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§ 1. Introduction

Let K=RorK=C; K" := {z =col(zy,...,3,): 2 €K, i =1,n}; M,,(K) is a space
of p x g-matrices with elements of K, M,(K) := M, ,(K) (we will denote M, , := M, ,(K),
M, = M,(K), if the set K is predefined); I, € M,(K) is the identity matrix (we will omit the
index ¢ in the matrix /, when it does not cause confusion); 7" is the transposition of a matrix or
a vector; x (A, \) is the characteristic polynomial of a matrix A € M, (K).

This work continues the research of [1-3]. Consider a linear control system

t=Fr+Gu, y=Huz. (1)

Here 2 € K" is a state vector, u € K™ is a control vector, y € K is an output vector, ' € M, (K),
G € M, (K), H € M, ,(K). Suppose that the control in system (1) has the form of linear static
output feedback (LSOF):

u=Qy. )
Here () € M,, 1(K). The closed-loop system has the form
t=(F+GQH)x, zeK" (3)
If k =n and
H =1 e M,(K), 4)
then y = x, that is (2) is a linear static state feedback (LSSF) control
u = Qu, )

and the closed-loop system has the form

t=(F+GQ)x, xecK" (6)
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The problem of eigenvalue spectrum assignment for system (1) by LSOF (2) (or by LSSF (5))
is a classical problem of control theory. The formulation of this problem is as follows. For the
case K = C: let an arbitrary set 0 = {\1,..., A\, } C C of numbers Ay, ..., \, € C be given. For
the case K = R: let an arbitrary set 0 = {\q,...,\,} C C of real type be given (that is the set o
is invariant under the operation of complex conjugation). One needs to construct a gain matrix
Q € M,,,(K) such that the eigenvalue spectrum of the matrix of the closed-loop system (3)
coincides with the given set 0. There is a bijection (71,...,7,) € K" «— o = {\1,..., \n}
(A; € K) between the ordered set of coefficients of the characteristic polynomial

X(F4+GQH N =X+ y A"+ + i A+, (7)

of the matrix of system (3) and the set 0 = {Aq,..., A\, } of roots of this polynomial. Thus, the
eigenvalue spectrum assignment problem for system (1) by LSOF (2) is formulated in the form of
the problem of assigning arbitrary coefficients for the characteristic polynomial (7) (see [2, Defi-
nition 1]).

Definition 1. It is said that, for system (1), the problem of arbitrary coefficient assignment (ACA)
for the characteristic polynomial (CP) by linear static output feedback (LSOF) is resolvable, if
for any 7, € K, ¢ = 1, n, there exists a gain matrix () € M,, ;(K) such that the characteristic
polynomial x(F + GQH, \) of the matrix F'+ GQH of system (3) satisfies equality (7).

In partial case, when (4) is fulfilled and the closed-loop system has the form (6), it is said
that, for system (1), the problem of ACA for CP by LSSF is resolvable.

The problem of ACA for CP by LSSF has been solved in [4] for K = C and in [5] for K = R.

The problem of ACA for CP by LSOF is a hard problem in control theory and still has no
complete constructive solution in the general case. We mention here the papers [6-9] and the
reviews [10-12].

Let G =: [g1,. .., gm]; here g, € K" (o = 1,m) are the column vectors of the matrix G. Let

&
H=:|...|;here &g € (K")T (6 =1, k:) are the row vectors of the matrix H. Set r := mk. Let

&k

us expand the matrix @ = {¢.s}, @ = 1,m, § = 1, k column by column into a column vector

u=col (ug,...,u.) :=col (qu1,--yGmis--->Qks-- -, Gmk)- (8)

Let us construct the following matrices B, € M,, (v =1,7):

Bl = 91517 BQ = g2£1, ...... s Bm = gmgla
Bm+1 = glgg, Bm+2 = gggg, ...... s Bgm = gm§27
)
B-1ym+1 = 91&k; Br—1)ym+2 == 928k, - - ; Bri=gmék
Let A := F. Then, by virtue of (8) and (9), system (3) is written as
t=A+wB+...+u.B)x, xecK" (10)

System (10) is a bilinear system. A system of the form (10) with arbitrary matrices B, € M,
is a system of a more general form than system (3). For a system (10), the eigenvalue spectrum
assignment problem (or the problem of ACA for CP) has the following formulation.
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Definition 2. It is said that, for system (10), the eigenvalue spectrum assignment problem (or
the problem of ACA for CP) is resolvable, if for any v; € K, i = 1,n, there exists a constant

controller v € K" such that the characteristic polynomial x(F + > u,B,, ) of the matrix of
v=1
system (10) satisfies equality

X(F4+uBy+ ...+ wBo A) = N+ AN A 4

The eigenvalue spectrum assignment problem for bilinear systems is related to the inverse
eigenvalue problem and the matrix completion problem. We mention here the papers [13-20] and
the reviews [21-23].

In the papers [2,3], the formulation of the problem of ACA for CP by LSOF was generalized
to block matrix systems. Let s € N be fixed. Consider an input-output linear control system with
block matrix coefficients:

t=Fr+Gu, zeK" ueK™, (11)
y=Hz, yck*, (12)
F11 Fln G11 Glm H11 Hln
F=1: s G= |, H=1|: S (13)
Fa ... Fu., Gni oo Gom Hyy ... Hyg,

Here x € K™ is a state vector, u € K™ is a cgtrol vector, y € K** is an output vector;
Fij, Gja, Hgi € Ms(K), 3,5 = 1,n, « = 1,m, 8 = 1, k. Suppose that the control in system (11),
(12), (13) has the form of linear static output feedback (LSOF):

u = Qy. (14)

Here Q = {Qup} € Mpsis(K), Qus € M,(K), a = 1,m, 8 = 1, k. The closed-loop system has
the form

i=(F+GQH)x, z€K"™. (15)

Let an nth degree sth order monic matrix polynomial be given:

UA)=IA"+T A"+ 4+ T, A+, AT, €M, i=1n. (16)

From the polynomial (16), construct the block companion matrix associated to the matrix poly-
nomial W(A):

0 I 0 ... 0
0 0 I ... 0
b= : : : A P (17)
0 0 o ... I
T, -T,.1 —Tho ... -I4

The following definition was given in [2, Definition 2] and in [3, Definition 2].

