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Nowadays, the problem of creating an optimal safe schedule for arrival of aircraft coming in several flows
to a checkpoint, where these flows join into one, is very important for air-traffic management. Safety
of the resultant queue is present if there is a safe interval between neighbor arrivals to the merge point.
Change of an arrival instant of an aircraft is provided by changing its velocity and/or usage of fragments
of the air-routes scheme, which elongate or shorten the aircraft path. Optimality of the resultant queue is
considered from the point of some additional demands: minimization of the deviation of the actual aircraft
arrival instant from the nominal one, minimization of order changes in the resultant queue in comparison
with the original one, minimization of fuel expenditures, etc. The optimality criterion to be minimized,
which reflects these demands, is often taken as a sum of penalties for deviations of the assigned arrival
instants from the nominal ones. Each individual penalty is considered in almost all papers as either the
absolute value of the difference between the assigned and nominal arrival instants or a similar function
with asymmetric branches (which punishes delays and accelerations of an aircraft in different ways). The
problem can be divided into two subproblems: one is a search for an optimal order of aircraft in the
resultant queue, and the other is a search for optimal arrival instants for a given order. The second
problem is quite simple since it can be formalized in the framework of linear programming and solved
quite efficiently. However, the first one is very difficult and now is solved by various methods. The paper
suggests sufficient conditions for the problem, which guarantee that the order of the optimal assigned
instants is the same as the order of the nominal ones and, therefore, exclude the first subproblem.
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Introduction

At the present time, aircraft motion is performed along airways consisting of height echelons
and air corridors in horizontal planes. With that, the airways can split or join. At the joining
points, a problem of merging aircraft flows into a joint queue appears. This problem is especially
actual near airports and in approach zones where the air traffic is very dense.

The main requirement to the merging process is providing a minimal safe time interval be-
tween two neighbor aircraft arrivals to the merge point. There are two main tools for changing
the arrival instant of an aircraft. The first is the control of the aircraft speed, which allows one to
achieve a relatively small acceleration or delay of the aircraft. To achieve longer accelerations or
delays, they use the second tool, namely, path alignment schemes or delay schemes.

Often, the problem is formalized as optimizational. The criterion, usually, to be minimized
reflects additional demands to the resultant queue such as minimization of fuel expenditure for
aircraft maneuvering, minimization of deviation of appointed arrival instants from the nominal
ones, minimization of interactions between air-traffic managers and pilots, etc.

With that, the usual form of the functional is a sum over all aircraft of some penalties for
deviations of the assigned arrival instants from their nominal values. Individual penalties are
chosen as the absolute value of the difference between the assigned and nominal arrival instants
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or a similar asymmetric function, which punishes delays and accelerations in different ways. The
criterion can be deterministic or stochastic. Sometimes, a multi-criteria problem is considered.

In general, the problem of constructing a safe joint queue can be considered as a discrete-
continuous one. The discrete subproblem deals with the search for the optimal order of the aircraft
in the resultant queue. The continuous one concerns the search of the optimal arrival instants for
some given order of the aircraft. If the individual penalties are taken as an “absolute value”-like
function, then the continuous subproblem under a fixed order of the aircraft can be reduced to a
linear programming problem (despite non-linearity of the functional) and, therefore, can be solved
efficiently.

At the same time, the discrete subproblem is, generally speaking, extremely hard. As the
set of aircraft becomes relatively large, the order cannot be chosen by means of an exhaustive
search. So, one should involve either some heuristic approaches (see, for example, [7, 12] and
references within), branch and bound method of some kind, deterministic or stochastic (see,
for example, [6, 19] and references within). Also, some versions of the dynamic programming
approach can be used (see, for example, [1, 17] and references within). A very detailed review
of results on aircraft scheduling problems up to 2011 is set forth in [3]. More or less exhaustive
reviews of works made later can be found in [21-23,25]. Despite the aircraft scheduling problem
is considered since the 1970s, till now it is under great attention of many researchers, both
theoreticians and practitioners (see, for example, [4,5,8-11,13-16,18,24]). And till now, various
numerous methods are applied, namely, to overcome the problem of gigantic enumeration arising
during search of the optimal aircraft order. The performance becomes extremely important in
real-time systems for support of air-traffic management.

