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PURE PHASES OF THE FERROMAGNETIC POTTS MODEL WITH ¢ STATES
ON THE CAYLEY TREE OF ORDER THREE

One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there
are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model
with ¢ states possesses, at sufficiently low temperatures, at most 29 — 1 translation-invariant splitting
Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures
form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points
of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs
measures for the ferromagnetic g-state Potts model on the Cayley tree of order three. We define the regions
where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description
of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one
Gibbs measure.
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Introduction

Dobrushin’s groundbreaking work established the existence of Gibbs measures for a broad
class of Hamiltonians (see, e. g., [[-4]). Nonetheless, it is frequently a challenging task to fully
description the collection of Gibbs measures for a particular Hamiltonian.

The Gibbs measure is often unique for small values of § (high temperatures) (see [3-5]),
reflecting the physical fact that at high temperatures there is no phase transition. It is important
to note that the analysis at low temperatures requires certain assumptions about the form of the
Hamiltonian.

It is known that the Gibbs measures for continuous Hamiltonians form a non-empty, convex,
compact subset in the space of probability measures (see Chapter 7 in [2]). Pure phases corre-
spond to extremal measures. Extremal measures, which corresponds the extreme points of this
set, determine pure phases. Notably, the set of splitting Gibbs measures includes extremal mea-
sures (see [2, Chapter 11]). Nevertheless, at even lower temperatures [6-9], the Gibbs measure
corresponding to the free boundary condition loses its extremality. It remains extremal inside an
intermediate temperature interval below the transition temperature. As a result, each of this set’s
extremal elements must be identified in order to fully characterize it.

The main purpose of this work is to study the extreme measures which correspond to pure
phases of the set of Gibbs measures for the Potts model. Extremal Gibbs measures are crucial for
understanding all possible local behaviors of the biological and physical system (see [10, 11]).

In [12, 13], phase diagrams of the g-state Potts models on Cayley trees (Bethe lattices) were
studied, and pure phases of the ferromagnetic Potts model were identified. Applying these re-
sults, uncountably many pure phases of the 3-state Potts model were constructed in [14-16].
These investigations were based on a measure-theoretic approach developed in [5]. In [17], the
translation-invariant splitting Gibbs measures (TISGMs) for the ferromagnetic Potts model with
q states were thoroughly described, and it was demonstrated that their number is equal to 29 — 1.
The problem of the extremality of these measures in the case on the Cayley tree of order two was
studied in [18].
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The works [19] and [20] were devoted to the study of Gibbs measures for the Potts model, in
particular, they give explicit formulas for TISGMs for the ferromagnetic Potts model with three
and four states on the Cayley tree of the third order; and in [20,21] regions were found the (not)
extremes of these measures. In the present paper, we generalize these results to arbitrary spin
values.

The TISGM of the antiferromagnetic Potts model with an external field was shown to be
unique in [22]. The Potts model with a nonzero external field and a countable number of states
was the focus of [23]. It was established that this model possesses a unique TISGM.

In the papers [21,24-30] periodic and weakly periodic Gibbs measures were considered. In
particular, in [29] it was shown that all periodic Gibbs measures are translation-invariant (TT)
under certain conditions. In [27] it was shown that all periodic Gibbs measures are TI for the
ferromagnetic Potts model with ¢ states on the Cayley tree of order k.

In this paper, we generalize the results of [20,21]. In particular, explicit formulas for the
TISGM are obtained for the ferromagnetic Potts model with ¢ states on the Cayley tree of order
three, and the regions of (non) extremality of these measures are found.

§ 1. Notations and definitions

The Cayley tree 3* = (V, L) of order k > 1 with the root 2° is an infinite tree, i.e., a graph
without cycles such that exactly £ + 1 edges originate from each vertex. Here V' is the set of
vertices and L is the set of edges. The vertices x and y are called nearest neighbors if there
exists an edge [ € L connecting them where [ = (x, y). The distance on the Cayley tree, denoted
by d(x,y), is defined as the number of edges of the shortest path between the vertices x and y.