Definition 3. We say that, for system (11), (12), (13), the problem of arbitrary matrix coeffi-
cient assignment (AMCA) for the characteristic matrix polynomial (CMP) by linear static output
feedback (LSOF) is resolvable if for any T'; € M,(K), i = 1,n, there exists a gain matrix
Q) € M, 1s(K) such that the closed-loop system (15) is reducible by some change of variables
z = Sz to the system

=0z, zeK", (18)

with the matrix (17), that is the matrix F'+ GQH of the system (15) is similar to the matrix (17).
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In [3], for system (11), (12), (13), conditions were obtained for the resolvability of the problem
of AMCA for CMP by LSOF. In the present paper, we consider a block matrix control system of
a more general form, namely, a block matrix bilinear control system.

Consider a block matrix bilinear control system

t=(A4+wuB+...+u.B)zr, €K u,ck (19)
All cee Aln Bull ce. Buln
Anl e Ann Bunl s Bunn

3

AZ]7BVZ] S MS(K)7 Z)] = ]_,TL, V= ]-7
Here x € K™ is a state vector, u = col(uy,...,u,) € K" is a control vector.

Definition 4. We say that, for system (19), (20), the problem of arbitrary matrix coefficient
assignment (AMCA) for the characteristic matrix polynomial (CMP) is resolvable if for any I'; €
M,(K), i = 1,n, there exist u,, € K, v = 1, r, such that the system (19), (20) is reducible by some
non-degenerate change of variables z = Sz to the system (18) with the matrix & of (17), that is
the matrix of the system (19), (20) is similar to the matrix (17): S(A+uyBi+...+u,B,)S™! = .

In this paper, the results of the paper [3], obtained for system (15), are generalized (partially)
to a more general class of block matrix bilinear control systems (19), (20).

§ 2. Notations, definitions, and auxiliary statements

We will use some notations, definitions, and statements from [1] and [3]. Here and throughout,
we suppose that the numbers s,n,7 € N, and p € {1,...,n} are fixed. For any matrix Z € M,
we suppose, by definition, Z° = I € M, where I is the identity matrix; [e;, ..., e,]:= I € M_;
Sp Z is the trace of Z € M,,. Denote by ® the right Kronecker product of matrices Y = {y;;} €
€ M, i=1w, j=1,p, and Z € M, [24, Ch. 12] defined by the formula

ynZ yi2Z ... Yip4
v 2 7. y21Z yQQZ e yng c Mwa’m_'
ywlz waZ s ypr

Denote J :=J® I € M, where I € M, and J := {¢;;} € M,,,¢;; =1forj=i+1lande; =0
for j # ¢+ 1. We will use the mapping vecc that unroll a matrix Z = {z;;} € M, ,(K), i = 1,w,
j = 1, p, column-by-column into the column vector :

vece Z = Col(Z11, -+, 2wty - o5 Z1ps - - -5 Zup) € My 1(K).

Definition S (see [1, Definition 4]). For the fixed s € N, let us introduce the operation of the
block trace SP,: M, — M, by the following rule: if Z = {Z,;} € M, Z;; € M, i,j = 1w,

then SPSZ = E ZM

=1

Definition 6 (see [1, Definition 5]). Suppose that X and Y are block matrices with s x s-blocks
such that the number of the (block) columns of X is equal to the number of the (block) rows
of V:

=

?

X = {Xz]} S Mws,ps; Xij € M37 1= 1,&], j = 17
Y = {Y]V} S Mps,rsa }/}V S Msa j =Lp v

—_
—_

,T.
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For the matrices X and Y, let us introduce the operation of the block multiplication by the
following rule:

P
Z=XxY={Zy}, Zy=)» X;®Y, i=Lw v=Lt
j=1

We have Z;, € Mg foralli = 1,w, v = 1,7, therefore, Z := X xY € Mg 4.

Definition 7 (see [1, Definition 6]). For the fixed s € N, let us introduce the operation of the
block transposition 7 by the following rule: if Y = {Y};} € M, s, Yij € My, i =1, w, j =1, p,
then

YT :Z:{Zjl} eMps,wsa Zj' = Yvija jzlvpv 1 =1w.

Definition 8 (see [1, Definition 7]). Let X be a block matrix with s x s-blocks:

X = {X’Lj} S Mws,psa Xij €M, i1=1uw, J= 17p

Let us construct the mappings VecCR, VecRR,: M. s — M, that unroll the matrix
X = {Xi;} € M,s,s by block columns and by block rows respectively into the block row with
s X s-blocks:

VeCCRsX = [th c. ,le’ c. ,le, cee pr],
VeCRRSX:[Xll,...,le,...,le,..., wp]-
Consider a block matrix
Z ={Z;} e M,s, ZjeM, ij=1n. (21)

It is said that the matrix Z is a lower block Hessenberg matrix if Z;; = 0 € M, j > 1+ 1. If,
in addition, det Z, ;1 # 0, then this lower block Hessenberg matrix is called unreduced. We will
consider only those lower block Hessenberg matrices that are unreduced, therefore, for brevity,
we will omit the word “unreduced”. If, for the block matrix (21), we have Z, ;11 = I € M,,
i=1,n—1,and Z;; =0€ M;,i =1,n—1,j=1,n,i+ 1 # j (that is Z has the form (17)),
then it is said that 7 is a lower block Frobenius matrix.

Lemma 1 (see [3, Lemma 3]). Suppose that a block matrix (21) is a lower block Hessenberg
matrix. Then there exists a non-degenerate lower block triangular matrix S such that the matrix
SZS~Yis a lower block Frobenius matrix.

