the curve Yy, (X) is located in the sector bounded by straight lines
with slopes vi_1 and vy (2.7):

Te—1X < Yi(X) < mX; (2.8)

d) for X € [Xig—1k, Xk gt1], the curve Yi(X) is located below all other curves Y, (X),
m #k:

Yi(X) = mTriLnYm(X).

For any fixed diffusion coefficient d, one can indicate the set of the critical wavenumbers &
corresponding to the neutral stability modes 1, and describe the structure of the Turing instability
region. It will be shown below that under conditions (0.10), the set of wavenumbers corresponding
to neutral modes is countable. If we additionally require the positiveness of the parameter a, then
this set will be finite or empty.

By Z1(X) we denote the union of the curves Yi(X) for X € [Xy—1 4, Xpst1], & > 1,

Zy(X) = [ J{I(X), X € [Xpo1p Xewra]} (2.9)

k>1

here Xy ; 1s defined in (2.5) at m = 1 and X} ;4 is found in (2.6). Let N; be an intersection
point of the straight line Y = ~, X and zero trace curve Y = X*: Ny = (\/7%, (V7%)?)-
Theorem 4 (about Turing region for large d). Let the following inequality hold
1 1
d>1+—+ —. (2.10)
B 2
Then the region of necessary and sufficient conditions for the Turing instability in the (X,Y)-
plane is given by the inequalities
X >0, Y < X3, Y < Z1(X),

where Z1(X) is defined in (2.9), and it consists of a curved triangle N N1Cy bounded by the
curves N N1, NC, and the straight line N,C} :

Y =X Xo1 <X <V
Y=Y, X <X< Xy (2.11)
Y:"YIX> \/ﬁngXl,%

and a union of curved quadrangles Cy_1N;_1N.Cy, k > 2, bounded by the curves Nj_1 Ny,
Cy_1Cy, and the straight lines Nj,_1Cy_1, NyC}:

Y =X vl < X <V Y=Y, X<
Y =y X, Ve S X < X Y =X, V<
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P r o o f. Note that the condition (2.10) is equivalent to the following inequality

dpape > pr + po + pafiz,
or, which is the same, the inequality
Xty >m, (2.13)

which means that the abscissa of the intersection point C of the curves Y; and Y; is greater
than the abscissa of the intersection point N of zero trace curve and the straight line Y = v, X:
X12 > /7. At the same time, the inequality (2.13) implies the inequality

X35> 2. (2.14)

1 1
Indeed, the inequality (2.14) is equivalent to the following inequality d > 1 + — + —. Since

(3 > g, it follows from the assumption (2.10). Thus, the abscissa of C5 is grgeate# E[))han the
abscissa of N,. We conclude that the quadrangle C; N NoCy (2.12) for £ = 2 belongs to the
Turing instability region.

Similarly, the inequality (2.14) implies the inequality X3274 > 3. Repeating the previous
reasoning, we find that all quadrangles Cy_1 N1 Ny Cy (2.12) belong to the Turing instability
region for k > 2.

The region of instability will also include the triangle NN;C; (2.11), the two vertices of
which, Ny and (', as shown in (2.13), are different. The third vertex N is an intersection of zero
trace curve and Y. Indeed, it is easy to show that the following inequality holds:

X3, <. (2.15)

Then from (2.14) and (2.15) it follows that the intersection point N of zero trace curve and Y] is
located to the left of the intersection point C of the curves Y7 and Y5: X§, < X7,. U

Thus, if the diffusion coefficient satisfies the inequality (2.10), then the Turing instability
region is bounded by zero trace curve and fragments of the curves Yj(X), starting from £ = 1.
Similarly, if the following inequality holds

1+i+i<d<1—l—i+i, (2.16)
M2 M3 H1 o 2

then the Turing instability region is bounded by zero trace curve and fragments of the curves
Y, (X), starting from k = 2. Indeed, it follows from the condition (2.16) that the sign is reversed
in the inequalities (2.10) and (2.14). Therefore, the quadrangles (2.12) belong to the Turing
instability region, starting from k& = 3. Similarly, in the case of (2.16), the abscissa X ; of the
vertex N of the triangle (2.11) is replaced by X .

For all m > 2 we define

Zn(X) = | (V(X), X € [Ximrp, Xt H Vi (X), X € [Xogm, Xonmea]}. (2.17)

k>m+1

The next statement is proved similarly to Theorem 4, taking into account the remark above.

