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Introduction

In Lyapunov’s stability theory there is a section called algebraic coefficient criteria. The whole
idea of such criteria is to establish the stability of an unperturbed motion without solving a system
of differential equations using the signs of coefficients and/or relations among them. In this paper
we apply a similar approach to equilibrium design in noncooperative linear-quadratic two-player
games. More specifically, based on the sign definiteness of the quadratic forms appearing in the
payoff functions of players, we will answer two questions as follows.

1) Do Berge and/or Nash equilibria exist?

2) How can we construct these equilibria?

In fact, the answers to both questions are concealed in the possibility of judging the existence
of a solution for a system of two matrix ordinary differential equations of the Riccati type that
is extendable on the time interval of a game. For solving this problem, we will employ dynamic
programming, the small parameter method and also Poincaré’s theorem on analyticity (conditions
under which a solution of a differential equation is analytic with respect to a parameter).

§ 1. Preliminaries

Consider a noncooperative differential positional linear-quadratic two-player game described
by
Iy = <{17 2} )2, {Ui}z‘:l,Q ) {JZ (U7 to, x0>}i:1,2>'
Here {1,2} is the set of players; the n-dimensional state vector x € R" of a controlled dynamic
system X evolves over time ¢ in accordance with the vector ordinary differential equation

T =A(t)r + uy +cua, x(to) = o, (1.1)

where t € [to, Y] and a terminal time instant ¢ > ¢, > 0 is fixed; the position of the game T'; at a
time instant ¢ is represented by a pair (t,z) € [to, 9] xR", where (o, o) denotes an initial position;
the elements of the system matrix A(¢) of dimensions n X n are assumed to be continuous on
0, 9], and this fact will be indicated by A(-) € C™*™ [0, 9)]; u; € R™ gives the control of player i;
e > 0 is a small parameter, and hence I's belongs to the class of differential positional games
with a small influence of player 2 on the rate of change 7(¢) of the state vector x(t).
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A strategy U, of player i is identified with an n-dimensional vector function w;(t, ) of the
form Q;(t)x, where Q;(-) € C™*"[0, ], and this fact will be indicated by U; + u;(t, z) = Q;(t)x.
The set of all such strategies is

The strategy profile of the game I'y is a pair U = (U;,U;) € U = Uy x Uy. Therefore, as his
strategy player ¢ has to choose a matrix );(¢) that is continuous on [0,9] (i = 1, 2).

A play of the game 1’5 is organized as follows. Based on his individual considerations (see the
payoff function J; (U, ty, zo) defined below), each player chooses and uses his strategy U} < u} =
= QI (t)x (1 = 1,2). As aresult, the system (1.1) takes the form

&= [A(t) + Q1(t) + eQ3(t)] =, x(to) = zo.
Such a homogeneous and linear (in variable x) system with continuous (in the variable ¢) coeffi-
cients has a unique continuous solution z*(¢) that is extendable to [to, V] Yty € [0,¢). Using x*(t)
we constructed the realizations uf[t] = uf(t,z*(t)) = Q;(t)x*(t) of the strategies U + QI (t)x
(1 = 1,2) chosen by the players. On such a continuous triplet {z*(¢), u}[t], us[t] | to < t < 9},
the payoff function of player i is a priori defined as a quadratic functional (i = 1,2):

9
Ji (U, Us , o, o) = [27(9)] Ciz™(9) +/t {(ui[t) Daui[t] + (u3[t]) Digus[t]} dt.  (1.2)

The value of (1.2) is called the payoff of player . In (1.2), the prime means transposition,
and the matrices C; and D;; of dimensions n x n are assumed to be symmetric without loss of
generality. Other notations involved include the following: 0, is a null n-dimensional column

vector; u; = (ugl),...,ugn)) e R"(i =1,2); V= (V,W); E, and O,,,, are the identity
and null matrices, respectively, of dimensions n X n; det B is the determinant of a matrix B of
dimensions n x n. In addition, the gradient of a scalar function W (¢, x, uy, us, V') with respect to

u; is given by

ow
ow [
grad, W(t,z,uy,us, V) = S :
Ui ow
8u§n)

The Hessian of W (t, z, uy, us, V') with respect to the components u; € R" under fixed values of
all other variables is a matrix of dimensions n x n of the form

82W Buz(.l)auz(.l) Buz(.l)auz(.n)
ou; PW o W
ou'™ oulV ou'™ ou™

For a constant and symmetric matrix D of dimensions n x n, the inequality D > 0 (< 0, < 0)
means that the quadratic form u;Du; is positive definite (negative definite, nonnegative definite,
respectively). A direct componentwise verification shows that, for a constant vector a € R",

0
'Du;) = (D 4 D')u,
aui(uz ul) ( + )u7

N (13)

(WD) =D+ D' ={if D= D'} =2D.

7
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For a scalar function W (t, z, u;), the denotation max,,, W (¢, z, u;) = Idem{u; — u;(t, x)} means
that

max W (t, z,u;) = W(t,z,u;(t,z)) Vtel0,9], zeR" (1.4)

and the identity (1.4) holds if

oW (t, x,u;)
8UZ‘

_0 PW (t, x,u;)
- vYny au2

w;(t,z) ) w;(t,z)

< 0. (1.5)

§ 2. Explicit solution of the Riccati matrix differential equation

Proposition 2.1. Let a matrix A of dimensions n X n and also constant and symmetric matrices
C' and D of dimensions n x n be such that A(-) € C"*"[0, 9] and

C<0,D<0.
Then the solution O(t) of the Riccati matrix differential equation
O+ OAlt)+ A1) —OD'O = 0,xp, OW) =C, (2.1)

has the form

9 —1
o) =X {C‘l - / X—l(T)D—l[X—l(T)]’dr} X1, (2.2)
where X (t), 0 < t < 9, satisfies the matrix system
X =At)X, X)) =E,. (2.3)

P r oo f The matrix linear homogeneous system (2.3) with continuous in ¢ coefficients has a
solution X (-) € C™*"[0,4] that is extendable to [0,v]; moreover, det X (¢) # 0 Vt € [0,9)],
because this matrix of dimensions n X n represents the fundamental system of solutions for the
ordinary differential vector equation & = A(¢)x. Then two implications are true,

[det X (t) £ 0Vt €[0,9]] = [3X'(¢) V¢ € [0,9]]

and

From (2.2) it follows that, at t = 4,
0) = E,{C ' 4+ Onxn}y 'E, = C.