§ 3. Sufficient conditions to solving the problem of AMCA for CMP for block matrix bilin-
ear control systems with a lower block Frobenius matrix

Consider system (19), (20). Suppose that the coefficients of this system have the following
special form: for some p € {1,...,n}, the first p— 1 block rows and the last n — p block columns
of the matrices B, are zero, and the matrix A is a lower block Frobenius matrix, i.e.,

[0 I 0 ... 0]
0 0 I ... 0
A= : : : s, 0,1,A; € My, i=1,n, (22)
0 0 0 R |
A, —A,1 —A,o ... —A
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[0 0 0 07
o ... 0 0 ...0
B, = By .. By O ... 0| 0,By.eg € My, v=1r, 7=p,n, c=1,p. (23)
| Bont ... By 0 ... 0]
Construct the following matrices V;, € My21(K), i =1,n,a = 1,7
Uy = vece[SPy(By)], ... , Wy, = vece[SPy(B,)],
Uy = vece[SPy(ABy)], ... , Wy, = vece[SP,(AB,)], (24)
W, = vecc [SPS(Anlel)}, ...... , W, = vecc [SPS(A”*IBT)}.
Construct
\Illl e \Illr
U= : D € My (K). (25)
Uy ... U,

Theorem 1. For system (19), (20), with coefficients (22), (23), the problem of AMCA for CMP is
resolvable, if the following condition holds:

rank ¥ = ns?. (26)

§ 4. Proof of Theorem 1

The proof of Theorem 1 will follow the scheme of proof of the corresponding theorem for
system (11), (12), (13), (14) (see [3, Theorem 3]). Let the matrix A have the form (22). Here and
everywhere below we assume that Ay := I € M,. From the matrix A, construct the following
matrix:

Ay 0 ... 0
A Ay ... 0

P=|"" | €M, 27)
Ant .. Ay Ag

Let a block matrix D € M, with s X s-blocks have the following form: the first p — 1 block
rows and the last n — p block columns of the matrix D are zero, i.e.,

0 ... 0 0 .. 0
0 ... 0 0 ... 0

"= b, p, 0 ..o ODweM, T=pm o=Lp 28
_Dnl e an O PPN O_

Lemma 2 (see [3, Lemma 5]). There exists a lower block triangular matrix S such that the
following holds: the matrix S(A + D)S™! is equal to the matrix ® of (17), the block matrix
coefficients of which are related to the coefficients of the matrices A and D as follows:

I, =A;, —SP,(J"'PD), i=1,n.
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From the matrix A, construct the following matrices:
No:=I€M,,, N,:=N,1-A+(L®A,)€EM,s, p=1n—1,
where L = I € M,,. Then,

No =1,

Ny =A+(I®A4),

Ny=A2+ (IR A) -A+(I®Ay),
N,o=Ar+(IT@A4) AT+ (IRA) A+ .. +(I®@A4,41) A+ (I®A,),
Ny =A"T 4+ (T@A4) - A"+ +(IRA,2) A+ (I® A, ).

Lemma 3 (see [3, Lemma 6]). Let a block matrix D € M, have the form (28). Then,
SP,(J"PD) = SP,(N,D)

forall p=20,...,n—1

Lemma 4 (see [3, Lemma 7]). Let matrices A and D have the form (22) and (28), respectively.

Then, there exists a lower block triangular matrix S such that the following holds: the matrix

S(A+ D)S™! is equal to the matrix ® of (17), the block matrix coefficients of which are related
to the coefficients of the matrices A and D as follows:

Lemma 4 follows from Lemmas 2 and 3.
Denote
Ty :=SP,(D), T,:=SP,AD), ..., T,:=SP,(A"'D), (30)
Iy Ay T
~ Iy ~ A2 e T
D= | . | €Mys, A= .| EMys, T:=| .| € M. (31)
Lemma 5 (see [3, Lemma 8]). Equalities (29) are equivalent to the equality
['=A-PT. (32)

Remark 1. Since P is non-degenerate, then, for any f, one can express T from (32):
T=P Y A-T). (33)

Consider the system (19), (20) with coefficients (22), (23). From (23), it follows that the
matrix > _ u,B, has the form (28) of the matrix D. Let us replace the matrix D in the
equalities (30) with >’ _, u, B,. Then, equalities (30) take the form

T1 = SPS (i UVBI,> y
v=1

(34)
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Equalities (34) are equivalent to

Ty =) u,SP.(B,),
v=1

Ty = u,SP,(AB,),

v=1 (35)
T, =) u,SP,(A"'B,)
v=1
Denote
w:=col(uq,...,u,) € K, (36)
w := col (vecc (Ty), ..., vecc (T,)) € K™’ (37)
Let us apply the mapping vecc to equalities (35). Then, equalities (35) take the form
Yu = w, (38)

where VU is defined by (24), (25).
Lemma 6. System (38) is resolvable with respect to u for arbitrary w iff condition (26) holds.

The proof of Lemma 6 is clear. If condition (26) holds, then system (38) has the particular
solution
=V (TuT) 1y, (39)

Let us carry out the final arguments to prove Theorem 1. Let condition (26) hold. We
show that the problem of AMCA for CMP is resovable. Let arbitrary matrices I'; € M (K)
be given. One needs to construct u, € K, v = 1,7, and a matrix S € M,,(K) such that
S(A+ wyBy + ... +u,B,)S™ = ® and ® has the given block coefficients —T',,;1_; in the
last block row. By Lemma 4, for this, it is sufficient to construct u € K", which ensures the
fulfillment of the equalities

I, = A, — SP, (NH > u,,B,,) . i=1,n. (40)
v=1

Construct the matrices Aand T by using formula (31). By using (33), let us construct the
matrix 7. Construct the vector w by using formula (37). Let us resolve the system (38) by
formula (39). From (39), we find the vector u € K" of (36). Then, taking into account Lemma 5,
equalities (40) are satisfied. The proof of Theorem 1 is complete. 0

Based on the proof of Theorem 1, we present an algorithm for solving the problem of AMCA
for CMP, for system (19), (20), with coefficients (22), (23).

Algorithm 1. Let the system (19), (20) with coefficients (22), (23) be given.