We consider the following sets

Wy={zeV|dxa")=n}, Vi=|]Wa

For x € W,,, we define the following set
S(l‘) = {yl € Wn+1 | d([[’,yz) = ]_, 7= 1,2,. . ,k?}

The set S(x) is called the set of direct successors of .
The (formal) Hamiltonian of the Potts model is defined as

H(U) =—J Z 50(3&)0(3/)7 (11)

where J € R is the coupling constant, the spins o(x) take values in the set & = {1,2,...,q},
q > 2, and ¢;; is the Kronecker symbol (see [3]).

In this paper, we restrict ourselves to the case of ferromagnetic interaction J > 0.

For z € V\{2°} — hy = (h1a,...,hgs) € RY, 2 € V, we define the (finite-dimensional)
Gibbs distributions by the following formula

tn (o) = Z;l exp {—ﬂHn(Un) + Z ;Lg(me} , (1.2)

zeWy,

where 3 = 1/T, T > 0 is a temperature, Z,, ! is the partition function and H,,(0,,) is the restriction
of Hamiltonian on V,.
The probability distributions (1.2) are compatible if for all ,,_; € ®'"~! one has

Z Mn(anfl \ Wn) = /~Ln71<0-n71)7 (13)

Wn, €<I>Wn
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where 0,1 V w, is the concatenation of the configurations. Under condition (1.3), by the well-
known Kolmogorov’s extension theorem, there exists a unique measure p on ®V such that, for
alln € Nand o, € &,

p{o v,=0n}) = pn(on),

and we call it a splitting Gibbs measure (SGM)! corresponding to the the Hamiltonian (1.1) and
vector-valued function }sz, x €V (see [14]).

The compatibility condition is satisfied if and only if, for any z € V\{z°}, the following
vector identity holds (for more details we refer the reader to [3]):

he =Y F(hy,0), (1.4)

y€S(w)

where F: h = (hy,...,hy 1) € R — F(h,0) = (F,...,F, 1) € R7 ! is defined as

q—1
(0 —1)exph;+ > exph;+1
F;=In =

q=1 ’
6+ > exph;
J

=1

6 = exp(JB3), S(x) is the set of direct successors of x, and h, = (hy 4, ..., he 1.) € RI™! with

hi,m:ili,x_hq,x7 ’lzl,,q—l

For any h = {h,, x € V} satisfying (1.4), there exists a unique SGM g, and vice versa.
It is known [2, Theorem 12.6] that any extremal Gibbs measure of a Hamiltonian with nearest-
neighbor interactions is a splitting Gibbs measure (or tree-indexed Markov chain [2]). This
implies that a phase transition occurs if and only if equation (1.4) has multiple solutions.

§ 2. Description of translation-invariant Gibbs measures

A translation-invariant splitting Gibbs measure (TISGM) corresponds to a solution £, of (1.4)
with b, = h = (hy,...,hy—1) € R7! for all z € V. In this case Eq. (1.4) reads h = kF'(h,0).
Setting z; = exp(h;), i = 1,...,q — 1, we can rewrite the last equation as

q—1 k
J

=1

2 = L i=1,...,q—1. 2.1)

q—1
0 + Z Zj
j=1

The following results were obtained in [17].
1. The solution of Eq. (2.1) allows us to completely describe the set of TISGMs and shows
that any TISGM of the Potts model corresponds to the solution of the equation

(9+m—1)z+q—m)k’ 22)

mz+q—m—1+486

O

for some m =1,...,[q/2].

'The measure is called a Markov chain in Ref. [2]
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2. There are values 6,, = 6,,(k) that are critical for changing the number of TISGMs
(at k = 2, there is an explicit equation 6,,(2) = 14+2y/q-m —m?), m =1,...,[q/2]. If 6 < 6y,
then for £ > 2 and J > 0, there exists a unique TISGM.

3. If z(m;) is a solution to (2.2) for m = my, then z7!(m,) is also a solution to (2.2) for
m =q— mq (see [17, Lemma 1, p. 193]).

Note that zp = 1 is a solution to Equation (2.2). For £k = 3, 6 > 1, dividing (2.2) by z — 1
and introducing the notation /2 = x, we have

o) =ma*— (0 - 12> - (0 —1)ax+q—m=0. (2.3)

In [19] it is shown that the equation (2.3) does not have a solution for § < 0..(m,q), has
one solution except zp = 1 for § = 6..(m,q) and has two solutions different from zy = 1
for 0 > 6.,(m, q). Here 6.,(m, q) is a solution of ¢'(z*) = 0 and

£ (0.m) = 9—1+\/(9—322+3m(9—1).