Theorem 5 (about Turing region). Let m > 2 be fixed and the following inequality hold

1 1 1 1
1+ —+ <d<1+ +—. (2.18)
Hm Hm+1 Hm—1 Hm




S. V. Revina, S. A. Lysenko 435

Then the region of necessary and sufficient conditions for the Turing instability in the (X,Y)-
plane is given by the inequalities

X >0, Y < X3, Y > Z,,(X),

where Z,,(X) is defined in (2.17), and it consists of a curved triangle N N,,,C,,, bounded by the
curves NN,,, NC,, and the straight line N,,C,,:

YZXS; XO,mng\/’ym;
Y = Ym7 XO,m < X < Xm,m—‘rl; (219)
Y = '7mX> vV Im < X < Xm,m—l—l;

and a union of curvilinear quadrangles Cy,_1Ny_1 Ny Cy (2.12) for k > m + 1.
If the conditions (0.10) are strengthened by the assumption that the parameter a is positive
a >0, b>0, (2.20)

then the range of wavenumbers corresponding to neutral modes becomes finite. Note that the
positiveness of a is equivalent to the following inequality in the variables X and Y :

Y < X. (2.21)

Let A = (1,1) and B, = (Xj, X;) be the intersection points of ¥ = X with zero trace curve
Y = X3 and Y =Y}, respectively. Here

~2:1—sz
S

From (2.2) and (2.21) it follows that under the conditions of Theorem 4 for vy = pu; > 1 the
Turing instability does not arise. Similarly, under the conditions of Theorem 5, (2.2) and (2.21)
imply that for 7,,_; > 1 the Turing instability region is empty. In this case, the range of critical
wavenumbers is determined by the condition ~;_; < 1. Thus, under the assumption (2.20), from
Theorems 4 and 5, we deduce the following statements.

Theorem 6 (about Turing region for positive a and large d). Suppose that the diffusion coeffi-
cient satisfies the inequality (2.10), and the parameters a and b satisfy the conditions (2.20), then
the following statements are true:

(@) if vo = 1, then the set of critical wavenumbers k is empty and the Turing instability does
not arise;

(b) if vo0 < 1, but v, = 1, then the Turing instability region consists of a curvilinear trian-
gle N AB; bounded by the curves N A, N By and the straight line AB; :

Y =X Xo1<X<I; Y=Y, Xo<X<Xg; V=X, 1<X<X;

©) if n < 1, but v» > 1, then the Turing instability region consists of a curvilin-
ear triangle NN,Cy (2.11) and a curvilinear quadrilateral CyN,ABs bounded by the
curves N1 A, Cy By and the straight lines N1C, ABs:

V=X m<X<1, Y=Y, X,<X<Xy
V=mX, Vnm<X<Xy Y=X 1<X<Xy;
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d) if v < 1 for any k € [0,M — 1], where M > 3, but vy > 1, then the Turing in-
stability region consists of a curvilinear triangle NN,C (2.11), a union of curvilin-
ear quadrangles Cy_1Ny_1NyCy (2.12) for k € [2,M — 1] and a curvilinear quadri-
lateral Cyr_ 1Ny 1ABy; bounded by the curves Ny 1A, Cy_ 1By and the straight
lines Nyj_1Chrr—1, AByy.

Theorem 7 (about Turing region for positive a). Let m > 2 be fixed and the inequality (2.18)
hold, the parameters a and b satisfy the condition (2.20), then the following statements are true:
(@) if Ym—1 = 1, then the set of critical wavenumbers k is empty and the Turing instability does

not arise;

d) if Y1 < 1, but v, = 1, then the Turing instability region consists of a curvilinear
triangle N AB,,, bounded by the curves N A, N B,,, and the straight line AB,, :

Y =X Xom < X<, Y=Y, Xom<X<Xp V=X, I<X< Xy

©) if Ym < 1, but vpy1 = 1, then the Turing instability region consists of a curvilinear
triangle NN,,C,, (2.19) and a curvilinear quadrilateral C,,N,,AB,, 1 bounded by the
curves N, A, Cy, Byi1 and the straight lines N,,,C,, ABy, i1

Y:X3, \/’Ymng 1; Y:Yerl; Xm,m+1 <X < m41;
Y =9X, VIm <X < Xpms; Y =X, 1<X< X

@ if v < 1 forany k € [m —1,M — 1], where M > m + 2, but vy > 1, then the
Turing instability region consists of a curvilinear triangle NN,,C,, (2.19), a union of
curvilinear quadrangles Cy_1Ny_1NyCy (2.12) for k € [m, M — 1] and a curvilinear
quadrilateral Cy;_1Ny_1AB bounded by the curves Ny 1A, Cy_1By and the straight
lines NM_ch_l,ABM.

Under the conditions of Theorems 4, 5, 6, 7, we find the critical value of the diffusion
coefficient.

Theorem 8 (about critical diffusion coefficient). The critical value of the diffusion coefficient
Jor X € [Xg—1k, Xpgt1], Y =Yy is determined by the equality

dc = dk7
where dj, is found by the formula (2.1).