1. By usung (24), (25), construct the matrix .

2. Check the condition (26). If this condition is satisfied, then the problem is solvable.

3. Let arbitrary matrices I'y,...,[', € M, be given. R R

4. Construct the matrices P of (27) and the matrices I" and A of (31).

5. Calculate the matrix 7" using the equality (33).
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6. The matrix 7 has the form (31). From f, find the matrices 17, ...,7, € M,.

7. From the matrices 7171, ...,7, € M, construct the vector w using the formula (37).

8. Solve the system (38) with respect to the vector u; for example, using the formula (39).

9. Denote the matrix A + u1B; + ... + u, B, of the closed-loop system by Z. This matrix
is a lower block Hessenberg matrix. By Lemma 1 (see [3, Lemma 3]), from the matrix Z,
construct the matrices S, ...,.5, and the matrix S. Then, this matrix S reduces the matrix
Z = A4+u By +. ..+ u,.B, of the closed-loop system to the matrix ¢ of (17), i.e., S(A+u1 B+
+...+u.B,)S™l =,

We will demonstrate this algorithm below in Section 8.

§5. Theorem 1 generalizes the theorem on AMCA for CMP by LSOF for system (11)—(13)

Consider system (11), (12), (13). Suppose that the coefficients of this system have the follow-
ing special form: for some p € {1,...,n}, the first p — 1 block rows of the matrix G are zero,
the last n — p block columns of the matrix H are zero, the matrix F' is a lower block Frobenius
matrix, i.e.,

0 1 0 0
0 0 1 ... 0
F= ) OalaAieMsa Zzl,n, (41)
0 0 0 1
0 ... 0 7
G = 0 .0 0,Gjn € M, =p,n, a=1m (42)
- Gpl Gpm 9 ) Jj Sy j _pa 9 - 5 9
_Gnl . Gnm_

H11 e Hlp 0 ... 0
Hgy ... Hy 0 .00
Consider the matrices

(HN'«G, (H"%(FG), ..., (HDHT«(F"'Q).

We have (HT)T € My ns, F©7'G € Mg ms, hence, (HT)T % (FI71G) € My s forall i = 1, n.
Let us construct the matrices VecRR 2 ((H”)” x (F"'G)) € M jyns2, @ = 1,1, and the matrix

VecRR,: (HT)"  G)
VecRR,: (HT)" » (FQ))

VecRR: ((HT)T  (F"'G))

S MnSQ,kmSQ . (44)

The following theorem was proved in [3, Theorem 3].

Theorem 2. For system (11), (12), with coefficients (41), (42), (43), the problem of AMCA for
CMP by LSOF is resolvable, if the following condition holds:

rank © = ns?. (45)
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We will show here that Theorem 1 is a generalization of Theorem 2.
Suppose that system (11), (12) has coefficients (41), (42), (43). Consider the closed-loop
system
t=(F+GQH)x, z¢eK". (46)
Let us represent system (46) in the form (19).
We have Q = {Qas} € Mpsrs(K), Qus € My(K), @ =1,m, 8 = 1, k. Consider formula [3,
(73)]. We have

VecCR;Q = [Q11, Q215 - -+, Qs -+, Quky - -+, Quke] = A € Mg 1ies (K. (47)
Denote
Gop -+ o
Qop =2 | | € My(K), a=1m, pB=1k. (48)
Gop - Gop
Then,
vece A = col (@11, -y @51, oy Qs S QoL @1y s G
q,lnll,...,qfnll,...,q,ljl,...,qul,..., (49)
Qs+ ik Qi - Qs o Goos =5 Goas =+ > Gk =+ =+ D)

Set 7 := mks?. Set
u:=vecc A € K". (50)

Let G =: [Gy,...,Gpl; here G, € M,,(K) (o« = 1,m). Denote G, =: [¢},...,q:],
gp e K" a=1m,p=1,s.

= 1
=1 L fﬁ

Let H =: |...|; here Z3 € M,,s(K) (5 = 1,k). Denote =5 =: |...|, fg € (K"S)T,
= &5

B=1k1=1s.

Let us construct the following matrices B, € M,(K), v =1,r

By = gi&, . , B, =g, . ,
B o1 :g% fa """ ) B :gf fa

By = go&l, ... : Beys:i=gs&t, ... :
Bogrgi1 i= g3&5, ... , Bog = g5¢7,

...... , e e e

...... , e e

B(m—1)52+1 :gil 11, ...... s B(m—1)32+s :g; 11, ...... s
Bpsr_gy1 i=ghE L , B = gt &l

...... , e, e e

...... , e e

B(k‘—l)ms2+1 = g% ]1, ...... s B(k‘—l)ms2+s = gf ]i, ...... s
B—tymi1)s2—s+1 = 91&p  eeennn : B(k-1ym+1)s2 = 91&hs

...... , e e e

...... , e e

B(kmfl)SQJrl = grln l}u ...... s B(kmfl)SQJrs = gfn l}u ...... s
Brms2_sy1 1= g; [ , B2 = g,,&;-
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By virtue of equalities (49), (50), and (51), we have
GQH = u131 + ...+ urBr- (52)

By virtue of equalities (42), (43), and (51), the matrices (51) have the form (23).
Set

A:=F. (53)

Then, system (46) has the form of system (19), (20) with matrices (22), (23).
By virtue of (52) and (53), the equalities (34), for the system (46), take the form

Tl = SPS(GQ‘H)7
T2 - SPS(FGQH),

(54)
S G
(See [3, (72)].) Denote
b := vecc (VecCR,Q) € K, (55)
v := col (vecc (T1), ..., vecc (T},)) € K™’ (56)
By [3, Lemma 9], equalities (54) are equivalent to the equality
Ov =, (57)

where O is defined by (44), v is defined by (55), and tv is defined by (56). In its turn, equali-
ties (34) are equivalent to (38). From (37) and (56), it follows that

w = 1. (58)
From (47), (48), (49), (50), and (55), it follows that

u="v. (59)

Thus, we get: equality (38), after applying the vecc™ operation, takes the form (34); equali-

ties (34) coincide with (54); equalities (54), after applying the vecc operation, by [3, Lemma 9],
take the form (57). Due to equalities (58) and (59), we obtain that

VU =0. (60)
Thus, if the bilinear system has the form (46) with matrices (41), (42), (43), then the condition (26)
of Theorem 1 turns into the condition (45) of Theorem 2, due to the equality (60).