Formulas for calculating 6,,.(m, q¢) = 0,, were presented in [17] (see formulas (3.17), (3.13)),
and in [19]. Using these formulas for £ = 3, it was obtained

may+q—m

O.-(m,q) = 1, 2.4
(m, q) - + (2.4)
where
& 8a8+\/(3_20‘0)\/2a _6+j‘n_q 1 Y/m(8m?2 — 12mgq + 4¢?) + m
o = - =, Qo = .
2+/ 20 2 2m

Remark 2.1. We note that

— 1in [19], all solutions of equation (2.2) are described for k£ = 3, ¢ = 3 (see [19, Proposition 1,
p. 1655));

— 1in [20], all solutions of equation (2.2) are described for &k = 3, ¢ = 4 (see [20, Proposi-
tion 3.2, p. 121)).

Let £k = 3 and 6 > 1. For each fixed m and ¢, we find solutions of Eq. (2.3) using Cardano’s
formula. To do this, we set + = y + (0 — 1)/3m and rewrite (2.3) in the form

y* —p(t)y + s(t) =0, (2.5)
where
)= Lt 3m), () =@ rom) + L= g—1—t (t>0)
p "~ 3m?2 M) s\ = 27Tms3 m m a ’

According to Cardano’s formula, Eq. (2.5) has three real roots for § > 6,,:

pt) ¢(t) Yy = 2 pt) ¢(t) + 27 p(t) ¢(t) + 47

y1 =2 7-(:05?, 5 - COS 5 , Y3 =2 5 - COS 3 ,
where
s(t) B+ 3m)3 7
= - ) t) = ) [_7 ]
cosolt) = 5 v 1) =Y o(t) € [Zim
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It is easy to see that ys is negative for ¢ > 0. Then the equation (2.3) has only three positive
solutions

0 ) 1\, q, 3m Y1, 2!, q, 3m Y3

If 0 = 6,,, then 1 (t, ¢, m) = x2(t,q, m), and the equation (2.5) has two solutions.
Summarize, we have three translation-invariant solutions z; = 1 and

3
27 3(t+2\/ (t+3m) - cos—),
4

T 3(t+2\/ t—i—3m cos + W).

Remark 2.2. Note that the above solution is a particular case of Theorem 1 in [17]. Here, we
give explicit formulas for the solutions corresponding to TISGM in the case k = 3, m < ¢/2.

21 (tu q,m )

ZQ(t7 q,m )

Denote ¢,,, = 0,, — 1 > 0.
Proposition 2.1. Let k = 3 and q > 2m. Then the inequality t,, > m holds for i,,.
Proof Dueto (2.4), we have

mad +q—m

O — 1=ty = -
v+

After some algebras, we can obtain t,, > m. Equality is fulfilled only for § = 0., (t = t..), that
is, it is achieved for ¢ = 2m and z* = 1. 0]

Proposition 2.2. Let k = 3, ¢ > 4, t > 0 and t., = q/2. Then, for the above-mentioned
solutions z(t,q,m) and z5(t,q, m), the following statements hold.:

(1) 1 < z1(t,q,m) = 29(t, q,m), if t =ty (L # ter);

(1) zo(t,q,m) = 1, if t = to,;

(1ii) 1 < 29(t,q,m) < z1(t, q,m), if tyy, <t < tep;

(1v) z1(t, q,m) is an increasing function, and z3(t,q, m) is a decreasing function with respect
to t.

Proof (i) Lett = t,. In this case, it is known that equation (2.5) has a unique positive
solution, i.e., 21 (tm, g, m) = z2(t;m, q,m). Then,

P(tm) cos O(tm) +4m 1
3

It follows that

Zl(tM7Q7m) = ZQ(tm7Q7m) -

1 5 3
tn + Vit ) .
27Tm? ( + (tm + 3m)

Due to Proposition 2.1, we have t,,, > m for ¢t # t.,. It follows that

tm +\/ (tm + 3m) m—|—3m)_1

3m

(1) Forg >4 and t = ¢/2 (i.e., 0 = q/2 + 1), we rewrite equation (2.3) as follows:

m(x—l)(x2+x+1)—g(xz—l)—g(x—l):(:E—l)(mx2+(m—g)x+m—q) = 0.
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Hence, we have two positive solutions

q/2 —m+ /¢4 + 3gm — 3m?