So, if there is a possibility to obtain directly the optimal aircraft order in the resultant queue
or sufficiently decrease the enumeration to get it, then it would be very helpful for solving the
problem. In this paper, we suggest and prove some sufficient conditions for the problem, which
provide that the order of optimal assigned arrival instants coincides with the order of the nominal
ones.

One of the conditions is that the individual penalty functions are the same for all aircraft and
are convex unimodal piecewise-linear. This condition is not too restrictive, since as it is said
earlier, the usual form of the penalties is “absolute value”-like functions. However, the second
condition demands equality of all characteristics of all aircraft: at first, safety intervals between
each pair of aircraft and, at second, values for maximal delay and maximal acceleration. The
most unrealistic demand is the latter one because different aircraft move along different routes,
which, obviously, have different capabilities for delay and acceleration. Nevertheless, in some
situations, these conditions can be fulfilled more or less exactly. For example, if a group of
aircraft is considered in terminal maneuvering area, then all delay/alignment schemes are already
passed. In this situation, aircraft velocity almost cannot be varied, and the possible change of the
arrival instant can be provided by the final point merging scheme only. This scheme is common
for all incoming flows and, therefore, allows the same variation for all aircraft.

The paper is organized as follows. Section 1 gives a general formulation of the aircraft flow
merge problem as a constrained finite-dimension optimization problem. Section 2 is devoted to
theoretical facts about convex piecewise-linear and unimodal functions. They allow one to state
that for considered penalty criterion type, the order of aircraft in the resultant queue coincides with
the one of the nominal arrival instants. In small Section 3, the original problem is reformulated
as a linear programming one. The paper is finalized by a conclusion (Section 4) and a reference
list.
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§ 1. Problem statement

At the beginning, we are given with a collection t™™ = {t1°"}Y = of nominal instants of
aircraft arrivals to the joining point. The value NV is the total number of aircraft in all flows. It is
assumed that the collection is sorted in ascending order. With that, there are no safety conflicts
between aircraft coming in one flow, but there can be conflicts between aircraft from different
flows.

The objective is to obtain a new collection t = {t;}¥, of arrival instants to the joining
point. The new collection might not be sorted because the order of aircraft in this collection can,
possibly, change in comparison with the original collection.

The obtained set t must obey the following conditions. At first, for each ¢; € t, it is true that
t; € [thom — gace gmom 4 ydec] Here, the values t2° and t{°° show how long the ith aircraft can
be accelerated or decelerated according to the velocity change or possible direct routes and delay
schemes allocated along the airways. Of course, different airways and different aircraft can have
different configurations.

Also, the new collection should obey the safety demands: for all pairs of indices 1 <17 < j <
N, one should have |t; — ;| > Tsafe Here, Tsafe is the length of the time interval between the ith
and jth aircraft, which provides thelr safe passage

Some penalty criterion F'(t, t"*™) should be minimized, which describes the optimality of the
obtained schedule from the point of view of air-traffic managers and airport services.

Thus, one gets a constrained optimization problem:

t, t"o™) Zfz £, 1°°™) — min, (1.1)
s.t.t; € [thom — t‘?‘cc thom e >0, (1.2)
V1<i<j<N:|t;—t;| >75e (1.3)

Here, the criterion £’ to be minimized consists of the additive penalties f; for each aircraft.

An essential issue of this formalization is that inequalities (1.3) make the constraint set discon-
nected. Namely, the enumeration of its connectivity components corresponds to the enumeration
of the aircraft order in the resultant queue.

§ 2. Piecewise-linear unimodal functions

At first, assume that the penalty functions f; are convex piecewise-linear and the same for all
aircraft. The first assumption is usual for the formulations of the problem where this common
function f is taken as the absolute value of the deviation.

Piecewise-linearity of the function f prevents the problem to be considered as a linear pro-
gramming one. But there are approaches allowing one to get rid of this non-linearity and to make
the functional linear. One of such approaches is set forth below. So, further in the section, we
consider unimodal convex piecewise-linear functions.

