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Introduction

Set valued maps appear in the mathematical models of many problems arising in physics,
mechanics, economics, biology, etc. They are very adequate tools for description and investigation
of the problems springing up in the theory and applications, especially in the optimization theory,
optimal control theory, game theory problems (see, €. g., [1-6] and references therein). In studying
of these problems one often has to deal with differential or directional derivative sets of the
given set valued maps which essentially simplify the description of the considered processes and
expression of the obtained results (see, e. g., [7-11]). Unfortunately there is no unified approach
for definition of the differential and derivative for the set valued map. Depending on the character
of the considered problem, the various appropriate types of differential and derivative concepts
for the set valued maps are applied (see, e.g., [7-17]). In general, the differential notions of
the set valued maps are based on the various types of tangent and contingent cones. In this
paper, the upper and lower differentials of the set valued map introduced in [12] and [18] are
used. The aforementioned concepts are based on the upper and lower contingent cones and
are applied for investigation of many problems of the set valued and nonsmooth analysis (see,
e.g,[1,510,12,13,16,18,19]).

The definition of directional derivative set is different from the definition of differential, but
they are also closely connected with the concept of contingent cones. In the presented paper, the
relations between differentials (upper and lower) and directional derivative sets (upper and lower)
of a set valued map are studied.

The paper is organized as follows: In Section 1, the definitions of upper and lower contingent
cones of the sets is formulated. The upper and lower contingent cones of some given sets on the
plane is calculated and compared (Example 1 and Example 2). In Section 2 the directional upper
and lower derivative sets of a set valued map are defined and the relations between directional
upper (lower) derivative sets and upper (lower) differentials are studied. It is shown that if the
set valued map is not locally Lipschitz continuous, then lower derivative set in the direction p
and the value of the lower differential at p does not coincide (Example 3). For scalar variable set
valued maps, it is proved that upper derivative set in the direction p and the value of the upper
differential at p are equal (Theorem 1). In Section 3 the properties of the compact subsets of the
directional derivative sets and differentials are investigated. The Hausdorff deviation of the cone
generated by a compact subset of the lower directional derivative set from the given set valued
map is estimated (Theorem 2, Corollary 1).
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§ 1. Upper and lower contingent cones

Let us give the definitions of upper and lover contingent cones.

Definition 1 (see [18,19]). Let X be a Banach space, K C X and z € X. The sets

T (x) = {u € X: liminf 5d(:1:+5u K) = O}

6—0t

and
TE(x) = {u € X: lim 5d(3:+5u K) = O}

6—0t

are called the upper and lower contingent cone of the set K at x € X respectively, where
d(y, K) = inf |ly — 2|, i.e., d(y, K) is the distance from the point y to the set /.
zEe

TY(x) and Tk(x) are closed cones in the space X and TE(x) C TH(x). It is obvious that
u € TY(x) if and only if there exist sequences {J; }Z L and {s;}.2, (s; € X) such that §; — 0F
and s; — 0 as ¢ — +oo and the inclusion z; = x + d;u + 9; sl € K is satisfied for every
i=1,2,....

Similarly, u € T%(z) if and only if there exist 6, > 0 and s(-): (0, d.] — X such that s(§) — 0
as § — 0™ and the inclusion z(§) = x 4 du + ds(0) € K is verified for every § € (0, d.].

Now, let us compare the upper and lower contingent cones of some sets given on the plane.

Example 1. Let the set K C R? be given as

K:{(ii)eRQneN}U{oo (1.1)

where N = {1,2,...}.
Let us show that

T#(0,0) =TZ(0,0) = {(o, ) e R*: @ > 0} . (1.2)

First of all, we prove that (1,1) € TE(0,0). Choose an arbitrary sequence {d;}5°, such that
0; — 0% as ¢ — 4o00. Then for each ¢, there exists m; € N such that

0; € (L, L] . (1.3)

Since 0; — 0T as ¢ — +o0, then m; — +o0 as i — +o00. Thus, (1.3) implies

lim 5, d((0,0) +9;(1,1), K) = lim 5, d((5i,5i) , K)
i Lo (L 1) V2
i—00 0; m; m; ml+1 m2+1 Hoo5 ml(mz+1)
V2
< 1i 1) — lim
_gym+)wmﬁn Jim - = 0.