Thus, we have the following proposition.

Theorem 3. Theorem 1 is a generalization of Theorem 2, for systems (11), (12) with matrices (41),
(42), (43), to block matrix bilinear control systems (19), (20) with matrices (22), (23).
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§ 6. Special cases

In [3], for system (11), (12), (13) with matrices (41), (42), (43), in special cases when the
matrix blocks are scalar matrices, it was shown that rank condition (45) can be reduced (see [3,
Section 7]).

Let us consider system (19), (20) with coefficients (22), (23). Suppose that the blocks of the
matrices (22), (23) are scalar matrices, 1. €.,

Ai=al, a, €K, TeM, i=1n,
Byro = bm—a[7 byro € K7 Ie MS7 v

:]‘7T7 T:p7n7 O-:]"p'

Denote

Then,

A=AxI, B, =B,®I, ITeM, v=1r.

Then, foralli=0,...,n—1landv=1,...,r,
SP,(A’'B,) = SP,((A® 1) (B, ® I)) = SPs(A'B, ® I) = Sp(A'B,) - I. (61)
Consider the first block row in matrix (25):
Ly= [Ty ... U],

The first row of the matrix Ly is ¢1 = [bipp, - . ., byyp). Since all the matrices B, (v = 1,7) are
scalar, therefore the remaining rows of the matrix L, are either zero or coincide with ;. We
obtain that all rows of the matrix L; linearly depend on the first row, that is, the rank of the
matrix L, does not exceed 1. Due to the equality (61), similar properties hold for other block
rows of the matrix (25). Thus, the rank of the matrix ¥ does not exceed n. Therefore, if s > 1,
then the condition (26) of Theorem 1 cannot be satisfied. Thus, the propositions of [3, Section 7]
that hold for system (11), (12), (13) with matrices (41), (42), (43) cannot be extended to block
matrix bilinear control systems in the general case when s > 1.

Remark 2. The case s = 1 was fully investigated in [19] and [20]. The conditions of Theorem 1
are transformed into the conditions of [20, Theorem 2]. Moreover, these conditions are both
sufficient and necessary.

§ 7. The converse of Theorem 1 is not true in general

The question of the converse of Theorem 2 was raised in [3], and it was pointed out that in
some partial cases the converse is true, but in general the question remained open.

We will show here that, for Theorem 1, the converse is not true in general.

In M,(K), consider the subspace UT,(K) C M,(K) of the upper triangular matrices. By
analogy with [2, Definition 3], we give the following definition.

Definition 9. We say that, for system (19), (20), the problem of arbitrary upper triangular matrix
coefficient assignment (AUTMCA) for CMP is resolvable if for any A; € UT,(K), i = 1, n, there
exist u, € K, v = 1,7, such that the system (19), (20) is reducible by some non-degenerate
change of variables z = Sz to the system

i=Qz, 2€K™,
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with the matrix

[0 I 0 0 |
0 0 1 0
Q= : : : | (62)
0 0 0 U
A A A A
that is the matrix of the system (19), (20) is similar to the matrix (62):
S(A4+u By + ... +u.B,)S™ ' =Q. (63)

The following theorem takes place (see [2, Theorem 3]).

Theorem 4. Let K = C, n = 2, and s = 2. For any matrix ® of (17), where 0,1,T; € M, (K),
i = 1,n, there exists a matrix Q2 of (62), where 0,1, A; € UT,(K), i = 1,n, such that Q ~ ®.

Theorem 4 implies the following theorem.

Theorem 5. Let K = C, n = 2, and s = 2. Suppose that, for system (19), (20), the problem of
AUTMCA for CMP is resolvable. Then, for system (19), (20), the problem of AMCA for CMP is
resolvable.

Now, consider the following example. Let n = 2, s = 2, r = 6, K = C. Suppose that the
system (19), (20) has the following block matrix coefficients:

0010 [0 0 0 0O 0 00O 00 0O
0 0 01 00 0O 0 00O 0 00O
A=lo oo ol P = lioo ol = o100 |00 0 0|
0000 00 0O 0 00O 0100
- (64)
00 0O 0 00O 0 00O
00 0O 0 00O 0 00O
Bi=1o 9 10" B~ o001 P 0000
00 0 0] 0 00O 00 01
So, the coefficients have the form (22), (23), where p = 2. Let arbitrary upper triangular matrices
be given:
. 51 52 . 54 55
A = {0 53}, Ay = {0 5| (65)
Let the matrix 2 have the form (62) with the matrices (65). Set u; := —d4, us := —0d5, uz := —dg,
Uy = —01, U5 = —09, ug = —03. Set S := I € M,. Then, obviously, the equality (63) is

satisfied. Hence, for system (19), (20) with the matrices (64), the problem of AUTMCA for CMP
is resolvable. Therefore, by Theorem 5, for system (19), (20) with the matrices (64), the problem
of AMCA for CMP is resolvable.

Now, for system (19), (20) with the matrices (64), construct the matrix W of (25). Then

0001 0

(66)

[N eNeNolN S =N
(il el =R

OO O OO O
SR OO O oo
_ o O O o o o
S OO OO oo
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From (66), it follows that rank ¥ = 6. So, rank ¥ < 8 = ns® Thus, condition (26) does not
hold. So, for the case K = C, n = 2, and s = 2, the converse of Theorem 1 is not true.

Remark 3. The question of the validity of Theorems 4 and 5, for the case K = C and (n > 2 or
s > 2), remains open.

Remark 4. The question of a similar counterexample for the case K = R remains open.