Definition 1. A continuous function f: R — R is called unimodal, if there is a value A such
that f monotonically decreases on the semi-axis (—oo, A] and monotonically increases on the
semi-axis [A, +00). The increasing and decreasing can be non-strict.

Definition 2. A function f: D C RY — R is called convex, if the domain D is a convex set and
for all z,y € D and « € [0, 1], the following inequality holds:

flarz+(1-0a)-y)<a- flx)+(1—a) fly).

In other words, a function is convex, if its epigraph is a convex set.
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Linearization of Convex Continuous Piecewise-Linear Functional

Let points (2, Yx), Tk, Yx € R, k = 1, m, be given such that ¥, < zp41, k = 1,m — 1. They
define some piecewise-linear function in the following way. Each pair of points (zj,yx) and
(Tk41,Yks1), K = 1,m — 1, is connected by a segment. Outside the interval [z, x,,], the function
grows as an extension of the linear parts on the segments [z, 25| and [z,,_1, z,,], respectively.
Due to the definition, the function is continuous. Also, it is assumed that the points are such that
the function defined in this way is convex (see Fig. 1).

Figure 1: Representation of a convex piecewise-linear function as a set of linear parts

Such a piecewise-linear function can be represented as

m—1

f(:c):Zak|a:—xk\+Ax+B (2.1)
k=2

with non-negative coefficients ay.
The coefficients a;, A can be found by solving a system of (m — 1) equations:

;

—CLQ—CL3—...—CLm,1—|—AIK1,
a2—a3—...—am_1+A:K2,
s + a3 —ay...— Qy_1+ A= Kj,

The scalars K. defining the slope of the corresponding linear parts are found as follows:

Kk:M7 k=T,m— 1.
Tpr1 — Tk
So, each equation of the system ensures the equality of the slope coefficients after opening the
absolute values in (2.1) and the required value K} on each of (m — 1) intervals (zy, x1).
The free term B can be found by solving the equation

—1
flzy) = —ap(x1 — xx) + Az + B =1,
2

3

b
[|

which follows from the condition that the entire function passes through the point (1, 7).
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If one searches the minimum of function f (2.1), then such a problem can be reformulated
as a linear programming one. To do this, additional variables g := |z — x|, k = 2,m — 1, are
introduced. After the variable change, the following problem is obtained:

-1

f(x): apqr + Ar > min  s.t. —qp <rx—x, < q, k=2,m—1.
2

3

b
[|

The summand B of the function f can be omitted since it does not affect the minimum point, but
only the minimal value of the function.

Another way to formulate a linear programming problem for searching the minimum of a
convex piecewise-linear function is presented in [20]. Both our method and the method from [20]
work for minimization, not maximization, of a convex piecewise-linear function.

Properties of Convex Unimodal Functions

Lemma 1. Let f: R — R be a unimodal convex function and have the minimum (possibly,
non-strict) at some point M. Then, for all M < x <y and § > 0, it is true that

flx+0)— f(z) < fly+9) — f(y). (2.2)

In other words, the growth rate of a unimodal convex function can only increase with moving
away from the minimum point.

A similar property is true for decreasing rate of the function on the semi-axis to the left from
the minimum point: for all y < x < M and 6 > 0, it is true that

fle=0)— f(z) < fly—10)— f(y). (2.3)

P ro o f. Consider the points A(z, f(z)), B(z+9, f(z+0)), C(y, [(y)), D(y+6, f(y+9))
belonging to the graph of f. Denote by [ the straight line passing through the points A and B.
Denote by !’ the straight line passing through the point C' parallel to the line /.

There are two cases: r <y <zx+dandz <x+ 0 <.

Let us prove inequality (2.2) in the first case by contradiction.

The point C' lies on the line [ or below it due to convexity of the function f. If it is true that
fly+9)— fly) < f(x + ) — f(z), then the point D is located below the line !’ (the dashed
line in Fig. 2). Therefore, the point D lies below the line /, and we have a contradiction to the
convexity of the function f: the point B is situated above the segment [AD)].