It’s known that

Ol - yvpaw, x\W) = E,
i 9
D)), 0] - B

Denote by {-- -} the parenthesized expression in (2.2). In view of (2.4), (2.2) and [X~1(¢)] =
= [X"(t)]7! (see [9, p. 33]), differentiating both sides of (2.2) with respect to ¢ gives

d(?lit) [d[Xdi(t)]’} (X ) +
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+ [Xil(t)]/ [%{ .. }1:| Xﬁl(t) + [X71<t)]/{ o }71 X(;t <t)

=—A'O0) + (XTI} X OD XTI X)) - O A() =
=-—A'(H)O(t)+ () D 'O(t) — O(t)A(t).
The proof of Proposition 2.1 is concluded by the two chains of implications

[D<0]=[D"'<0= [X'n)D X ()] <0vre0,9] =

N |:/19X_1(7-)D_1[X_1(7')],d7' <0 Vte [0,0]] ,

{C <O/\/ X YD X 7)) dr <0 Vte[O,ﬁ]} =

[C +/ Xt (7)]’d7<0}
U

Remark 2.1. Equation (2.1) appears if a saddle point U° = (UY,UY) € U is designed using
dynamic programming:

J(U17 U27t07x0) J(Ui)u Ugat(]ux(]) J<U?7U27t07'r0>
V(to, xg) € [0,9) x R*, U; € U; (i = 1,2), in the zero-sum two-player modification of the
game FQ (i.e., the game FQ with C = Cl = —CQ, D = D11 = —DQQ, D12 = D21 = Oan and
J = J; = —J3). There exist several different types of the solution O(t), ¢ € [0,¥], of equation

(2.1), that are reducible to each other. (Recall that the solution ©(t) is nonunique.) We have
selected (2.2) due to its convenience for the small parameter method.

Proposition 2.2. Let A(-), B(-) € C"*"(0,9]. Then the solution of the matrix differential equa-
tion

O + OA(t) + A(1)O + B(t) = Opyn, 00 =C, (2.5)
has the form

o) =[X) {C+/t X'(1)B(T)X (1) dT} X(1), (2.6)

where X (t) is the fundamental matrix of solutions for the system

X =AWX, X©0)=E,.
P ro o f The matrix system (2.5) is linear in =, inhomogeneous and also consists of continuous
int € [0, 9] coefficients. For any t, € [0,), such a system has a unique continuous differentiable

solution O(¢) that is extendable to the interval [0, 9].
Finally, we will demonstrate that ©(¢) is given by (2.6). Really,

(X () = E,] = [det X(t) # 0Vt € [0,9]] = [3X'(t) Vt € [0,9]] .
In view of (2.4), differentiating both sides of (2.6) yields

O | o s e [0 300+
sy 28 - e - By - e Aw.

From (2.6) it follows that, at ¢t = v, ©(J) = E,CE, = C. O
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§ 3. No maxima in [’

The next result can be used to eliminate the linear-quadratic differential games I'y without
any Berge and/or Nash equilibrium, depending on the sign definiteness of the quadratic forms
appearing in the integrand of the payoff functions (1.2) of the players.

Lemma 3.1. Let the quadratic form u Dyyuy in (1.2) be positive definite. For any strategy profile
U* = (Uf,Uy) € U, where U + Qf (t)x (i = 1,2) and QI (-) € C™*™[0,V), any initial position

(to, zo) € [0,9) xR", xg # 0, and any constant and symmetric matrices Cy and D, there exists
a strategy Uy € Uy, Uy +~ Q1(t)x, of player 1 such that

LU, Ug) > J(UF, Us). (3.1)
P roof Consider some frozen strategy profile from U,
U™ = (U7, Uy) + (Qi(t)z, Qx(t)x) , Qi (-) € C™"[0,9] (i =1,2),

and also some frozen initial position (¢g, zo) € [0, ) x [R™\{0,}].
The proof of Lemma 3.1 includes two stages as follows. In the first stage, we will establish
the existence of a quadratic form V' (¢, z) = 2'O(t)x for which

Jl(Uika U;a th xO) - V(t07 :EO)-

In the second stage, we will find a strategy U, € U of player 1 that satisfies (3.1).
First stage. Following the dynamic programming method we construct the scalar function

W(t7$7u17u27v) 8V |:8V

/
- E + %} (A(t)l‘ + uq + €U2) + u'anul + U,2D12U2. (32)

For u; = Qi (t)x (i =1,2),

Wit,z, V] =W(t,z,u; = Qi (t)x,us = Q3(t)x, V) =
v v
ot Oz

Next, we solve the partial differential equation

} (A()z + Q1 (D) + eQ5()) + [Q1(t)=] D Qi (t)z + [Q5(1)x] D12 Q5(t)x.

Wit,z,V] =0, V(9,z)=2'Cz. (3.3)

The solution V' = V/(¢,z) is constructed in the class of the quadratic forms V (¢,x) = 2/O(t)x
with a continuously differentiable (in t) matrix O(t) of dimensions n X n, and this fact will be
indicated by O(-) € C}_ . [0,9].

Substituting V (¢, z) = 2’O(t)z into (3.3) and collecting similar terms at the n-dimensional
vector x € R" give

Wit V(t.0) = 20(0)e] = G + OOVAW + Q1) + Q300+

+ (A1) + (Q1(1) +e(@3(2))16(1) + [QT (1)) D@1 () + [Qé(t)]’DuQZ(t)}x =0,

'Oz = 2'Cyx.
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Both of these identities will hold if, for all ¢ € [0, 9] the matrix ©(¢) of dimensions n x n is the
solution of the linear inhomogeneous matrix differential equation

O + O'[A(1) + Q1(1) + eQ5(1)] + [A'(1) + (Q1(1) +e(Q5(1))]0 + B(t) = Opsn~ (3.4)
with continuous in ¢ elements and the boundary-value condition
o) = (Y, (3.5)
where the matrix

B(t) = Q1)) DuQi(t) + [Q5(1)] D12Q5(1) (3.6)

is continuous and symmetric.

By Proposition 2.2, the system (3.4), (3.5) has a unique continuously differentiable solution
© = O*(¢) that is extendable to any interval [ty, ] C [0,4]. Due to the symmetric property of
the matrices C' and B(t) from (3.6) and the explicit form (2.6) of ©*(¢), the matrix ©*(¢) will be
symmetric for all ¢ € [t,?].