Since the sequence {6;}32, is arbitrarily chosen, we conclude that

lim %d((0,0) +6(1,1), K) = 0

6—0t
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which yields that (1,1) € T%(0,0). Since (1,1) € T%(0,0) and TE(0,0) C R? is a cone, then
we obtain that (o, ) € TE(0,0) for every o > 0. Thus the inclusion

{(a,a) eR*: @ >0} C T5(0,0) (1.4)

is verified.
Now, we choose an arbitrary (a, 3) € T (0,0). By virtue of Definition 1 there exist sequences
{0:};=, and {(ps, ¢:) };~, such that 6; — 0T, (p;,¢;) — (0,0) as i — +oo and

(z5,9:) = (0,0) + 6, B) + i (pi, @:) € K (1.5)

for every 1 = 1,2,.... According to (1.1) we have that x; = y; for every : = 1,2,.... It follows
from (1.5) that

a+pi=pF+aq (1.6)

for every : = 1,2,.... Since p; — 0, ¢; — 0 as ¢« — 400, then we obtain from (1.6) that
«a = [, and hence again by virtue of (1.6) p; = ¢; for every ¢ = 1,2, .... Concluding, we obtain
from (1.5) that
1
(a, ) + (pi pi) € EK (1.7)
forevery ¢t = 1,2,.... Since p; — 0 as i — +o0, then (1.1) and (1.7) yield that & > 0. Thus, for
arbitrarily chosen («, 3) € TY(0,0) we have that « = 3 and o > 0. This implies that

T7(0,0) C {(a,0) € R*: v > 0}. (1.8)
Since T%(0,0) € TE(0,0), then (1.4) and (1.8) yields the validity of equality (1.2).

Now we present an example which illustrates that lover and upper contingent cones not always
coincide.

Example 2. Let the set 2 C R? be defined as

Q:{(% L)):neN}U{(o,O)}. (1.9)
(0,

Let us show that 7 (0,0) ¢ T&
t (1,

0).
At first, it will be proved tha ) ¢ TX(0,0). By virtue of (1.9) we have

(@ @) ) :min{ H((zklﬂﬂ ) (e @)H
H( n’ 21{:11))_((21612)!’(2k1+2)!>"}

, 2%k 2k + 1 2k + 1
:mm{‘@' 2k + 1)! V2 (2k+2)!} = V2, (2k + 2)!

for every k = 1,2,.... Now let us choose a sequence {d;}7°,, where 9, = W The last
equality implies that

1 1 1
1 —_ — | |.
Jm <-d((0,0) +6(1,1), Q) = lim (2k +1)!-d (((% T 2k + 1)!) Q)

2k +1 2k +1
=1 . e =
i V2 QO gy = V2 i g = V20
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and hence (1,1) € T£(0,0).
1
Now let us show that (1,1) € T§(0,0). Assume that &, = R k=1,2,.... Then

liminfld((0,0) +4(1,1),Q) < lim id(((s,\c,(s,ﬁ),sz)

50t 0 k—o0 5k

and hence (1,1) € T (0,0). Since (1,1) € T&(0,0), we have that T§ (0,0) ¢ T£(0,0).
Note that similarly to Example 1 it is possible to show that

T5(0,0) = {(0,0)}, T§(0,0) = {(a, ) € R*: > 0} .

§ 2. Upper and lower directional derivative sets and differentials

In this section upper and lower differentials and directional derivative sets of the set valued
maps are investigated. The graph of the set valued map F'(-): X ~» Y is denoted by grF(-) and
is defined as grF(-) = {(x,y) € X xY:y € F(z)}. From now on it will be assumed that X
and Y are Banach spaces.

Let us formulate the definitions of upper and lower differentials of a given set valued
map F(-).

Definition 2 (see [12]). Let F/(-): X ~» Y be a set valued map, (x,y) € X x Y. The set valued
map DV F(z,y)|(-): X ~ Y satisfying the equality

is called the upper differential of the set valued map F'(-) at the point (z,y) where T gUT ro (@ Y)
is upper contingent cone of the set grF'(-) at the point (z, y).

Definition 3 (see [18]). Let F'(-): X ~» Y be a set valued map, (x,y) € X x Y. The set valued
map DYF(z,y)|(-): X ~ Y satisfying the equality

grD F(z,y)|(-) = Typ(y (@, y)

is called the lower differential of the set valued map F'(-) at the point (x,y) where T, (2, y)
is lower contingent cone of the set grF'(-) at the point (z,y).