U .-
.-~ D
Vo cr
/,/// D Br//
l
A
x Yy x40 y+0 T r+0 Y y+0
Figure 2: To the proof of Lemma 1, Figure 3: To the proof of Lemma 1,

thecasex <y <x+9 thecaser <x+0d <y
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In the second case x+0 < y, inequality (2.2) is proved also by contradiction. Due to convexity
of the function f, the point C' is located not below the line [. If the relation f(y 4+ d) — f(y) <
f(z +0) — f(z) holds, then again we have a contradiction with the convexity of the function f.
Namely, the point C' is situated above the segment [AD] since the point is located on the line I’
and the segment [AD)] is below this line.

The relation for the interval of decreasing f can be proved in a similar way. U

Lemma 2. Let f: R — R be a unimodal convex function having its minimum at the origin. Take
some values A < B and define f(x) = f(x — A) and f5(x) = f(x — B). Then, for any values
a < b, one has

fila) + fa(b) < fi(b) + fa(a). (2.4)

P r o o f. There are six cases of relative positions of the points A, B, a, b on the semi-axes of
decrease and increase of the functions f; and fs:

A<a<b< B, (2.5) a<A<b<B, (2.8)
a<b<A<B, (2.6) A<a< B<b, (2.9)
A< B<a<hb, 2.7) a< A< B<b. (2.10)

Consider case (2.5) (see Fig. 4). Inequality (2.4) holds due to the inequalities fi(a) < fi(b)
and fg(b) < fz(a).

A a b B a b A B
Figure 4: To the proof of Lemma 2, Figure 5: To the proof of Lemma 2,
thecase A<a<b<B thecasea < b< A< B
To prove the subsequent cases, we transform inequality (2.4) to be proved:
fa(a) = fi(a) + fi(b) — f2(b) = 0. (2.11)

Let us study case (2.6) (see Fig. 5). In inequality (2.11), we pass to the function f:

fala) = fia) + f1(b) = fa(b) = fla = B) = fla— A) + f(b—A) = f(b— B) = 0.
This inequality is true due to inequality (2.3) from Lemma 1, where M = 0, x = b — A,
y=b—B,and 6 =b— a.
Case (2.7) can be proved in a similar way involving inequality (2.2).

Consider case (2.9) (see Fig. 6). To prove this case, one needs to transform the left-hand side
of inequality (2.11) by adding and subtracting some terms:

fa(a) = fila )+f1() fa(b) = [ifl( )ifz( )]
= (Ai(B) = fi(a)) + (fa B)) + (f1(b) = fu(B)) = (f2(b) = f2(B)). (2.12)
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fi(b)

x Lz

A a B b a A B b
Figure 6: To the proof of Lemma 2, Figure 7: To the proof of Lemma 2,
thecase A<a< B<b thecasea < A< B <D

The term (f1(B) — fi(a)) is non-negative due to monotonic increase of the function f; on
the semi-axis [A, +00). The term fy(a) — fo(B) is non-negative due to monotonic decrease of
the function f; on the semi-axis (—oo, B]. The difference

(f1(0) = fu(B)) = (f2(b) = fo(B)) = (f(b— A) = f(B—A)) = (f(b— B) - f(B- D))

is non-negative due to inequality (2.2) of Lemma 1, where M =0, x = B— B,y = B — A, and
0 = B — a. So, entire expression (2.12) is non-negative.

Case (2.8) is proved in a similar way by adding and subtracting the terms fi(A) and fo(A)
and applying inequality (2.3).