P ro o f. It follows from the properties of the curves Y (X) (2.8) that for X € [X}_1 5, Xy k+1]
the inequality (2.2) is satisfied and the diffusion coefficient dj, is positive. Moreover, for d < d.,
the stability spectrum of the linearized problem (0.14) lies strictly in the left half-plane.
For d = d., the determinant Det(Jy) (1.8) becomes zero, which corresponds to the appearance
of a zero eigenvalue A(d.) = 0. It remains to prove that the transversality condition (0.15) is
satisfied.

The eigenvalue A(d) of the linearized problem (0.14), which vanishes for d = d., is found by
the formula:

2
Since Tv'(Jy) = —pug, Tr(Ji) < 0, then

, e Tr(Jk) . Tr’(,]) -2 Det/(Jk) B 2 Det/(Jk)
2X(de) =) + Tx(J) RRE)]

Ad) = (Tr(Jk) /() 4Det(Jk)).
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NT1

Fig. 1. Turing instability region NAB; for d = 10 and ¢ = 27

Fig. 2. Turing instability region N AB3 for d = 10 and ¢ = 47

a 7 -
-

Fig. 3. Turing instability region N ABg for d = 10 and ¢ = 97
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From the equality
Y Y
Det/(Jy) = p} — < g = - =
et'(Ji) = pk — 1 = H (uk X>

and the conditions (2.2), it follows that the derivative Det’(Ji) < 0, and, therefore, \'(d.) > 0.
Thus, the transversality condition is satisfied. 0

1\ 2
Example 1. In one-dimensional case, when 2 = (0, (), substituting u; = (%) into (2.3),

we get the expression for the curves Yy (X)

m2k? + (2 3 k2
VO ="y X +(7) X

The inequality 7o > 1 is equivalent to the condition ¢ < 7. In this condition the Turing instability
does not arise.

Putting d = 10 and assuming that conditions (2.20) are satisfied, we will consider three cases:
¢ =2n,{=4rand ¢ = 9.

In the first case, condition (b) of Theorem 6 is satisfied. Consequently, the critical value of
the wavenumber £ = 1 and the region of the Turing instability has the form of a curvilinear
triangle NAB;.

In the second case, condition (¢) of Theorem 7 is satisfied for m = 2. Consequently, the
range of wavenumbers is k € [2,3], and the Turing instability region consists of a curvilinear
triangle N NoC5 and a curvilinear quadrangle Co Ny A Bs.

In the third case, condition (d) of Theorem 7 is satisfied for m = 4. Consequently, the
range of wavenumbers is k € [4,6], and the Turing instability region consists of a curvilinear
triangle N N,Cy and two curvilinear quadrangles Cy Ny N5C's, and C5; N5 A Bg.

Figures 1, 2, 3 show the Turing instability region for the examples under consideration in the
plane (a,b) of original parameters.

Using the matrix representation (1.6) of the operator A (0.14), it is easy to prove the following
statement.

Theorem 9 (about the simplicity of zero eigenvalue). Suppose that the diffusion coefficient sat-
isfies the inequality (2.10) (or the inequality (2.18)), and the parameters a and b are such that
the point (X,Y') belongs to the boundary of the Turing instability region Z,(X) (or Z,(X),
respectively). Then the operator A has a zero eigenvalue. This eigenvalue is simple for X €
€ (Xp—1k, Xpy1) as k = 1 (or k = m, respectively), and corresponding eigenvector has a
form

Y
e = gretr(2); gk = <X2, [ — X)’ (2.22)
where 1, is an eigenfunction of the Laplace operator found by the formula (0.2), and for
X =Xppy1 as k = 1 (or k = m, respectively) this zero eigenvalue has the multiplicity 2
with two eigenvectors @i, and Yi41.

A similar result on the simplicity of the eigenvalue of the linearized problem is formulated
in [7], but, as we mentioned above, the dependence on other parameters, namely the diffusion
coefficients, is considered.
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Based on the linearization method [15], we present a scheme for analyzing a nonlinear equa-
tion. The nonlinear perturbation equation has the form

w; = Aw + Kw, w = (wy,wy) € H,

here the linear operator A is defined in (0.14), and the nonlinear operator K is represented as a
sum of quadratic and cubic terms

Kw = Kjw 4+ Kyw,
2 2
Kl'w = (vow1 + 2UOU)1U}27 —Uowl — 2’LLOU)11U2),

Kow = (wfwg, —wfwg)

with (ug, vg) (0.14). The linear operator A could be represented as a sum of the Laplacian A,
and a bounded operator J, so it generates an analytical semigroup in the functional space H
of vector-functions with Ly(€2) components. The nonlinear operator K acting from the vector
space W3 to H is compact in accordance with the Sobolev embedding theorems.