Now, we will construct the realizations of the frozen strategies U + ul(t,z) = Q7 (t)x along
the solution x*(t) to the vector equation (1.1), i.e., we will construct u}[t] = QF(t)x*(t), t € [to, V]
(1 =1,2), where

dz*(t)
dt

— A1) () + Q5 (02" (1) + 2Qa(0)a" (1), @ (to) = o
In view of (3.3), it follows that
Wit,z*(t), V (¢, z*(t)) = [z* ()] O*(t)x* ()] = W*[t] = 0 (3.7)

for all ¢ € [ty, V] along the solution of (3.4), (3.5) and (1.1). Due to (3.5), we have V (¢, z*()) =
= [z*(0))' C12*(¥¥); then integrating both sides of (3.7) from ¢, to ¥ gives

0 _/ W*[t] dt = / {mfét .2) + [8‘/5;’ x)}/[A(t)x + Qi (t)x + Q5 (t)x] +

+WWW%@®+@WWM@®} g

r=x*(t)

:Z;M¥§E2ﬁ+éﬂ%mﬂmmﬂH@mﬂm&mﬁz

= V(0,27(0)) = V(to, x0) +/t {(uift]) Duyui[t] + (u3[t]) Drous[t]} dt =

= [27(0)] Cra™ (¥ / {(ui[t]) Duui[t] 4 (us[t]) Drgus[t]} dt — V (to, o) =

- Jl(Ul ) U2 ) tO) l’o) - V(t07 :EO)-
This directly leads to the equality

V(to, IL’Q) = $6®*(t0)l‘0 = Jl(U*, to, ZL’Q).
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Second stage. Consider the strategy U, + uy(t,z) = Pz of player 1, where a numerical
parameter 5 > 0 will be determined below. Due to the symmetry of the matrix D;; and the
condition D;; > 0,

u'anul 2 )\1”’&1”2 = )\1u/1ul Vul e R". (38)

Here ||-|| denotes the Euclidean norm and A; > 0 is the smallest root of the characteristic equation
det[D1; — AE,] = 0 [9, pp. 88, 109]; E,, denotes the identity matrix of dimentions n X n.

We will adopt the matrix ©*(¢), ¢t € [0,9], of dimensions n x n obtained in the first stage
of solving the problem (3.4), (3.5). (Note that the elements ©*(¢) are continuously differentiable
with respect to t). Taking inequality (3.8) into account, also we will use the strategy U; <+ Q5 (t)x
of player 2 chosen in the first stage.

In view of (3.8), following (3.2) we construct the function

Wit,z] = W(t, z,us(t, z) = B, us(t,x) = Qs(t)x, V(t,z) = 2'O*(t)z) =

ot ox
+ [y (t, )] Dt (t, ) + [u5(t, 2)] Diguy(t, z) >

_ V() | {8V(t, x>]’[ A(t)r + Ty (¢, 7) + cuj(t, ¥)] +

4O (t)
dt

— g;’{ d@d*t(t) + O*(t)[A(t) + BE, +eQ3(t)] + [A'(t) + BE, + £[Q5(1))']©*(t) +

/
=T

7+ 200 (D[A(t) + BBy + 2Qs(1)]x + /M B Euir + /[Q3(8)] Dis @) =

+ BB, + QO] DaQ3(0) o = M (1, 5)z
The parenthesized matrix M (t, ) of dimensions n X n is symmetric and has the form
M(t, 8) = MB°E,, + 260" () + K(t),

with the matrix

K(t) = 07(t) + 0 (1)[A(t) +£05(1)] + [A(t) +£05(1)]'O7(1) + [Q5(1)] D12@5(1)

of dimensions n x n.

The elements of the matrix M (¢, 3) are continuous in ¢ € [0, ¥J] and hence uniformly bounded
on the compact set [0,1]. The factor 3% appears in the diagonal elements of the matrix M (¢, 3)
only. As before, A\; > 0 is the smallest root of the characteristic equation det[D;; — AE,] = 0.

Therefore, the constant 5 = B(U;) > 0 can be chosen sufficiently large so that all leading
minors of the matrix M (¢, 5) become positive for all ¢ € [0,9] and for all 3 > B(U;). By
Silvester’s criterion [9, p. 88], the quadratic form a'M (¢, B)x is positive definite for all ¢ € [0, V]
and constants § > [(U;) because the sign of 2’ M (t, )« is determined by the sign of the quadratic
form B2\ 2'z.

We fix some constant 5* > 5(U;); then

Wit 2] = «/M(t, )z >0 Vte[0,9] VzeR"\{0,}. (3.9)
Denote by Z(t), t € [0, 9], the solution of the vector equation

T=At)x + " E,x +eQ5(t)x,  x(ty) = xo.
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Since [zg # 0,,] = [z(t) # 0, Vt € [ty, V)], according to (3.9) we have
WItLZEt)] >0 Vit € [ty, V]

Integrating both sides of this inequality from ¢, to ¥} and using the boundary-value condition
©*(¥) = C from (3.5) and also u[t] = SZ(t) we obtain

9 9 " " /
0< / Wit (1)) dt — / {‘Wé @) | {W( ’x)} Az + B*En:c+€@’2‘(t)x]} dt +
to to t Ox o=3(t)

9
+ [ {5 Dupre + Q1 DaQs(0a}| e =
to 2=3(t)
dv(t , .
- / { T dt+/ (Y Dy + (u311) Dyl di =
to
PIGED / {(@i[t]) Duaui[t] + (u3[t]) Drzus[t]} dt — V(to, x0) =
= (U1, U3, to. x0) — V(to, o).
In combination with J; (U, Uy, to, xo) = V(to, zo) this result finally proves Lemma 3.1. O

Remark 3.1. Consider the inner optimization problem in the game I';: find max J;(Uy, Us,
U1eUy

to, xo) subject to the constraint (1.1) with a fixed strategy U; € U, of player 2 and any (%o, ) €
€ [0,9] x [R™\{0,}]. In fact, Lemma 3.1 states that this maximization problem has no solution
for Dy; > 0 and zy # 0,. Indeed, whatever the strategy U; € U; of player 1 is, there always
exists a strategy U, € U such that

IOy, U3) > Jy(UF, Us)

for all (to, zo) € [0,7) x [R™\{0,,}]. This result can be used for eliminating the solution concepts
of the game I'; that maximize the payoff function of player 1 (e.g., avoiding Nash equilibrium
in the game I'y with Dy; > 0). By analogy with Lemma 3.1, we may demonstrate that the game
['s with D5 > 0 has no Berge equilibrium and hence the players should not choose this solution
principle for the game I'y; with D15 > 0.

§ 4. Formalization of equilibria and sufficient conditions

Definition 4.1. A strategy profile U¢ = (U, Us) € U is a Nash equilibrium in the game I'y if|
for any initial position (to, zo) € [0,9) x [R™"\{0,}],

maXJl(Ul,UQ,to,ZL’Q) Jl(Ue,tQ,l’o),

UieUy

anJQ(Ul,UQ,tO,ZEQ) JQ(Uevt()axO)'

Definition 4.2. A strategy profile U? = (UP,UP) € U is a Berge equilibrium in the game T'; if,
for any initial position (tg, zg) € [0,9) X [R”\{On}]

maXJl(Ul ,UQ,tQ,ZL‘Q) Jl(UB,tQ,I‘O),

Uz€U2

maXJg(Ul,UQ ,to,.’lﬂ'o) JQ(UB,tQ,SL’Q).

UieUy
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Remark 4.1. Despite the seeming similarity of these two types of equilibria, they have a deep
distinction as follows. Unlike Definition 4.1 expressing the selfish character of each player
(maximization of his own payoff), Definition 4.2 postulates altruism, guiding each player towards
the Golden Rule of ethics — “behave unto the opponent as you would like him to behave unto

2

you.