Consider case (2.10) (see Fig. 7). To prove this case, we transform the left-hand side of
inequality (2.11) as follows:

fa(a) — fi(a) + fi(b ) f2(b) = [if1( )if2( ) + fi(B) £ f2(B)]
= (f1(B ) ( )) (fz( ) — fz(A)) - (fl(a> - fl(A>)
+ (f1(b) = /i(B)) = (f2(b) — f2(B)). (2.13)

The term (fi(B) — fi(A)) is non-negative due to monotonic increase of the function f; on
the semi-axis [A, +00). The term (f2(A) — f2(B)) is non-negative due to monotonic decrease of
the function f; on the semi-axis (—oo, B|. The difference

(f2la) = f2(4)) = (fia) = fr(A)) = (fla— B) = f(A=B)) — (fla— A) = f(A- A))

is non-negative due to inequality (2.2) from Lemma 1, where M =0, x = A— A,y = A — B,
and 6 = A — a. The difference

(f1(0) = fu(B)) = (£2(b) = fo(B)) = (f(b— A) = f(B— A)) = (f(b— B) - f(B - B)).

is non-negative due to inequality (2.3) from Lemma 1, where M =0,z = B— B,y = B — A,
and 6 = B — b. Thereby, entire expression (2.13) is proved to be non-negative.

So, in all cases (2.5)—(2.10), inequality (2.11) holds, therefore, inequality (2.4) holds too.
O

Lemma 3. Let

1) some constants A; € R, i = , 0

ey inequalities A; < Ay < ... < Ay,
, for some o, & > 0
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3) for some T > 0, D= {(z1,...,2n) | 2, € D,V1 < <" < Nlay —aw| > 7} CRY;
the constant T be not too large such that D # 0;
4) f: R — R be a convex unimodal function, which has its minimum at the origin,

filz) = f(x — Ay), and

N

F(z) = F(xy,...,2y) = Zfl(xz),

i=1

Then among the minimum points of F' over D, there is such a point x* = (x3,x3,...,x%) that
] <xy <...< Ty

Proof. Letz = (71,%2,...,ZN) € D be some minimum point of F. And let there be two
indices 1 <’ <" < N such that Z; > Z;». (Note that equality of coordinates is impossible due
to the second condition in the definition of D in item 3.)

Let us show that a) the point § = (Z1,...,Ty_1, Ty, Tira1, - -« Ti—1, Tiry Tiry1, - - -, TN ), that
is, the point obtained from z by swapping positions of the components z;; and z;~, also belongs
to D; and b) F(j) < F(z).

a) Since zy € D, and x;» € D;», then

Ay —a <y <Ay +@, Ap—a<ip<Ap+a (2.14)

If to take into account the inequalities A; < A;» and T, > T;», inequalities (2.14) can be rewritten
as
Ai’ —a< Ai” —a< Ty <Ty < Ai’ +a< AZ‘N + a.

Therefore, one can conclude that z,» € D, and z; € D;». Thus, the first condition in the
definition of D in item 3 is true for the components of .
The second part of the definition of D in item 3 is true for the components of i because the
inequalities are true for all pairs of components of z, and ¥ has just the same components as .
b) The difference of the values F'(Z) and F'(¥) is in two summands only: fi(Z;) + fir(Zin)
and f;(Z;) + fin(ZTy), respectively. Due to Lemma 2, inequality

fu(Tir) + fir(Tin) = fir(Tin) + firr(Tir) (2.15)

holds. Indeed, in the framework of Lemma 2, we have A = Ay < B = A,

filz) = flx = A) = fulz) = flz = Av),  fale) = f(z = B) = fir(x) = f(z— Aw),

and a = Z;» < b= Z;. So, due to inequality (2.15), one has F'(z) > F(y).

Since Z is a minimum point of F' over D, then F(z) < F(y). Consequently, F(z) = F(y),
and ¢ is also a minimum point of F'. R

Thus, from existence of some minimum point of F' over D, it follows that in D there exists a
minimum point of F', which coordinates are situated in ascending order. U

§ 3. Conditions and linear programming formalization

At first, we demand similarity of all aircraft. That is, for all 1 <7 < 57 < N, we suppose that
oale — 7 Also, for all 1 <4 < N, it is assumed that 13 = 2, {e¢ = ¢de,

As it is demanded at the beginning of Section 2, the penalty functions f; in (1.1) are the
same and the common function f is unimodal convex piecewise-linear. As it is explained in
Section 2 (the part devoted to linearization of a convex continuous piecewise-linear functional),

the functional (1.1) can be linearized by introducing new variables and constraints.
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Now, the only obstacle to consider problem (1.1)-(1.3) as a linear programming one is that
inequalities (1.3) define a disconnected set, which, of course, is not convex. One of the usual
approaches is to consider the problem by introducing additional binary variables as a mixed
integer linear programming one (see, for example, [2]).