=1 (1 c., 22(‘907“) = 1) and = = 2m

(i.e., 21(0cr) = x3).

(7ii) At first, we prove that z5(t,q, m) < z,(t,q,m) for t,, < t < t.,. We have

2Bt +3m) . 6(t)+2r

\3/21 (tv q, m) o \?)/ZQ(t7 4, m) - 3m - s 3 >0,

¢+ 2w

since € [bm/6;m).

On the other hand, z3(¢,q,m) is a decreasing function for ¢ > t,, with respect to ¢ (see
below (iv)). Taking into account z5(t..) = 1, we have that 1 < zy(¢,q, m) for t,,, <t < t,,.

(1v) To prove that z;(t,q, m) (resp. z2(t,q,m)) is an increasing (resp. decreasing) function

with respect to ¢, it suffices to show that 2/ (¢, q,m) > 0 (resp. z5(t,q, m) < 0).

t
First, let us show that the function ¢(t) = arccos (—ﬁ) is decreasing. Indeed,

2r(t)

r(t) S(t)r(t) —r'(1)s(t)
42(t) — s2(1) r2(t) ’

where

s(t) = — v (2t +9m) + —n r(t) = —M.

m N 27m3

Then, ¢'(t) < 0, since

Sre) — sy () = — Lm0l —5@; NN

Therefore, ¢(t) is decreasing. Consider the derivative 2/ (¢, g, m):

z1(t, ¢, m)*? 2043m  ¢(t) 2 . o)
21(t,q,m) = - 1+ \/mcos 5~ gsin T(b'(t)\/t? +3mt .

Note that ¢/(t) < 0. It implies that 2| (¢,q, m) > 0, i.e., z1(t, ¢, m) is an increasing function with
respect to ¢.
Now consider the derivative z(¢, g, m):

t,q,m)?/? 2t + 3m o(t)+4m 2 . o(t) +4n
25(t, ,m:L~ 1+ Cos — —sin ———¢/(t)Vt2 + 3mt ).
(g,m) = 20 LI o ADEAT 2 AT )

We have 21T € [37r /2;5m/ 3]. As a result, z5(t, ¢, m) is a decreasing function with respect to ¢

o(t) +4
3

since ¢'(t) < 0 and sin T <0 (see Fig. 1). O

Remark 2.3. From Prorosition 2.2 it follows that z;(6,q,m) > 1 (resp., z2(0,q,m) > 1) for
any 0 > 0,, (resp., 0. > 0 > 0,,,), and 25(0,q,m) < 1 for 6 > 0..,.
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Fig. 1. Graph of the function z5(0, q,m) for ¢ = 4, m = 1 (dashed), ¢ = 5, m = 2 (solid) and
qg =17, m = 3 (dotted)

§ 3. The problem of extremality of the translation-invariant measures when k& = 3
Following [18], to check the extremity of the Gibbs measure, we apply arguments of a recon-

struction on trees [31-33].
By the symmetry of the Potts model, for each fixed m < [¢/2], we reduce the study of
. €T = Y ) AR 0)5

extremality to at most three TISGMs: 1, which corresponds to the solution A, = (0,0, 0
m), ima(6,q, m), which correspond to the vectors

and two TISGMSs 4,1 (0, ¢,
hy =h; = (Inz;,Inz,. ..,lnzl,0,0,...,Q), hy, = hy = (anQ,anQ,...,an%,Q,O, . ..,Q),
q—m m q—m

where z; = 21(0, q,m), 2o = 22(6, g, m) are solutions of the equation (2.1).
Thus, for each fixed value of m, all TISGMs can be categorized into three distinct classes

— The first class contains only g.
— The second class includes all measures that match vectors derived from permutations of /i,

coordinates.
— The second class includes all measures that match vectors derived from permutations of A,

coordinates.
Remark 3.1. Note that, in case m = ¢/2, the solutions h; and hs define the same TISGMs after

a relabeling of indices and a re-normalization of A,
Forl = (z,2,...,2,1,1,...,1) the TISGM corresponding to a vector I € R? is a Markov
qg—m
chain with the states {1,2,...,q} (see [18]) and the transition probability matrix P

L exp(JBd;j)