The sufficient conditions that guarantee the existence of a Nash equilibrium and a Berge equi-
librium in the linear-quadratic game under study (see below) are the result of applying dynamic
programming to Definitions 4.1 and 4.2 respectively. They were derived in the book [11, pp. 112,
124].

First, we introduce the two scalar functions

M/i(taxaulau% V)

ov; | [ov] .
==+ [&r} [A(t)x + uy + eug] + uy Diyuy + uyDigug (i = 1,2), (4.1)
where V = (V1, V5) € R,

Nash equilibrium

Proposition 4.1. Let VE(t,x) (i = 1,2) be unique continuously differentiable scalar functions
such that

19)
Ve, z) = 2'Cix Vo € R” (4.2)

20) Let ué(t,z,V®) (i = 1,2) be vector functions such that
max{Wi(t, z,uy, us(t,z,V°),V)} = Idem {u; — ui(t,z,V°)},

4.3
max{Ws(t, z,u{(t,x, V), us, V) } = Idem {uy — us(t,z,V°)} (4.3)

Jor all (t,x) € [0,9] x [R"\{0,}] and V¢ = (V¢,V§) € R~

3%) Let the functions V£(t, x) (i = 1,2) be the solution for the system of two partial differential
equations

Wi(t, z,uf(t,z, V), us(t,x, V), V) =0 (i=1,2) (4.4)
with the boundary value conditions (4.2) for all (t,z) € [0,9] x [R™\{0,}].
49) Let strategies UF + uS(t,x, Ve(t,x)) = utlt, z] be such that Uf € U; (i = 1,2).
Then

a) the strategy profile U¢ = (Ug,US) is a Nash equilibrium in the game Ty (in terms of
Definition 4.1)

b) the Nash equilibrium payoffs are

Ji(U 1o, xo) = Vi (to, m0) (i =1,2).
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Remark 4.2. In practice, a Nash equilibrium should be designed by constructing the scalar func-
tions W (t, z, u1, uz, V) (4.1) and proceeding with items 1°)-4%) of Proposition 4.1. More specif-
ically, letting Ve(t, z) = 2’O%(t)x, [©¢(t)] = ©%(t) (i = 1,2), we have to perform the following
steps.

Step 1. Using (4.2), find ©¢(9) = C; (i = 1,2).

Step 2. Based on (4.3) and (1.3)—(1.5), construct uf(t,z, V) (i = 1,2).

Step 3. Find the solution V¢(¢,z) (i = 1,2) for the system of two partial differential equa-
tions (4.4) with the boundary-value conditions (4.2).

Step 4. Check that u$[t, z] = u;(t, 2z, Ve(t,z)) = Q5(t)x and Q5(-) € C™"[0,9] (i = 1,2).

The resulting pair U¢ = (U, US) is a Nash equilibrium in the game I'; and the corresponding
payoffs of the players are J;(U®, to, o) = V(to, o) (1 = 1,2).

Berge equilibrium

Proposition 4.2. Let V.2(t,x) (i = 1,2) be unique continuously differentiable scalar functions
such that

1)
VB, ) = 2/Ciz Vo € R™ (4.5)

2%) Let uP(t,x,VB) (i = 1,2) be vector functions such that
max{W, (t, z,ul(t,z, V), uy, VE)} = Idem {uy — uZ (t, 2, VF)},
u2

4.6
maX{Wg(t,x,ul,uzB(t,x, VB), VB)} = Idem {u; — uf(t,x, VB)} (4.6)

for all (t,x) € [0,9] x [R"\{0,}] and VB = (VB V,B) € R%

3%) Let the functions V.B(t,z) (i = 1,2) be the solution for the system of two partial differential
equations

Wit z,uf(t,z, VE), ul(t,z, V), V) =0 (i=1,2) 4.7)
with the boundary-value conditions (4.5) for all (t,x) € [0,9] x [R™\{0,}].
49) Let the strategies UP +— uP(t,x, VE(t,x)) = uP[t, 2] be such that UP € U; (i = 1,2).
Then

a) the strategy profile UP = (UP,UP) is a Berge equilibrium in the game Ty (in terms of
Definition 4.2);

b) the Berge equilibrium payoffs are
JZ'(UB,tQ,.To) = V;B(t(],l’(]) (Z = 1,2) (48)
Remark 4.3. Like in the case of Nash equilibrium, a Berge equilibrium should be designed in
four steps corresponding to the items 1°) — 4%) of Proposition 4.2. As the functions V,?(t, z) we

should choose the quadratic form V2 (¢, z) = 2/©F (t)x, where [08(¢)] = ©F(t) for all ¢t € [0, V)]
(i=1,2).
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§ 5. Explicit form of equilibria
Nash equilibrium
Proposition 5.1. Consider the game 1"y with the matrices
D < O, Doy < 0, Cl < 0. (51)
If the system of Riccati matrix equations
Of + OFA(t) + A'(1)Of — O7D1 6 — 707 Dy 65 + 05D, 6f]
— £205D5,) D15D5,' 05 = Opypn, O5(9,¢) = O, (5.2)
05 + O5[A(t) — Dy Of] + [A'(t) — ©7D;']05 + '
+ 0D ' D1y D'0¢ — 205D 05 = Onvp,  05(0, ) = Oy,
has a solution (©%(t,c), ©5(t,€)) that is extendable to [0,V)], then in the game T's
a) the Nash equilibrium is given by
Ue= (Ulea UQE) - (_Dl_ll(ai(ta €)l‘, _€D2_21®;(t7 5)[[’), (53)
b) the Nash equilibrium payoffs of the players are
Ji(Ue,to,.To) = xg@?(toaf‘f)xo (Z = 172) (54)
Pro o f Following Remark 4.2 we construct the functions
ov;  [ovi]’ :
Wt o, ur,ug, V) = ot {8 } [A(t)x 4 uy + cug] + vy Diyuy + uyDigug (1= 1,2). (5.5)
x
Step 1. In view of (4.2) and V*(¢, x) = 2'O% (1),
Ve, x) = 2’050, e)x = 2'Cix Vx € R™\ {0,},
which gives
Of(v,e) =C; (i=1,2). (5.6)

Step 2. Due to (4.3),
max{ Wi (t, z,uy, us(t,x,V°), V) } = Idem {u; — ui(t,xz,V°)}.