Now, let us formulate definitions of the upper and lower directional derivative sets of a given
set valued map.

Definition 4. Let F'(-): X ~ Y be a set valued map, (z,y) € X x Y and p € X \ {0}. The set

U
T FY) fofined by
dp
IVF(z,y) ueyYy liminfld( + ou, F(z+ 90 )) 0
I S e . s z -
8]9 50+ 0 Y ’ P

is called upper derivative set of the set valued map F'(-) at the point (z, y) in the direction p.
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Definition 5. Let F'(-): X ~» Y be a set valued map, (z,y) € X x Y and p € X \ {0}. The set

L
F
F(2,Y) 4 ofined by
Op

aLF(az,y) T 1 _
— = {u €Y: lim gd(y +0u, F(z +0p)) = 0}

is called lower derivative set of the set valued map F(+) at the point (z,y) in the direction p.
It is obvious that for given set valued F'(-): X ~» Y the inclusions

0" F(r,y) _ O"F(x,y)
dp dp

DYF(x,y)|(p) € DYF(z,y)|(p),

are satisfied for every (z,y) € X x Y and p € X \ {0}.
Let us give definition of the locally Lipschitz continuity of a set valued map.

Definition 6. The set valued map F'(-): X ~» Y is said to be locally Lipschitz continuous if for
each © € X there exist L, > 0 and r, > 0 such that for every y € B(x,r,) and z € B(z,r,) the
inequality

h(F(y), F(2)) < Ly - d(y, 2)
is satisfied where h (F'(y), F'(z)) denotes the Hausdorff distance between the sets F'(y) and F'(z),
B(z,r,) ={ve X:|v—z| <ry}, d(y, z) stands for the distance between the vectors y and z.

The following proposition characterizes lower and upper derivative sets and differentials of
the set valued maps.

Proposition 1. Let F'(-): X ~~ Y be a set valued map, (x,y) € X xY. Then for every p € X\{0}
the inclusions
O"F(x,y)
Ip

OVF (z,y)

C D*F(z,y)|(p), o

C DYF(z,y)|(p)

are verified.
If F(-): X ~ Y is a locally Lipschitz continuous set valued map, then for every p € X \ {0}
the equalities

OV F(z,y)
Op

OVF (z,y)

ol = DVF.y)|(p)

= D"F(z,y)l(p),

hold.

Note that if F'(-) is not a locally Lipschitz continuous set-valued map, then the equality

oLF
PF@Y) _ pips )|(p) is not valid.
Ip
Example 3. Let X = Y = R and set-valued map F(-): R ~» R be defined as
N
Flz)={ @ sing if zeR\ {0} @.1)
0 if x=0.

The map F'(-): R ~~ R defined by (2.1) is not locally Lipschitz continuous on R. Since

sin —

1 1
%d(0+5-O,F(O+5-1): Sd(0, F(3)) = 5 -6 |sin 5

o

|
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1
for every d > 0, then we have that 5lim+ gd(O +d-0,F(0+ 9 -1) does not exist, and hence
—0

0,0
0g 2100 ( ), 2.2)
Now let us show that 0 € D¥F(0,0)|(1). Choose an arbitrary sequence {dx},., such that
1 1
0r — 0% as k — +oo. Then for each k there exists i such that §, € <7 } . Since
(i + 1) miy,
0r — 0T as k — +o0, then i, — +o00 as k — +o00. It is obvious that
1
— < (ig+ 1) (2.3)
O,
and | )
A((6,0), grF()) < — — —— 2.4
((60:0).97F()) € = = s 24
From (2.3) and (2.4) it follows
Jim gd(m 0) +8x(1,0), grF(-)) = lim ad«ék, 0), grF ("))
< lim 7(i + 1) Lot li ! 0 (2.5)
1m R = 1m — = . .
- kﬁooﬂ' e T, W(ik + 1) k—o0 1,
Since {dy},, is arbitrarily chosen, then (2.5) implies that
li d 0,0)+4d(1,0),grF 0
Jim <d((0,0) +6(1,0), grF(-)) = 0,
and consequently (1,0) € T} ,(0,0). This means that
0 € DYF(0,0)|(1). (2.6)
(2.2) and (2.6) yield that
orF (0,0
prR(0,0)/(1) # G0
01
Theorem 1. Let F': R ~~ Y be a set valued map, (xz,y) € R X Y. Then for each p € R\ {0} the
equality
0"F(z,y)
=~ =DYF
o (z,9)I(p)
holds.
P r o o f. By virtue of Proposition 1 we have
OV F(z,y
TP Do F(el) @)
4
Let us prove that
OV F(x,y
DY Fla)l(p) € 08, @8)
P
UF UF
If DYF(z,y)|(p) = 0, then (2.7) implies that 8@7 y) () and the equality a@j’ v) =
P P