In addition, as shown in Theorems 8 and 9, for the critical value of the diffusion parameter
and the parameters a, b belonging to the boundary of the Turing instability region, except for
the piecewise points, the operator A has a simple zero eigenvalue that intersects the imaginary
axis transversally. Together, these conditions make it possible to apply the Lyapunov—Schmidt
reduction or the center manifold method to find secondary spatially inhomogeneous solutions
in the vicinity of the boundary of the first loss of stability. The perturbations of the basic
solution (ug, vg) can be parameterized as

w(s) = sepr + O(s?), s — 0,

where ¢y, is defined in (2.22). A larger value of the wavenumber £ corresponds to a more
complex structure of the secondary solutions arising as a result of the Turing bifurcation.
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BECTHUK VIMYPTCKOI'O YHUBEPCHUTETA. MATEMATHUKA. MEXAHUKA. KOMIIBIOTEPHBIE HAVKH

MATEMATHUKA 2021. T. 31. Bem. 3. C. 424-442.

C. B. Peguna, C. A. JIvicenko

HJocraTrounble yciaoBus HeycToiiunBocTH ThropuHra aisa cucremsl IInaken6epra

Kouesvie cnosa: cucremsl peakiuu—nuddysuu, cuctema [InakenOepra, oonacte HeycToiuuBOCTH ThiO-
pUHTra, KPUTUIECKOE BOTHOBOE YHCIIO.

YIK 517.957
DOLI: 10.35634/vm210306

Knaccnueckas cuctema peakunu—auddysun — cucrema lllnakenbepra — paccmarpuBaeTcsi B OTpaHUYCH-
HOW 00JacT! M-MEpPHOTO MPOCTPAHCTBA, HAa IPAHUIE KOTOPOMl NpEeAroararoTcs BBIOJIHEHHBIMU Kpae-
Bble ycnmoBusa Heiimana. M3yuaetcs auddy3nonHas HEyCTOWYMBOCTh CTAI[IOHAPHOTO MPOCTPAHCTBEHHO-
OJHOPOIHOTO PEIIEHUS TOM CHUCTEMBI, Ha3blBacMas TAK)KE HEYCTOMYHMBOCTBIO THIOPHHIA, BO3HHMKAIOLIAS
py u3MeHeHnU korduiuenta aupdysun d. [Tytem anannza InHeapu30BaHHON cHcTeMBI B 6e3auddy3u-
OHHOM M IU(Qy3NOHHOM IMPUOTMKECHUSIX MOITYyYEHO aHAJUTHYECKOE OIHCAHUE OONIacTH HEOOXOOUMBIX U
JOCTaTOYHBIX YCJIOBUI HEYCTOMUMBOCTU THIOpHMHIA Ha IUIOCKOCTH IapaMeTpoB cucTeMsbl. IlokasaHo, 4TO
OZIHA W3 TPAHUIl 00JIACTU HEOOXOAMMBIX YCIOBHH SIBISIETCS OrMOaroIiell ceMelcTBa KpUBBIX, OIPaHU4MBa-
IOIINX O0JIaCTh JOCTATOUHBIX ycioBUil. IIpu 3TOM TOUKHM mepeceyeHHs AByX COCETHMX KPHUBBIX JeKaT Ha
MPSIMOH, YTIIOBOH KOA(QUIMEHT KOTOPOH 3aBUCUT OT COOCTBEHHBIX 3HaueHWi omeparopa Jlammaca B pac-
cMaTpuBaeMoi 00JacTH U He 3aBUCHT OT Kodddunuenta nuddys3un. HaiineHo aHanmuTHUECKOE BBIpaKEHHUE
KpuTHdeckoro koddduumenra auddysun, mpu KOTOPOM MPOUCXOAUT TOTEPS YCTOHUNBOCTH MOIOKEHUS
paBHOBECHUSI CUCTEMBI. YKa3aHbI YCIOBHUS, B 3aBUCUMOCTH OT KOTOPBIX MHOXKECTBO BOJHOBBIX YHCEN, COOT-
BETCTBYIOIIMX HEHTpaNbHBIM MO/aM YCTOMYHWBOCTH, CYETHO, KOHEYHO WM IycTo. Iloka3aHo, 4To momyocs
d > 1 MOXHO NPENCTaBUTh B BHUJE CUCTHOIO OOBEIUHEHHS IOJYWHTEPBAJIOB, K&KAOMY M3 KOTOPBIX CO-
OTBETCTBYET MHHHMAJIbHOE BOJHOBOE YHCIIO, MPH KOTOPOM IPOUCXOAMT IMOTEPs] YCTOMUMBOCTHU, NMPHUEM
TOYKH pa3OUEHHUs MIOTYOCH BBIPAXKarOTCs Yepe3 COOCTBEHHBIE 3HaUeHMs omeparopa Jlamiaca B paccmarpu-
BaeMoi obiacTu.
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