§ 8. Example

Example 1. Consider an example illustrating Theorem 3 and Theorem 1. Consider sys-
tem (11), (12) with n = 3, s = 2, m = k = p = 2 with the following matrices:

00 1 0 0 0 0 0 0 0
00 O 1 0 O 0 0 0 0 1 0 0000
00 O 0 1 0 0 1 1 0 0O 0 01 0O
F= 00 O 0 0 1 , G = 0 -1 0 1 , H = 1 0 0 0 0 0| (67)
20 -1 0 0 O -1 3 1 -1 0 -1 1 000
00 0 -1 0 —1] | 2 1 0 —1]
The matrices (67) have the form (41), (42), (43).
Constructing matrix (44) (see [3, Example 1]), we get
[0 0 0 0 0 0 0 0 0 0 0 1 0 O 1 0]
0 0 0 0 0 0 0 0 0 0 0O -1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 O 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 -1 3 1 0 1 -1
o— 0 -1 0 0 0 1 0 0 0o -1 2 1 0 1 0 -1
10 0O -1 3 0 0 1 -1 0 0 O -1 0 0 -1 O
0 0 2 1 0 0 0O -1 0 0 0 1 0 O 0 -1
-1 3 0 0O 1 -1 0 0o —-1 3 0O -1 1 -1 -1 0
2 1 0 0O 0 -1 0 0 2 1 -2 0 0 -1 0 0
0 0 0O -1 0 0 -1 0 0 0 1 -30 0 -1 1
| 0 0O -2 0 0 0 0 0 0 0 -2 -1 0 0 0 1]
Let us represent system (46) in the form (19).
We have
[0 ] [0 ] 0] [0 ]
0 0 0 0
0 1 1 0
-1 3 1 -1
| 2 ] | 1] 10 | —1]
& =11,0,0,0,0,0],
& =10,0,0,1,0,0],
& =11,0,0,0,0,0]

¢2=10,-1,1,0,0,0].
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Let us construct matrices (51). We get

~ —~
% N
N o
N N
coocooo coococoo
coococoo coocooco
Al
coococoo So T m
coococoo
coocooco
coococoo
coocooco
—
— Aol
_00 | < o O oo oo
I I
— — [aN I
A~ AN~
SN SN
I I
o Q
coocooo coococoo
coococoo coocooco
Al
coococoo cocoTa
coococoo
coocooco
coococoo
coocooco
!
_0000_2 oo o oo o
I I
— — [aN I
Y up
— — -
SN SN
I I
oy o

~ ~
o —
o~ o~
N~ N~
T 1 1
SO OO OO SO OO OO
o OO O o O OO OO OO
o OO O oo —
o OO O oo
o O O O OO
o O O O oo
SO OO OO
—
| __000000_
I I
—
v U7
N
SN =N
I I
O 0
Q Q
I 1 0 1
O O OO OO o OO O o O
S O OO OO o OO O o O
o O O O o O oo —H O - O
o OO O oo o OO O o O
o O O O oo o OO O o O
_001010_ _000000_
I I
W U
— N — N
> )
I I
Ne) I
M Q

)

0 00O0O0O
0 00O0O0O

1

-1 0 0 0 00
3 00000

1

00 00O

1_
5 =

2
1

=9

By

0 000O0O0

0 000O0O0

0 000 0 0
-1 0 0 0 0 O

0 000O0O0

000O0O

2

& =

1
1

By=g

(73)

)

0 000
0 000

1

0
0

0
0

0 0O

-1 0 0 0
3 000

1

1
-3
-1

000

0 000
0 000
0 000

0
0
0
0

1
-2

0
0
0
0

-1 0 0 0

2

000

0

2
2

1
1

9

Bll

~~

n

e~

p—a
coocooo
coocooco
coocooco
coocooco
coocooco
™
L ]

I

—

%,

[a\a\]

)

I

<t

q
coocooo
coocooco
coocooco
coocooco
coocooco
oo o H O

I

—

VG

—

)

I

™

q
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(75)

0 000
0 000
0 000

0
0
0

0
0
0

0 0 0}’
-1 0 0 0

1

1

0 0 00O0O0
0 0 00O0O0

-1 1 0 00

0

0 0 00O0O0

Define the matrix A according to (53). Then,

(76)

-1 0 0
0

20

-1

-1 0

0

Let us calculate the matrices A’B,, j = 1,2, v = 1, 16. We get

000O0O
-1 00 0 00
3 00000

1

00 00 0
-1 00 0 0 0
0 000O0O0

1

ABy =

0 00O0O0O
0 00O0O0O
-1 0 0 0 00

00 00 0’
0 00O0O0O
-2 00000

2

AB; =

-1 0 0

000 3 00
0

000

-1 0 0

000 0 00O

000

ABy =

000 0 00O
000 0 00

0 0}’
000 0 00O

000

-1 0 0
2

0

000
0

-2 0 0

ABg -

0 000O0O

00 00O
-1 00 0 00
-1 00 0 0 Of’

0 000O0O0

1

0 000O0O

ABg =

000O0O

1

0 00O0O0O

1

000O0O
0 00 0 0 0
-1 00 000

0 00O0O0O

AB; =

000 0 00

-1 0 0}’

-1 0 0
000 0 00O

000
000

000 0 00O

ABg =

000 0 00O

0 1
000 0 00}

000

-1 0 0

000 0 00

AB; =
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|
)