This equality holds if, according to (1.3)—(1.5),

oW (t, x,uy, u§(t, z, V), Ve) _ove

Ouy wtaye 0T
82W, (t 5(t, 2, Ve), Ve
1( ,ZL’,ul,U22< ) )’ ) :2D11 <O,
8’1]/1 ul(t,m,Ve)

for any (¢, z) € [0,9] x [R"\{0,}] and V¢ = (V{, V¥) € R% By analogy,

OWs(t, x, u§(t, z, V), ug, V) _ 881/28 2Dt 3, V) = 0
Juy ua(t,2,V¢) Oz S "
PWo(t, z, us(t, z,Ve), uy, V°) 9D < 0
ous ua (t,2,V¢) ” ’

— 4 2D11U§(t, Z, Ve) = On,
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for all (¢,x) € [0,9] x [R"\{0,}] and V¢ = (V¢, V) € R
The second and fourth relations are true by (5.1). Using the first and third relations, we find

1., dve L OVE

Ui(t,l‘, Ve) = _§D1_11 %7 U;(t,l‘, Ve) = _§D221 % (57)

Step 3. We write the two partial differential equations (4.4), with the boundary-value condi-
tions (5.6) to find the two scalar functions V(¢, ) (i = 1,2):

0=W7[t,x, V] = Wi(t,z,ui(t, z, V), us(t,x,V°), V) =

- aavf i _88‘;16}/ A - §D”1 8826] 22 {%]/D” aav i

i {88‘;1 ] D aa‘;l % {aa‘ﬂ/D”lD”D”l % B
- [aa‘;l Dii 88‘;1 %lavﬂl% D”D”l%’ |
W;[t,x,V-] = Wa(t, z, ui(t, z, Ve) u2(t x, V), Ve) =

i [88126: ,DﬁlDﬂDﬁl % "1 {aaze},%l aavf =0

In view of (1.3) and Ve(t x) = :c @e( )z, we obtain the gradients a‘f — 20¢(t)z and 2 Z =

=7 djtz T Substltutlng o ci and " into (5.8) and collecting like terms with the pairwise products

of the components of the n- dlmensmnal vector z, we arrive at the equations

doy

e + OA(t) + A'(1)0% — ©SD'e% +

Wt x, Ve = {

[~ 010565 — O5D61 + 65D DaDR 5] o =0,

dos

- HO3A(L) + A'(£)65 — O Dy Dy D16 -

Wilt,z, V] = x {

— 05D 168 — 52@§D2_21®§}x =0
with the boundary-value conditions
Vi(0,x) = 2'05(0,e)x = 2'Ciz (i =1,2).
The identities WE[t, x, Ve(t,x2)] = 0 for all (¢,z) € [0,9] x [R"\{0,}] (: = 1,2) hold if the

system of Riccati matrix equations (5.2) has a solution (©¢(t,¢), ©5(¢,¢)) that is extendable to
the interval [0,4)]. The condition C; < 0 ensures the existence of a solution of the first equation

from (5.2) for ¢ = 0.
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Step 4. Using the obtained solutions (O(¢,¢),05(¢,¢)) and (5.7) we find the two n-
dimensional vector functions

utlt, v] = uy(t,z, Ve(t, 7)) = —D'©%(t, e)x,
uglt, x] = us(t, z, VE(t,x)) = —eDyy O5(t, €) .

Since D;'©5(-,¢), eDy'O5(+,e) € CL..,[0,7], the Nash equilibrium in the game T'y will have

the form (5.3), and the Nash equilibrium payoffs of the players will be given by (5.4). 0J

Remark 5.1. In the case D;; > 0 and/or D5y > 0, by Lemma 3.1 at least one of the two maxima
from Definition 4.1 is not achieved for any z, # 0,,. Really, assume on the contrary that, e.g., in
the case Dq; > 0 there exists a strategy U; € U; of player 1 such that, for 2y # 0,

max Jl(U17 U2ea th ZEQ) - Jl(ﬁla U2ea tO) xO)'

U,€U;

Then, according to Lemma 3.1, for the initial position (to,z) € [0,9) x [R™\{0,}] there also
exists a strategy U; € U; for which

LU, U3) > J(UF, Us),

which contradicts the whole essence of the operator Inax. Thus, we have established the follow-
1€Us

ing result: if Dy; > 0 and/or D4y > 0, then there exists no Nash equilibrium in the game I's for
any initial position (g, zg) € [0,9) x [R™\{0,}]).

Berge equilibrium

We will utilize Remark 4.3, repeating Steps 1-4 from Remark 4.2, with appropriate modifica-
tions dictated by Proposition 4.2.

Proposition 5.2. Consider the game 'y with the matrices
Dy < O, Dy < 0, CQ < 0. (59)
If the system of Riccati matrix equations

OF + OF[A(t) — D05 + [4'(t) — ©F Dy 1ef +
+ 08D, D1 D;'ef — 208D el = 0,,,, P, =0y,

OF + OFA(t) + A'(1)0F — 05Dy 0F + [-0F8D,)of — o7 Do + 10
+ 08D} Dy DLOF] = Onirey ©F(0,6) = Cs,
has a solution (©8(t, €),08(t, €)) that is extendable to [0,V)], then in the game Ty
a) the Berge equilibrium is given by
UP = (UP,U7) + (—Dy' 0% (t,e)x, —e D1, ©7 (t, €)x); (5.11)

b) the Berge equilibrium payoffs of the players are

Ji(UB o, 20) = 2,02 (tg, e)ze (i = 1,2). (5.12)
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Pro o f Following Remark 4.3, we construct the two scalar functions (5.5).
Step 1. In view of (4.5) and V.B(t,z) = 2’08 (¢)z,

OF(W,e)=C; (i =1,2). (5.13)
Step 2. Due to (4.6), using (1.3)—(1.5) we write

8W1(t,{[’,U1B(t,ZE, VB)7u27VB) 8‘/1

ugy wnlta V) T PPl V) =00
PWi(t, v, uf (t, 2, VP), up, VP) = 2Dy < 0 and

duj ua (t,m,VB)
OWa(t, 2, uy, uy (t, 2, VP), V7 _ OV 2Dy uf (t,z,VP) =0

Ouy i (t,z,VE) S or ' "
PWo(t, z, uy, ul (t, 2, VB), VB) 9D < 0

(’3u% u (t,@,VB) “ ’

for any(t, ) € [0,9] x [R"\{0,}] and VZ = (VB V,B) € R%
The second and fourth relations are true by (5.9). Using the first and third relations, we find

1, ovP
uB(t,z,VP) = —§D;11 8—;12:’ ul(t,z, VP) = —%szl

ovp
ox

(5.14)

Step 3. Substituting (5.14) into (4.7), we obtain the system of two partial differential equations
with boundary conditions (4.5):

0= WlB[t,a:, VB] = Wl(t,x,uf(t,x, VB),uzB(t,:L’, VB),VB) =

_ P TavPY LoV e avP
= o +[8x Alt)z 2D21 or 2P g |t
L[ovPY o oV 2 TavEY VP

_ v oV LIoVPY ) 1 Yy
S fW)*z 2] patouna 52 -

1 B! B B’ B

ov,B

2 Or 83: 12 or ’
0= WQB[t,x, VB] = WQ(t,x,u{B(t,x, VB),uf(t,:L’, VB),VB) =
oviE  TovPY 1, oV,F & ovP
= Alt)\x — =D, —— — — —
8t+{8x W= 5D - =5 P 7| +