= DYF(x,y)|(p) is satisfied trivially.
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Let DYF(x,y)|(p) # 0. Choose an arbitrary v € DYF(x,y)|(p). Then (p,v) € T, 1, (2,y).
According to Definition 1 there exist sequences {d;},-, and {(s,qx)},—, such that ¢, — 07,
(Sk,qr) — (0,0) as k — 400 and

(z,y) + 6k (p, v) + 0k(sk, ) € grF(-) (2.9)
forevery k =1,2,.... Let
+s
B =" S £ o (2.10)

Since p # 0 and s, — 0 as k — +o0, then without loss of generality it is possible to assume that
B > 0 for every k = 1,2,.... From (2.10) it follows that 5, — 0" as k — +o0.
Now, from (2.9) and (2.10) we obtain that

p p
($+5kpay+ Brv + 5ka) € grr(-) (2.11)
P+ Sk P+ Sk
for every £k =1,2,.... Denote
P p
by = v—uv+ . 2.12
k D+ 5k p+Ska ( )

It is obvious that b, — 0 as £ — 4-o00. Relations (2.11) and (2.12) imply that

(x + Bip,y + Brv + Bibi) € grF(-)

and hence
Y+ ﬁkv + ﬁkbk € F(l‘ + ka) (213)

for every k = 1,2, . ... Inclusion (2.13) yields that

: 1 ) 1
]}ggo Ed(y + Brv, F(x + Bep)) < klggo E[d(y + Brv, y + Brv + Biby)

) 1
+d(y + Brv + Brby, F(x + Brp)] = lim —B, ||bx|| = 0,
k—oo Bk

and consequently
1
lim inf —d F = 0.
m inf 2 (y + Bv, F(x + Bp)) =0

The last equality implies that

oUF
pe L E@y)
dp
Since v € DYF(x,y)|(p) is arbitrarily chosen, we obtain validity of the inclusion (2.8).
Inclusions (2.7) and (2.8) complete the proof. 0

Remark 1. In Corollary 26.1 of book [16] it is proved that for the set valued map F(-): X ~» Y
the equality

1
DYF(z,y)|(p) = {u €Y: liminf d <u, —(F(x+p) — y)) = O} (2.14)
d—0t,p'—=p )
holds where X and Y are the Banach spaces.
Note that the Theorem 1 simplifies the aforementioned corollary for the case X = R, stating
that if X = R, then in equality (2.14) there is no need to take the limit p’ — p where p # 0.
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§ 3. Properties of the compact subsets of the directional derivative sets

In this section, the relation between a compact subset of the lower directional derivative set
and the given set valued map is studied.
The Hausdorff deviation of the set £ from the set D is denoted by h*(E, D) and defined as

h*(E,D) = sup d(z, D),

zel

where £ and D are the subsets of a given Banach space. If h*(E, D) < r, then the inclusion
E C D + rB, is verified, where B, is the unit closed ball of a given space.

Theorem 2. Let F': X ~~ Y be a set valued map, (x,y) € X xY,pe X\ {0}, G CY bea
compact set. Assume that the inclusion

oLF
Gc @y 3.1
Ip
is satisfied. Then the equality
1
lim —h* (y + 0G, F(x + dp)) =0 (3.2)
6—=0 0
is verified.
orF
Proof If % = (), the theorem is true trivially.
p
OLF (z,y) . . .
Suppose that 0 # () and let us assume the contrary, i. e., let the equality (3.2) is not
P

satisfied. Then there exist a sequence {d;};-, and «, > 0 such that §; — 0" as i — +oo and

lim lh* (y + 0,G, F(z + 0;p)) = .. (3.3)

Let 0, < v be an arbitrary number. It follows from (3.3) that there exists NV; > 0 such that
W (y + 6,G, F(z + 6;p)) > %5

for every ¢ > N;. On behalf of definition of the Hausdorff deviation, we have that for each
1 > Nj there exists a g; € G such that the inequality

d(y+6igs, Fla+0,p)) > 70, (3:4)
holds. Since G C Y is a compact set, g; € G for every ¢« = 1,2,..., then without loss of
generality it is possible to assume that g; — g, as ¢ — oo and g, € G.