However, due to Lemma 3, one can assert that there is an optimal solution of problem (1.1)—
(1.3), for which the appointed arrival instants have the same order as the nominal ones. Indeed,
in the framework of Lemma 3, A; = t}°%, o = t*°, @ = ¢4, 7 = 7%, The conclusion of the
lemma allows us to declare conservation of the order of aircraft in the resultant queue.

Under the premises made and this conclusion, problem (1.1)—(1.3) can be rewritten as

N
F(6,6%™) =) f(t;, t}°™) — min, (3.1)
i=1
s.t. t; € [thom — gace gnom y ydec) g > () (3.2)
VI<i<j<N:tj—t;>7r% (3.3)

In comparison with (1.1)—(1.3), the main difference is in inequalities (3.3).

But, of course, this is true only for the situation of aircraft of the same type (having the same
safe time interval 75 between any pair of aircraft) under equality of routes (that is, equality
of 2 and t9°° for all aircraft) when the same penalty function is applied for all aircraft. As
any difference appears, problem (1.1)—(1.3), generally speaking, cannot be considered as a linear
programming one.

If the penalty function f in (3.1) is convex piecewise-linear of type (2.1)

m—1

[, 6") = Z arlt; — t| + At;

k=2

with some constants #;, then by introducing new variables ¢;;, problem (3.1)—(3.3) is transformed
to the new form:

m—1
t, 7o) XN: Z axqir + At;) — min, (3.4)

=1 k=2
S.t.t; € [thom — gace gpom g gdec] g >, (3.5)
V1<i<j<N:tj—t;>7 (3.6)
Vi=1,N, k=2m—1:—qs <t —tx < qir. (3.7)

Actually, criterion F' (3.4) depends now only on ¢; and the new variables ¢;;. The nominal arrival
instants ¢7'°™ now participate in constraints (3.5) and (3.7) only. The obtained problem (3.4)—(3.7)
is of linear programming type and can be efficiently solved by, for example, simplex method even
for a quite large number of aircraft in the considered set.

§ 4. Conclusion

In the paper, the problem of safe merging aircraft flows with a given nominal schedule of
their arrival to the point of airways joining is considered as a problem of global constrained
minimization of some optimality criterion. The constraints are connected both to the maximal
possible values of acceleration/deceleration of an aircraft and to the conditions of safety of each
consequent pair of aircraft at the merge point. The distinctive feature of the problem statement is
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that the flows of aircraft of the same type with the equal possibilities of maximum acceleration
and delay are considered.

Several theoretic statements are proved, which show that under the assumptions of similarity
of all aircraft and air-routes the order of the aircraft arrivals in the resultant queue coincides with
the order of the nominal arrivals. This allows one to apply methods of linear programming to the
problem solving.
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A. A. Cnupuoonos, C. C. Kymkos
CoxpaHeHue MOPsAKA CaMOJIeTOB B 3aJaue 0e30MACHOr0 CJAUSHUS MOTOKOB BO3IYIIHBIX CYI0B

Kniouegvie cnosa: BO3OyIIHBIE CyAa, TOYKA CIMSHHS BO3IYILIHBIX Tpacc, OECKOH(IMKTHOE CIMSHHE MO-
TOKOB, HOMHHAJIBbHBIE MOMEHTHI TPUOBITHS, Ha3HAYCHHBIE MOMEHTHI MPUOBITHS, OOBEUHEHHAS OYepellb
CaMOJIETOB.