1 [oV. ovE &2 [ovBY] oVB
+Zl 2}D1 2 _i_%[ 1]D121D22D121 1

0 2 on ox ox
_ovP ToviPY 1 [av2] . ovy”
= o {8x AWz =7 || P *
e [oVEY o L ovE e TovPY L ovP
T [ ox } Dry DanDry dr 2| Ox D12 or
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Letting V.2 (¢, ) = 2/05(1) a;/f = 205(t)x, we demonstrate that due to (5.13) the previous
equalities hold if ©F(t,¢) (i = 1,2) are the solutions of the system (5.10). Using the resulting
solution (©8(t,¢),08(t,¢)) of the system (5.10), the explicit form of the functions V.2 (¢,z) =
= 2’08z and gradients % = 2081 as well as the inclusions D,'OF (- ¢), eD3 OF(-,¢) €
C}L.,10,9] we finally prove (5.14). Note that the relations (5.12) are true according to (4.8). O

nxn

Remark 5.2. By analogy with Remark 5.1, we can establish the following result: if D5 > 0
and/or Dy > 0, then there are no Berge equilibria in the game I'y for any initial position

(to, z0) € [0,9) x [R™\{0,.}].

§ 6. Application of small parameter method

Poincaré theorem

Thus, Propositions 5.1 and 5.2 have showed that the presence of Berge and/or Nash equilibria
is connected with the existence of a solution for the corresponding systems of two matrix ordinary
differential equations of the Riccati type that can be extended to the entire interval [0, ] of the
game. As a matter of fact, the existence of solutions in a small left neighborhood (9 — 9, 9] of the
point ¢ = 1 is guaranteed by general existence theorems from the theory of ordinary differential
equations. The question of the extendability of such solutions to the entire interval [0, ] of the
game remains open. In this section, we will try to answer it using the small parameter method.
This method arose in connection with the three-body problem in celestial mechanics; it dates
back to J. D’Alembert and was intensively developed starting from the end of the 19 th century.
Further, from the numerous theoretical results on the small parameter method [3, 4], we will
use Poincaré’s theorem on the analyticity of solutions with respect to the parameter. It will be
formulated for the matrix system of ordinary differential equations

O =Z(t,0,¢), O,e)=C. (6.1)

The notations are the following: © in a matrix of dimensions n x n; =(t,0,¢) in a matrix of
dimensions n X n whose elements are functions of the variables ¢, ©, and ¢; € in a small parameter
such that 0 < ¢ < gp, where ¢( is a small number; C' in a constant matrix of dimensions n X n;

€ [0,9] in continuous time. The elements of the matrix =(¢, O, ¢) are assumed to be defined
and continuous on domain G, ¢ € [0, 0. Denote by © = O(t, <) a solution of (6.1) that satisfies
the boundary value conditions ©(v,¢) = C, (9, ¢) € G. Together with the system (6.1), consider
the system

0 =Z(t,0,0), O,0)=C, (6.2)

which is obtained from (6.1) for ¢ = 0. Let © = ©()(t) be a solution of (6.2) defined on
t € [0, 9] with the same boundary-value condition © () = C'. For a small value ¢, the right-hand
sides of these systems are close to each other.Then a natural question is: how do the solutions of
the systems (6.1) and (6.2) differ on the entire interval [0,]? By the theorem on the continuous
dependence of solutions of combined ordinary differential equations on the parameter, generally
these solutions are close to each other too. Moreover, if there exists a unique solution ©()(#)
of the system (6.2) and the elements of =(¢, 0, ) are holomorphic (analytic) for 0 < e < &,
0 = 00)(t), t € [0,9)], then for a sufficiently small value ¢ the solution of (6.1) can be written
as the series

O(t,e) = 0O (t) + Za%<m
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which has uniform convergence on the entire interval [0,9]. This fact is the core of Poincaré’s
theorem.

Among general theorems from the theory of differential equations, also we will employ the
theorem on the continuous dependence of solutions on the parameter; see below.

Theorem 6.1. Let the right-hand side of system (6.1) be continuously differentiable with respect
to the elements of the matrix © and also continuous in € on the domain G. Then for a sufficiently
small value € > 0, the solution ©(t,€) of system (6.1) is well-defined on the same interval |0, V]
as the solution of system (6.2).

Nash equlubrium

We will demonstrate that the existence of a solution (O5(t,¢), ©5(¢,¢)) of the system (5.2)
that is extendable to [0, ] is a superfluous requirement of Proposition 5.1 in the case of a small
value ¢ > 0. In other words, it can be neglected for sufficiently small values ¢ > 0. More
specifically, we will establish the following result.

Proposition 6.1. Consider the game I's with the matrices
D < 0, Dyy < 0, Cy <0.

Then for sufficiently small values ¢ > 0 the game 'y has the Nash equilibrium (5.3) and the
corresponding payoffs of the players are given by (5.4).

P r oo f Proposition 6.1 can be proved by demonstrating that the system (5.2) with sufficiently
small values € > 0 has a solution (O5(¢, ), ©5(t,€)), t € [0, ], that is extendable to [0, ¥].

To this end, we will utilize Theorem 6.1. For (5.2), we construct the null approximation by
letting € = 0. In this case, the system (5.2) is decomposed into two subsystems of matrix ordinary
differential equations. One of them belongs to the Riccati class whereas the other is linear in @g‘”:

6 + 0 A1) + A1)e — 0D e = 0., 00w =qy,

of + e () - pite| + 4w - e | o + (6.3)
+ 0 D' DD O = 0, 08 (0) = Co.