orF
According to (3.1) we have g, € %, and therefore
P
1
lim —=d (y + dg., F'(z + dp)) = 0. (3.5)
5—0 O

Since g; — g« as ¢ — o0, then it follows from (3.5) that

1 1
lim 5—d (y + d;9i, F(x + 6;p)) < lim 5 [d (y + 0:9i,y + 0:9x)

+d(y+ 6o, Fw +0))] = lim [lg: = g.]| = 0. (3.6)

The relations (3.4) and (3.6) contradict. Proof is completed. O
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Corollary 1. Suppose that the conditions of Theorem 2 are satisfied. Then there exist o, > 0 and
a function r(-): (0,0.] — [0, 00) such that r(6) — 0" as § — 0" and

y+ 0G C F(x + dp) + 0r(6) By
for every § € (0,0,] where By ={y €Y |ly|]| < 1}.

Theorem 2 is not true if in (3.1) the lower directional derivative set will be replaced by the
upper directional derivative set.

Example 4. Let the set-valued map F(-): R ~~ R be defined as in Example 3 by (2.1), p = 1,
oV F(0,0)

(x,y) = (0,0) € grF(-). One can show that 51

9 F(0,0)
a1

= [-1,1]. Let G = [-1,1]. Then

G C , but

liminf%h* (0+0G,F(0+0-1)) = liminf %h* (O +6-[=1,1],0 - sin 1)

50+ 50+ )

1 1
= liminf h* [ [-1,1],sin= | > =
im in <[ ,],51115)_2,

6—0t

and equality (3.2) is not held.

O"F(x,y)

Note, that in Theorem 2 the lower directional derivative set 3
P

by the set DV F(x,)|(p).

can not be replaced

Example 5. Let the set-valued map F(-): R ~~ R be defined as in Example 3 by (2.1), p = 1,
(z,y) = (0,0) € grF(-). According to Example 3, 0 € D*F(0,0)|(1). Let G = {0}. Then
G c D*F(0,0)|(1).
Since
1
J

1 1

1 1 1
h*(0+ G, F(0+6-1)) ==h" (O,é-sin—) :—'5-sin—’ =

sin —'

J J o o d

1
for every § > 0, then the limit 5h%1 gh* (046G, F(0+ 6 - 1)) does not exist, which verifies that
— Jr

equality (3.2) is not satisfied.
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H. Eze, A. I'yceiiun, H. I'yceiiun
BepxHue u HM:KHHME TPOU3BOJHbIE MHOKECTBA M0 HANIPABJIeHUAM U AU depeHnnaNbl MHOTO3HAYHBIX
0TOOpaKeHuit

Kniouegvie crnosa: MHOTO3HauHOE OTOOpakeHHE, KOHTHHTEHTHBIH KOHYC, Aud(depeHnnan, mpou3BOIHOE
MHOXECTBO IO HAIlpaBJIeHUAM, OTKJIIOHEHHE Xaycaopda.

VIIK 517.977
DOIL: 10.35634/vm220304

B nanHO# paboTe M3ydaroTcs MPOU3BOAHBIE MHOXECTBA 0 HalpaBieHUAM U JuddepeHnatsl 3aJaHHOTo
MHOTO3HAYHOTO OTOOpaXkeHUsl. YKa3aHbl Pa3IHYHbIC COOTHONICHUSI MEXKY NMPOU3BOJHBIMH MHOXKXECTBAMH
M0 HampaBleHUsM U AupepeHInalaMid MHOTO3HAYHOTO OTOOPaKEHHS. YCTAHOBIICHO, YTO KaXII0€ KOM-
MaKTHOE MOJAMHOKECTBO MHOXXECTBA HWIKHUX TMPOU3BOJHBIX MOXKET OBITh MCIOJB30BAHO LIS HYDKHEW arl-
MPOKCUMALIMH 33JaHHOTO MHOTO3HaYHOTO OTOOpaKeHHsI. BEIUHCIIAIOTCS M CpaBHUBAIOTCS BEPXHUE U HUX-
HUE KOHTUHTCHTHBIE KOHYChl HEKOTOPBIX MHOKECTB Ha IJIOCKOCTH.
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