VIK 519.852.3
DOI: 10.35634/vm220306

B Hacrosiee BpeMs B paMKax yIpaBiIeHHs BO3AYLIHBIM JIBH)KEHHEM KpaifHe BaXKHOM sABIsieTCA 3anada Qop-
MHUPOBaHHA ONTHMAIBFHOTO OE30MaCHOTO PACIUCAHUS MPUOBITHS CaMOJIETOB B TOUKY CIUSHUS BO3IYITHBIX
Tpacc. bezonacHoCTh pe3ynbTHpYIOILeH ouepeny obecrneunBaeTcsl HaTuyrueM 0e30MacHOr0 BpPEMEHHOTO HH-
TepBajia MeXIy COCETHUMH MPUOBITHSIMH B TOUKY CIUSHUS. VI3MEeHEeHHe MOMeHTa MPHOBITHS MOXeT obec-
TIEYNBATHCS M3MEHEHHEM CKOPOCTH IBIMKEHHS CaMOJIeTa H/FITH MCTIONB30BAaHUEM CXeM, YIUTHHSIONINX HITH
YKOPauMBaIOIIMX €ro TpaekTopuio. ONTHMAaIbHOCTh PE3YJABTUPYIOIIEH Odepequ paccMaTpUBaeTCsl C TOd-
K{ 3peHHsl JOTIOTHUTENBHBIX TPeOOBaHMI: MUHIMH3AINN OTKIOHEHHS Ha3HAYEHHBIX MOMEHTOB MPHOBITHS
OT HOMHUHAJIbHBIX, MUHUMHU3ALMK KOJIUYECTBA U3MEHEHUH MOpsiAKa CaMOJIETOB B O4EpPENU, MUHUMU3ALNY
pacxofa TOIUIMBA U T. . MUHUMHU3NPYEMBIH KpUTEpUH ONTHMAIBHOCTH, OTPaKAIOMIMKA 3T TpeOOBaHWS,
YacTO BBIOMPAETCs KaKk CyMMa MHIMBHIYAJIbHBIX IITPadoB KaKAOMY CyAHY 3a OTKIIOHEHHE Ha3Ha4eHHO-
O MOMEHTa MPHUOBITHS OT HOMHUHAJIBHOTO. DYHKINS MHANBUAYAIBHOTO mITpada MOYTH BO BCEX CTAThAX
paccMmaTpuBaeTcst MO0 Kak MOAYNb OTKIOHEHUS, MO0 Kak (yHKUUS, MOX0Xkas Ha MOAYJb, HO C pa3iny-
HBIMH HaKJIOHAMH BETBEW, YTO MPHUBOAUT K pasHOMY mTpady 3a 3aJepXKy u yckopeHue. B menowm, 3agaga
MOXET OBITh pa3lielieHa Ha JBE: OlHa CBfA3aHa C MOMCKOM ONTHUMAaIbHOTO MOpsAKa MPUOBITHS CYIOB, BTO-
past — ¢ BEIOOpPOM ONTHMAIBHBIX MOMEHTOB MPHOBITHS NpH 3aJaHHOM mopsake. [locnemHsas momzamada
JIOCTATOYHO TIPOCTO PeIIaeTcsl, TOCKOIBKY dallle BCero MOXeT ObITh (hOpMalTN30BaHa KakK 3ajada JTMHEHHO-
ro nporpammupoBanusi. OfHaKo MepBas pelaeTcs 3HaYUTEIbHO CIOKHEE, U1 €€ peIeHUs] TPUMEHSIOTCS
pa3sHOOOpa3Hble METOBI — OT IBPUCTHUYECKUX W TEHETHUECKHX MPOLEAYP IO MOAXOA0B CMEMIAHHOTO Iie-
JIOYMCIIEHHOI'O JIMHEHHOTO MPOrpaMMHUpPOBaHus. B crarbe mpeiararoTcss yCJIOBUS Ha NapaMeTpsl 3a1a4H,
JIOCTATOYHBIE JJIsl TOTO, YTOOBI MOPSAIOK ONTHMAIBHBIX MOMEHTOB MPHOBITHS CaMOJETOB B TOUKY CIHA-
HUS COBIAJAN C MOPSAIKOM HOMHHAJIBHBIX MOMEHTOB. DTO IMO3BOJISIET MCKIIOUNTH MEPBYIO MOJA33ady M3
pelieHus: Bcel 3ajiauu.
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