For Dy, < 0, C; < 0 and A(-) € C™"[0, 9] the solution ©'” (¢) of the first part of the sys-
tem (6.3) exists, is continuous and extendable to [0,%], symmetric (0" (1)) = ©\”(t)) and
negative (©\”) () < 0) for all ¢ € [0,4] and has the form

-1

9
00 (1) = X () {c;l v X-1<T>D;3[X-1<T>]'dr} X1(0), (6.4)

where X (¢) denotes the fundamental matrix for & = A(t)z, X () = E,; see Proposition 2.1. In-
corporating this matrix @§°> = @50) (t) into the second part of the system, we obtain the following

matrix linear inhomogeneous differential equation in @g‘”:

of + e [ - Dol )] + 4w - e t)D;t] ef +

(6.5)
+ 0D D1 DO (1) = O, OV (9) = O



V. 1. Zhukovskiy, L. V. Zhukovskaya, S. N. Sachkov, E. N. Sachkova 617

Since ©\”(:) € €1 [0,9], A(-) € C™*"[0, 9], for any constant matrix C5 of dimensions n x n

equation (6.5) has a continuous and extendable to [0, 9] solution of the form

9
o) = X0 {ee+ [ X @B (arf X0 (6.6)
t
with the continuous and symmetric matrix
By(t) = €/ (1) Dy Dix Dy €17 (1).

of dimensions n x n; see Proposition 2.2. From (6.6) and the symmetry of Cy and B(t), it
follows that (6.6) holds for any ¢ € [0,9] (like in (6.4), X (¢) denotes the fundamental matrix).
Consequently, the system (5.2) with ¢ = 0 has a continuous and extendable to [0, ] solution

(@@(t), @g)) (t)). Therefore, by Theorem 6.1 the system (5.2) with sufficiently small values
e > 0 also has an extendable to [0, )] solution (O9(¢,¢),©5(t,¢)). And Proposition 6.1 directly
follows from Proposition 5.1. 0

Berge equilibrium

Like for Nash equilibrium, we will demonstrate that the existence of a solution (©8(¢,¢),
©B(t,¢)) of the system (5.10) that is extendable to [0, 1] is a superfluous requirement of Propo-
sition 5.2, which can be replaced by the smallness of ¢ > 0.

Proposition 6.2. Consider the game 1"y with the matrices
Dy < 0, Dy < 0, Cy < 0.

Then for sufficient small values £ > 0, the game 'y has the Berge equilibrium (5.11) and the
corresponding payoffs of the players are given by (5.12).

Proof As before, using Theorem 6.1 we will prove that the solution of the system (5.10)
is extendable to [0,7]. By analogy with Proposition 6.1 we construct the null approximation

(é@ (1), (:350) (1)) by letting ¢ = 0 in (5.10). As a result, the system (5.10) is decomposed into the
two subsystems of matrix nonlinear differential equations

(0 ~ ~ ~
6, +60 A(t) - D8] + [aw) - 8Dy | B +

+ 00 D3 Dy D3O = O, O (9) = 4, 6.7)
. (0) - - . - -
0, +0V41) + A1) —0V DY = Opkn,  OV(W) = Cs.

For Dy; < 0 and Cy, < 0, the solution (:350) (t) for the matrix system of Riccati differential
equations (the second equation in (6.7)) exists, is continuous and extendable to [0, ¢J], symmetric

([égo) )] = égo) (t)) and negative (ég‘” (t) < 0) for all ¢ € [0, ] and has the form
-1

89 (1) = [X (1)) {02_1 + [xony [X—1<T>J'dr} X(0). 6.9)

Incorporating the solution é§°> = é§°> (t) into the first part of (6.7) we obtain the following matrix

linear inhomogeneous ordinary differential equation in é§°>:
(0~ ~ ~ ~
6, +8 [A(t) - D8 ()] + [4() - & (1)Dy!] & +
+ 6 (1) Dy Dy D3 OV (1) = O, O (9) = O
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In view of the inclusions (:jg () eC}

1 nl0,9], A(+) € C™*™[0, Y] and Proposition 2.2, the explicit
solution is given by

9
59 (1) = [X~'(1)) {01 + [ X @BeIX () df} X1(8), 6.9)
t
with the continuous and symmetric matrix
By(t) = O (1) D3 D11 D365 (1)

of dimensions n x n.

Clearly, the continuous matrix ©\” (t) of dimensions n x n is well- deﬁned for all t € [0, 9]
and symmetric. Hence, for ¢ = 0 the null approximation (é(o (t),0 (t)|t € [0,9]) of the
solution (0% (), 0F(t,e)|t € [0,9]) of the system (5.10) is extendable to [0,4]. By Theorem
6.1 the system (5.10) W1th sufficiently small values ¢ > 0 has an extendable to [0,)] solution
(©B(t,¢),02(t,2)). And Proposition 6.2 directly follows from Proposition 5.2. O

§ 7. Coefficient criteria of existence

This section is devoted to the coefficient criteria of the existence (and nonexistence!) of
Nash and/or Berge equilibria (in terms of Definitions 4.1 and 4.2 respectively) in the differential
positional linear-quadratic game I'; with a small influence of one player on the rate of change
x(t) of the state vector (). In the game I's the state vector evolves in accordance with the vector
linear differential equation

T =A(t)r +up +eua, x(ty) = o,

and the payoff function of player ¢ is described by the quadratic functional

9
Ji(Ul,UQ,to,xo):x’(ﬁ)C’ix(ﬁ)Jr/t ([ Diyunlt] + [ D]} di (i = 1,2),

where z, u; € R". As before, the prime indicates transposition. The strategy set of player ¢ has
the form

U, = {U; =+ ui(t,2) | w(t, z) = Qi(t)z VQ(-) € C™*™(0, 9]} ;

the game ends at a fixed time instant J > ¢, > 0; the symmetric constant matrices C; and D;;
of dimensions n X n are given; the notation D > 0 (< 0) means that a quadratic form 2’ Dz is
positive definite (negative definite, respectively); € > 0 is a small scalar parameter. The players
choose their strategies U; + Q;(t)x, find the solution a:( ) of the system equation

&= A(t)r + Qi(t)r +eQa(t)z, x(to) = 0,
construct the realizations u;[t] = Q;(t)x(t) of the chosen strategies U; and then calculate their
payoffs J;(Uy, Us, to, xo) using x(t) and w[t].
In the noncooperative statement of the game I'; the players have to answer two questions as
follows.

1. Which of the solution concepts (Nash or Berge equilibrium) should they adhere to?

2. How can these equilibria be constructed?
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The answer to the first question is provided by Table 1. Here NE and BE denote Nash and
Berge equilibrium, respectively; 3, /4 and V are the existential, non-existential and universal
quantifiers, respectively. Proposition 6.1 and 6.2 as well as Remarks 5.1 and 5.2 are combined
in Table 1, which presents the coefficient criteria of choosing (or rejecting) Nash and/or Berge
equilibrium in the game I's.

For example, if D15 < 0, Dy < 0, C5 < 0 then there exists a Berge equilibrium; if
simultaneously Doy > 0, then there does not exist a Nash equilibrium (see columns 2 and 7 of
the table below).