00 00O

1

-1 0 0 0 00

3 00000

1

00 00O

-1 00 0 00

0 000O0O

ABIO -

0 000O0O

0 000O0O

-1 0 00 00
0000 0}

2

0 000O0O0

-2 00000

ABQ -

oo oo oo _ - _ oo oo oo _ - _ - _ -
cooc oo o cooco oo o oo oo cooco oo
cooc oo o coococ oo
coococoo cooco oo o coc oo coococ oo
cooc oo o coococ oo
coococoo cooco oo — — — coococ oo
— T =T o o7 T oo ik =
_ | cocoococoo [ cooco oo cocoocooo
o coc oo
— O coococoo o™ o o coococ oo coococoo
_ [ _ o oo oo
oo oo, | [ , @ ococooo _ _ (. = coc oo o
I I I I I I
- . - S S S
Qq S S ~ ~ ~
< < < < < <
cCcoocococo ococoocoococo oocoo oo coocooo = co oo coocooco
coococ oo cocoococoo cocooco oo coococ oo o coc oo coococ oo
coococ oo cocooc oo o coococ oo cooco oo 1__ S I coococ oo
_
— ™ cooc oo o — cooco oo coococ oo
— Al
<9 | N2 e S o oo oo
coococoo cooco oo coococ oo
— i
0019_~02 — (o oo — ~ < o< —
— — — —
_ () 0_0_ __20_00 _O oo oo _ 0_0 (@)
oo oo oo o000 o0
I I I I
__ B __ — el 10
- M o Q Q Q
— — o [a\] [N}
a < a < < <
< <
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-1 0 0
-1 0 0

000
0 00

000 0 0O
000 0 OO0}

AQBg —

000 0 00O

000

-1 0 0

000 0 00}

000 0 00O

000O0O

1

-1 00 0 00
-1 00 0 00

-1 0 0 0 0 0

00 0O0O

2

0 00O0O0O
-2 0 0 0 0 0}’

00 00O

1

0 00 O0O0O

Ang —

[N el e e M e N en) | - (e N el Mo le M)
coocooo
coococ oo coocooc o
coococoo
cooc o oo coocooc o
coococoo
_ [ coococoo (I
—
Q_u_1011 coococoo - iy
OO0 oo o ___ o O 0o oo
I I I
[a\] <t ©
— — —
Sa) Sa) Q
[a\] [a\] [a\]
< < <
cCcoococooco ococoocooco coococoo
coococoo coococoo cocoocooco
coococoo coococoo cocoocooco
Al —
_20410 e —o T o—o
coocooo
(@] — — —
10_010
cocoocococo, ! o oo oo o
I
I o I
3 o 3
[aN] A [aN]
< <

By using (24), (25), we construct the matrix ¥ for system (19), (20) with the matrices (76),

(68)—(75). So, we get

0

0

-1 0 O

—1

-1 0 O

-1 1 -1 -1
-1

-3 0 0

-1 0 O

0
-2

0 0

0 0 -1
-1 0 O

0

—1

—1

—2

0
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We obtain that the matrix ¥ coincides with ©. Thus, the statement of Theorem 3 is confirmed.
Now, using the example of the system (19), (20) with the matrices (76), (68)—(75) we will
demonstrate Theorem 1 and Algorithm 1.
Calculating the rank of the matrix W, we obtain that rank W = 12. So, conditions of Theorem 1
are fulfilled. Hence, by Theorem 1, for system (19), (20) with the matrices (76), (68)—(75), the
problem of AMCA for CMP is resolvable. Let us construct this feedback control. Suppose, for

example, that
7 2 14 9 8 7
Fl:[o 9}’ FQ:{O 23]’ F?’:{o 15]'

We have
0 I 0
A=lo o 1| Alzlg ﬂ AQ:B ﬂ Agz[_OQ 8]
—As —Ay -4
I 0 0 R Iy R Ay
Construct the matrix P = |A; [ O of 27) and I' = |y uw A = |As| of (31).
A2 Al I FB A3

Calculating (33), we obtain that

T
~ ~7 -2 —13 -9 —3 -5
r= ;2’ Tl_[o —8}’ TQ‘[O —14}’ T3_[0 7}'
3

Construct w by formula (37). Then, w = col (—=7,0, -2, —8, —13,0, -9, —14,—-3,0, =5, 7).
Now, resolving the system Ou = w of (38) by the formula (39), we obtain that

5 15 5 15 43 15 57 43
= col -=,—11,-33, ——,-10,31,-41.0, ——, —, —, ——, —10, ——, — .
u CO <07 27 ) 337 27 073 ) 707 27 27 27 27 ) 27 2)
Denote by Z the matrix A + u; By + ... + u16B16. We get
[0 0 1 0 0 0]
0 0 0 1 0 O
7 _ -20 7 =7 -2 1 0
=15 0 0 -8 0 1
-8 -7 6 =16 0 O
|15 —15 15 —15 0 —1]
Applying step 9 of Algorithm 1, we obtain that
I 0 0]
S = 0 1 0 5 531 - [:?g ’(q 5 532 = |:_07 :§:| .
S31 Sza 1
Let us calculate SZS~!. We get
[0 0 1 0 0 0]
0 0 0 1 0 0
4|0 0 0 0 1 0
S257 = 0 0 0 0 0 1
-8 -7 —-14 -9 -7 =2
| 0 —-15 0 =23 0 -9

So, the statement of Theorem 1 is confirmed.
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Remark 5. The property of AMCA allows simultaneously assign eigenvalues and eigenvectors,
i.e., eigenstructure (see [1, Theorem 11] and [2, Theorem 8]). System (18) with the matrix (17)
is equivalent to the linear multidimensional differential equation of higher order

™ 4T 4 4T =0 zeK. (77)

Consider the following task. It is required to construct a controller © € K" such that the closed-
loop system (19), (20) is equivalent to the differential equation (77) having a given basis of
solutions. In [1,2], it is shown that this basis can be quite arbitrary.

Let an arbitrary set of linearly independent vectors hq,...,hs € K* be given and an arbitrary
list @ = (A1, A2, ..., As) of ns numbers A\ € K be given such that following vector functions
are linearly independent:

le(t) = hle/\lt, Q/}LQ(t) = hge)\Qt, ...... ¢1,s(t) = hse/\st,
1/12 1(t> = h1€>\s+1t, 1/12 2<t) = h2€)\5+2t, ...... ’Lpz 3<t) = h,s€>\2st,

’ ’ ’ (78)
Y1 (£) = heomnestt o (1) = hyedobet s (t) = hye.