7 )
> 1 exp(JBoi)
r=1

Py =
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This expression gives

(02/7,, it i=j die€{l,...,m}

z/Zy, if i#j4, d,j€e{l,...,m}

o 1/Zy, if ie{l,....m}, je{m+1,...,q} G0
Y 2/Zy, if ie{m+1,...,¢},je{l,...,m} '
0/Z,, if i=j, ie{m+1,....q¢}

\1/Zy, if i#34, d,je{m+1,...,q¢},

where
Zi=0+m—1)z+q—m, Zy=mz+60+qg—m—1. (3.2)

Let us first give some necessary definitions from [34]. We consider the finite complete
subtree 7, containing all initial points of the semitree F’;o. The boundary 07 of the subtree of its
vertices, which are in I'%, \ 7. We identify the subtree 7 with the set of its vertices. The set of
all edges A and 0A is denoted by E(A).

In [34], the key values are « and . These parameters define the properties of the set of the
Gibbs measures {7}, where the boundary condition 7 is fixed and 7 is the arbitrary initial com-
plete and finite subtree in I'%,. For a given initial subtree 7 of the tree ', and the vertex = € T,
we write 7, for the (maximum) subtree 7 with the initial point at z. If x is not the initial point
of the T, then the Gibbs measure is denoted by ;3- where the “ancestor” = has the spin s and
the configuration at the lower boundary 7, (i.e., on 07, \ {x}) is given in terms of 7.

For two measures p; and po on €2, we introduce the distance

I = e = 5 3|l (e) = i) = palor(@) = ).

Let n™° be the configuration 7 with the spin at z equal to s.
Following [34], we define
s’

k= k() = sup max ||y, — i lls 7 =(p) = sup max || — p)
xelk ;8,8 ACT*

T

where the maximum is taken over all boundary conditions 7, all y € 0A, all neighbors x € A of
the vertex y, and all spins s,s" € {1,...,q}.

A sufficient condition for the Gibbs measure ;1 to be extreme is the inequality (see [34,
Theorem 9.3])

kr(p)y(p) < 1.
Note that « has the simple form (see [34])

1
K= E%XZ@—W. (3.3)
’ !

The constant v does not have a clean general formula, but can be estimated in specific models
(as Ising, Potts, hard-core, etc.). For example, if P is a symmetric matrix of the Potts model (or
the matrix corresponding to the solution z = 1), then v < g% (see [34, Theorem 8.1]).

Using formulas (3.1) for ¢ # j and (3.3), we obtain (see [18])

| a, ifi,j=1,...,m,
§Z|PZI_P]1|: b7 1fl7]:m+177q7
=1 cm, Otherwise,



M. T. Makhammadaliev 507

where a, b, and ¢,, are defined as

_(0—-1)z -1
o= b=—F

1
. em= ﬁ(z‘@—{“/E‘+‘1—0{“/§|+(z(m—1)+q—m—1)‘1—\’“/Z|>,
1
and Z; and Z; are given by (3.2). Obviously,

max{b, ¢ }, if m=1,
K =
max{a,b,c,,}, if 2<m <[q/2].

We consider the case z # 1 (where z = 2® and z are solutions of (2.1)). We take
(z,2,...,2,1,...,1) as the fixed solution of Eq. (2.1) and let P be the corresponding matrix.
——

Now, let us simplify c,, based on z > 1. From (2.3), we obtain

0—1 0—1 —
p= 8 a—m (3.4)
m m m

Using (3.4) for z > 1, after simple algebras we get

(m — 1)(0 — 1)222/3 + (m(92 9t q—m)— (0 1)2)z1/3 —(g=m)((m—1)0+1)

m221

Cm =

In particular, form =1 and z > 1,

(0+q—2)2"2— (¢ —1)
Cc1 = .
A

Using (3.4) for z < 1, after simple algebras we get

0213 — 1

Cm
Zy

1/3

Let us show that ¢; > b for m = 1 and z > 1. Indeed, ¢; > b is equivalent to z*/° > 1. Now we

show that b > ¢; for m > 1 and z < 1. Indeed, b > ¢; is equivalent to 1 > z'/3. As a result,
at m = 1 we have
if >1
s . 225 (3.5)
b, if z<1.