Table 1. Coefficient criteria of equilibrium

Dy Dy D3y Do Ch Cs NE | BE
1 D11<0 Y v D22<0 Cl<0 Y 3
2 W Dy, <0]| Dy <0 W W CQ<0 3
3|1 D1 <0 Dia<0]| Dy <0 Dgg <0 Cl<0 Cg<0 = 3
4| Dy >0 v v v v v A
5 v Dy >0 v v v v A
6 v v D21 >0 v W A /H
7 v v v [ Dp>0| ¥ v | A

The answer to the second question is based on Poincaré’s theorem; see the beginning of
Section 6. More specifically, we have to consider not only the null term (¢ = 0) of the matrix

expansion
)+ ng@<m>

but also the subsequent ones O (t), O@)(¢t), .. .. ThlS approach will be illustrated by an example
of Berge equilibrium design for the game I's: we will find the solution of (5.10) and then
construct the strategies (5.11) and the corresponding payoffs (5.12). In view of ©5(t,e) =

=0V ) + 101 (1) + 20 (¢) + ... and (5.10), we have

O(t,e) = 00t

O + 16 +20%) + .. )+ (8 + ol + 20 1. )A®) -
— D' O 40V + 200 + . )]+
+ (A1) — (0P +ete)) + 0P +.. ) Dy (0 + el + 207 + .. ) +
+ (6 el + 200 + .. .)D;fDHD;1 O + el + 209 + .. .) - 7D
200 +etol) +20P + .. )D5 O + ol + 207 +..) = Opxn,
(0 (W) + 'O W) + O (W) +..) = 1,
(O + 0 + 260 +..) + (8 +£'6f) + 20D + .. A1) +
+ A6 +e'0) + 20 +..) —
— (0 + 10l + 0P +.. )Du (0 + 0P + 200 + .. +
0 ol 4 529(2 L) - (7.2)

+e2[— (0 + el 1)+52®(2 +..)Dyl 6!
—© +c'el! + 20 +..)DE (O + el + 20 + .. ) +

+ (0% + el + %0 2>+ ) D53 Doy D (04" +51@11>+52@§2 +..)]
O @) + 'O () + 207 (9) +...) = C,.

Oan)
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According to the proof of Proposition 6.2, the null approximations @EO) (t) (i = 1,2) satisfy the
system (6.7) and have the explicit forms (6.8) and (6.9) respectively, where (:)Z(O)(t) = @§°>(t)
vVt € [0,9], (i = 1,2). Equalizing the terms with the factor £ in (7.1)~(7.2), we obtain the
following system of two matrix linear homogeneous differential equations with time-continuous
coefficients to calculate the first approximations:

(6 1 gl [A(t) — Dytel (t)] - [A’(t) - oy (t>Dzﬂ o +

+ 63y D31 [Dn D30 (1) — 01 (1) + [0y (1) Dy Dy — €17 (1)] D51105” = O,
01" (9) = O,

oV + eV [A(t) — D;'el (t)] + [A’(t) - @éo)(t)Dz_f} 05 = O,
05 (¥) = O

\

Obviously, it has the trivial solution
0 (1) = 6% (t) = Opxn Vit € [0,0). (73)

Now, equalizing the terms with the factor €2 in (7.1)—(7.2) and using (7.3), we derive the fol-
lowing system of two matrix linear inhomogeneous differential equations with time-continuous
coefficients to calculate the second approximations @?’ (t) and @f) (t):

o + 6 [A(t) - Dol ()] + |4t — o ()Dy!] of +
+ 65Dy (D11 Dy 05 (1) = O ()] + 65" (1) Dy Dy — 0 (1)) = (74
— 0 )DF O () = Onsn, O(9) = O,

o +6f (1) - Dol )] + |4 - o ()Dy']| O +
+ 0 Dy Do D0 (1) — 0L (1) DO (1) — 0 (1) DR OP (1) = Oy (7.5)
02 (9) = Opxn.

We find the explicit-form solution of (7.4)—(7.5). First, using Proposition 2.2 we construct the
solution (952) (t) of the second matrix equation from (7.4)—(7.5). For this purpose, we write the
fundamental matrix Y (¢) for the vector differential equation (y € R"):

y=[A(t) - DR'OY )]y, Y() = E,.

According to Proposition 2.2 the solution of (7.5) takes the form

9
o2(t) = [y (1) { [ yoreve) dr} Y1),
where
L(t) = " D, Dy, DR 0V (1) — 0 (1) D, o (1) — 0" (1) DR 03 (¢).

Substituting @f) = 952)(75) into (7.4) we obtain a matrix linear inhomogeneous differential equa-
tion with the null boundary-value condition. Its explicit solution @?’ (t), like the solution of the
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second equation from (7.4) is found using Proposition 2.2. Finally, with the resulting approxima-
tions @Z(])(t) (j=0,1,2; i = 1,2), (3.3) and (3.4) the Berge equilibrium in the game I'; can be
written as

UP = (UE,UP) + (—Dy [0 (1) + 205 (1)]z, —e D15 [0 () + 207 (1)]2).

(The accuracy is up to the second approximation.) The corresponding payoffs of the players are
given by
J(UP 1, 20) = 2|0 (tg) + 2017 (o)),

Jo(UP 1, 20) = 2 [0F (ty) + 205 (to)] 0.

Concluding this paper, we suggest that the solution of any game (in particular, I's) should be
described by a pair

(US = (Uls7 UQS)7 JS = (J1<Usat07'r0)7 J2(Usut07x0))) :

In this case, a strategy profile U determines the behavioral rules of the players, and J° their
payoffs gained.

Finally, we point out that the approaches set out in this paper can be applied to investiga-
tions of multicriteria problems [13], non-cooperative (Nash and Berge equilibrium, equilibrium
of objections and counter-objections) [10, 11, 15], cooperative (the Shapley value and C-core,
etc.) [6-8], hierarchical (Stackelberg equilibrium, Hermeyer equilibrium) [1,2, 5] and coalitional
(coalitional equiulibrium) [6, 12] positional differential games.
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B. U. Kykoeckuii, JI. B. ZKykoeckasa, C. H. Cauxos, E. H. Cauxosa
Ilpumenenne meroga Mmajioro mnapamerpa JlsmyHoBa-Ilyankape Il NOCTpOeHHSl PaBHOBeCHs
no Hamy u Bep:ky B onHoil nuddepeHnnanbHoil urpe AByX JIMI

Kniouegvie crosa: merox manoro napamerpa, auddepeHunansHas THHEHHO-KBagpaTniHas 0eCcKoaTInOH-
Has urpa, pasHoBecue no Hamy, paBHoBecue no bepxy.

YIK 517.928.3, 519.62
DOI: 10.35634/vm230405

Mertoxn manoro mapamerpa IlyaHkape akTUBHO NpHMEHsieTcsi B HeOECHOW MeXaHUKe, a TakKe B TCOPUH
muddepeHnnaIbHbIX YPaBHEHNH U B €€ BKHOM paszielie — ONTHMAaIbHOM yTpaBlieHHH. B mpemmaraemoit
CTaThe JAHHBIA METON HCHONb3yeTcs JUId NMOCTPOEHHUs SBHOTO BHMJa paBHoBecus no Hamry u bepxky B
Qg depeHnraIbHON MO3UIIMOHHON UTpe ¢ MaJIbIM BIUSHHEM OIHOTO M3 WTPOKOB Ha CKOPOCTh M3MEHEHUS
(a3oBoro BeKTOpA.
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