Then, the set (78) may serve as such a basis.
For example, let n = 3, s = 2, hy = [(1)}, hy = {ﬂ , Q= (-1,-1,—-2,-3,—4,—5). Then,
the set (78) is

P1a(t) = (1) et a(t) = 1 e,
Yo (t) = (1) e, has(t) = 1 e ™, (79)
Y31(t) = (1) e, ahya(t) = 1 e,

The vector functions (79) are linearly {naependent. Using t_he_: proof of [1, Theorem 11] and [2,
Theorem 8], construct a differential equation (77) that has the set (79) as its basis of solutions.
We have (see [1, (96)])

~1 0 ~2 0 —4 0
S TR e P AR
11

Construct S := [hq, ho] = [O 1

} . Then (see [1, (97)]),

Ly = Sleil = {_1 ; }7 Ly = SNszl = {_2 _1}, Ly = SNgSil = {_4 _1}

0 -1 0 -3 0 -5
Constructing I';, i = 1, 2, 3, by the formulas (see [1, (98)])
Fl — _(Ll —|— L2 —|— L3), FQ — L1L2 + L1L3 —|— L2L3, F3 — —L1L2L3,

7 2 14 9 8 7
Fl_[o 9}’ FQ_[O 23]’ F3_[0 15} (80)

In Example 1, we constructed a controller that provides the similarity of the matrix of sys-
tem (19), (20) with the coefficients (76), (68)—(75) to the matrix (17) with the coefficients (80).
Thus, in Example 1, for system (19), (20) with the coefficients (76), (68)—(75), a controller is
constructed, which ensures the following property: The closed-loop system (19) is equivalent to
the differential equation (77) having the basis of solutions (79). In particular, the system (19)
(and the equation (77)) is exponentially stable.

we obtain that
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Conclusion

In this work, we have introduced the formulation of the problem of AMCA for CMP, for block
matrix bilinear control systems. This problem is a generalization of the problem of assigning the
scalar spectrum. Sufficient conditions have been obtained for resolving the problem of AMCA
for CMP, when the state matrix is a lower block Frobenius matrix, and the matrix coefficients at
the controller contain some zero blocks. The main result is a generalization of the corresponding
results of [3] obtained for block matrix linear control system closed-loop by linear static output
feedback. Special case is considered when blocks of the matrix coefficients are scalar matrices.
It is proved that the obtained sufficient conditions are generally not necessary. The main results
are demonstrated by an example. It is shown how the property of AMCA allows simultaneously
assign eigenvalues and eigenvectors for a linear multidimensional differential equation of higher
order equivalent to the original block matrix system.

Funding. The research was carried out with a grant from the Russian Science Foundation No. 24—
21-00311, https://rscf.ru/project/24-21-00311/.
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BECTHUK YIMYPTCKOI'O YHUBEPCHUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKH

MATEMATUKA 2025. T. 35. Bem. 3. C. 356-379.

B. A. 3aiiues, H.I. Kum

Ha3nauyeHue npou3BOJIbHBIX MATPUYHBIX KOI(P(UIHEHTOB 11 0JI0YHBIX MATPUYHBIX OUJIMHEHHBIX
cucreM ynpasjienus B ¢gopme ®podeHuyca

Kniouesvie crnosa: nuHeliHas aBTOHOMHAs CUCTEMa, HA3HAYCHHE CIIEKTPAa COOCTBEHHBIX 3HAUCHW, OWIH-
HelHas cucTeMa yIpaBieHHs, OJI0dHas MaTpUYHas CHCTEMA.

YIK 517.977, 512.643
DOI: 10.35634/vm250302

Pabota oTHOCHTCS K KJIaCCHUECKOH 3ajaue Ha3HaueHHsI CIIEKTpa COOCTBEHHBIX 3HaYeHUI. MBI paccMmarpu-
BaeM 3Ty 3a/1ady B 0000meHHo# moctanoBke. KoadduimeHTsI cucTeMBbl IBISAIOTCS OJOYHBIMU MaTPHIIAMH.
TpeOyeTcsi MOCTPOUTD PEryJIATOpP, KOTOPBIN Ha3HAYaeT 3aMKHYTOM CHCTeMe 3a/laHHbIe OJ0UHBIC MATPHYHbIE
KOA(GUIMEHTH XapaKTePUCTUYECKOTO MaTPUYHOTO MoiMHOMA. [ GIIOYHBIX MaTpUYHBIX OMIMHEWHBIX
CUCTEM YIPABIECHUS IOJIy4E€HBI JOCTATOYHBIE YCIOBHS Pa3pelIMMOCTH 3a1a4M Ha3HAYEHUS IIPOU3BOJIBLHBIX
MaTpUYHBIX KO3((UIIMEHTOB XapaKTePHCTUIECKOTO MaTPHYHOTO IMOJIMHOMA, KOTAa KOG (HUIIMEHTHI CHCTe-
MBI UIMEIOT CTICTIMAGHBIN BU, 8 IMEHHO, MaTPHUIIAa COCTOSTHUS SBJIICTCS HIDKHEH OrouHo# Marpurieit @po-
OcHuyca, a MaTpU4YHbIe KOI(PPHULUEHTHI P PETYISATOPE COAEPKAT HEKOTOpbIe HyJeBble Onoku. JlokasaHo,
YTO OCHOBHOM pe3yibTaT 0000IIaeT COOTBETCTBYIONIYIO TEOpEeMy Ml OJOYHON MAaTpPHYHON TUHEHHON CH-
CTEMBI YIpaBJICHUS, 3aMKHYTOH JIMHEWHON CTaTUUeCKoi o0paTHOM CBA3bIO MO BhIXOMy. [lokasaHo, yTo mo-
CTaTOYHBIE YCIOBUS HE ABISAIOTCS HEOOXOAMMBIMH. PaccMOTpeHs! yacTHbIe citydan. [IpuBeneHs! mpuMepsl,
WLTIOCTPUPYIOLIUE MOyYEHHBIE PE3YIbTaThL.

dunancupoBanme. VccienoBanne BHITONHEHO 3a cyeT rpaHTa Poccuiickoro Hayunoro ¢onma Ne 24-21-
00311, https://rsct.ru/project/24-21-00311/.
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