Ifm >2and 2 > 1 (z > 2'/3), then a > b; if z < 1 (2 < 2/3), then b > a. Let us show
that @ > ¢,,. Indeed, under the condition (3.4) we get

B(0,q,m) = (0 —1)2223 + (92—(m+2)0—m(q—m—1)+1>21/3—(q—m)(ﬁ—m—l) > 0.

Note that, for any 2 < m < ¢/2 and ¢ > 4, the function ¢(6, ¢, m) > 0 (see Fig. 2).
As a result, for m > 2, we have:

if z2>1
k=4 70 (3.6)
b, if z<1.
At z =1, we get
0—1

/{:m.
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2500 1
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Fig. 2. Graph of the function ¢(6, ¢, m) for ¢ = 4, m = 2 (dotted), ¢ = 6, m = 3 (dashed) and
q = 10, m = 4 (solid)

3.1. Conditions under which the measure is not extreme

It is known that, for the Gibbs measure corresponding to [P to be non-extremal, it is sufficient
that the inequality kA\?> > 1 (the sufficient Kesten-Stigum condition) is satisfied where \ is the
second eigenvalue in absolute value of the matrix PP (see [31]).

Corollary 3.1 (see [18]). Let m < [q/2]. Then the matrix P determined by formula (3.1) has the
following eigenvalues:

{{17b7 A2 (P)}, lf m =1, (3.7)
{1,a,b, \o(P)}, if m>2,
where s

O Ul N et Y SO Ak et ) ) G

Z Zy Z

Denote by A the second eigenvalue in absolute value of the matrix P.
For m = 1, from (3.7) and (3.8), after some algebras we obtain

- (b it 2<1
x=14" AR (3.9)
)\Q(P), if z>1.

For m > 2, we obtain

v b, if 1
A:{> moz<4 (3.10)
a, if z>1.
In particular, for z = 1 we have
v 0—1
A= ——. 3.11
0+q—1 31D

Remark 3.2. The explicit forms of z;(6, ¢, m) and 25(6, ¢, m) are bulky. Therefore, below we
use some estimations for inequalities.
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Fig. 3. Graph of the function 3X, — 1 for z () (left) and for z,(f) (right), in the cases ¢ = 4
(dashed), ¢ = 10 (dash-doted), ¢ = 100 (doted) and ¢ = 113 (solid)

Conditions of non-extremality of the measure /0. Let us first derive the condition of
non-extremality. For this, we use the Kesten-Stigum condition (3A% > 1). From (3.11), we have

0—1

fo 01
0+q—1

As a result, we get
3( -1 >2>1
0+q—1 '

The positive solution to the last inequality is

3+1
V3 -

0>0= 5

Thus, the measure 1 is non-extreme for 6 > d.

Conditions of non-extremality of the measures 11, and 115 for m = 1.

Case z > 1. According to Proposition 2.2, z(f#) > 1 for § > 6, and z(0) > 1
for 0, < 0 < 0,,. Then, from (3.9), we get A = A\y(P) and the corresponding inequality 3A% > 1
has no solution. We assume that the converse is true, i.e., 3A2 < 1. The last inequality is
equivalent to

V3(0 = ¥/z)2

<1
Z

Using (3.4), we rewrite the last equation as follows:
(0= 0)2 + (0 —-V3)(0—1) —V3(g—1))"* + (V3+1-0)(g—1)>0.  (3.12)

It is clear that (3.12) is valid for 4 < g < 6. For 6; < 0 < q and z = z(#), the inequality (3.12)
always holds. At the same time, for 4 < ¢ < 113 and z = 2,(f), the inequality (3.12) is
appropriate (see Fig. 3). It means that the measure yq; is obviously extreme for # > #; and the
measure /12 18 obviously extreme for #; < § < 6., and 4 < g < 113.

Case z < 1. In this case, inequality 32 > 1is equivalent to

h(0) = (V3—=1)(0—1) —qg+1—2(6) > 0.

The explicit form of z is bulky. Thus, we use some estimations. If we replace =z with 1, then we
get that hy(0) > 0 for § > 6. Therefore, the measure ji15 is non-extreme for 6 > 6.
Conditions of non-extremality of the measures /,,; and 2 for m > 2.
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Case z > 1. According to Proposition 2.2, 2(f) > 1 for 6 > 0,, and 2,(f) > 1
for 6,, < 0 < 0,,.. For m > 2, from (3.10), we find A\ = a. Then, inequality 3a® > 1 reads

((\/3—1)(9—1)—771>2>q—m.

If we replace z with 1, then we obtain (v/3—=1)(0 — 1) > ¢. This implies # > 0. Thus, the
measure /i,,; is non-extreme for 6 > 6. y
Case z < 1. In this case, from (3.10), we find A = b. Then, inequality 3b*> > 1 reads

V3H —1)>mz+0+q—m—1.

If we replace z with 1, then we have (V3 —1)(0 —1) > ¢. This implies § > 6, i.e., the
measure [i,,2 1s non-extreme for 6 > 6.

3.2. Conditions of extremality of measures

Conditions of extremality of the measure 1,o. Now let us check the condition of extremality
(kr(u)y(r) < 1). In this case, we obtain x = zi—27 for 2 = 1. Then, for v < §75, the
condition kx(u)y(p) < 1 reads

20 — (¢ +6)0+4—q<0.

The solution of the above inequality is

1 1
—<q+6—\/q2+20q+4) <9<Z(q+6+\/q2+20q+4).

4

Note that, for ¢ > 4, inequality ¢ + 6 — \/¢? + 20g + 4 < 0 holds. As a result, the measure i is
extreme for 1 < 6 < 0V, where

1
o) :Z<q+6+\/q2—|—20q—|—4>.

Conditions of extremality of the measures 1117 and 1i15.
Case z > 1. In this case, from (3.5), we get k = c. Then, the condition 3x(u)y(u) < 1 reads:

30 —-1)((0+q—2)2"—(g—1)) < (@ +1)(0z+q—1).
Using (3.4), for m = 1 and after some algebras, we have
0(0 +1)2%3 + (0> =204+ 6 — 3¢)2"/% — (¢ — 1)(6 — 2) > 0.

If we replace z with 1, then we have 20? — g + 4 — ¢ > 0, and the positive solution to the last
inequality is

1
0> 62 — Z(q+\/q2+8q—32>.

As a result, the measure i, is extreme for 6 > 02 and the measure [t12 18 extreme for
02 < 6 < 4,,.
Case z < 1. In this case, we obtain x = b. Then, inequality 3x(x)y(u) < 1 reads

30-12<@+1)(z+0+q—2).
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If we replace z with 0, then we have 26% — (¢ + 5)0 — (¢ — 5) < 0, and the positive solution to
the last inequality is

1
O < 0 < 0P = Z(q+5+\/q2+18q—15).

Therefore, the measure j115 is extreme for 6, < 6 < 0®). This implies that the measure 15 is
extreme for 2 < § < O,

Conditions of extremality of measures i,,; and p,,» for m > 2.

Case z > 1. In this case, from (3.6), we find that xk = a. Then, from (3.5), we find that x = a.
As a result, the extremality condition 3ay < 1 is equivalent

(20 — (m+6)0+4—m)z < (¢ —m)(0 + 1).

If the leading coefficient in the LHS of last inequality is negative, then the inequality is satisfied.
In this case, we get

1
0<0(4):Z<m+6+\/m2+20m+4>.

Therefore, the measures /i,,1 and ji, are extreme for 6,, < 6 < 0.
Case z < 1. In this case from (3.6), we get that K = b. As a result, the extremality condi-
tion 3by < 1 is equivalent to

3012 <O+ (mz+0+qg—m—1).

If we replace z with 0, then after some algebras we obtain

1
0<0(5):Z<q—m+6+\/m2—2mq+q2—20m+20q+12).

This implies that the measure /i, is extreme for 6,, < 6 < 64,
Thus, the following theorem holds.

Theorem 3.1. Let k = 3, ¢ > 4 and J > 0. Then the following statements hold:

(1) the measure i is extreme for 1 < 0 < 0 and is non-extreme for 0 > 0;
(2) the measure i1, is extreme for 6 > 0%):

(3) the measure 1,5 is extreme for 0% < 0 < 0©®) and is non-extreme for 6 > 0;

Z

v

(4) the measure [i,, is extreme for 0,, < 0 < Y and is non-extreme for 0

(5) the measure iy is extreme for 0,, < 0 < 0©) and is non-extreme for 6 > 6,

where
RVEES| 1 1
0:f2 q+1, 8(1):Z(q+6+\/q2+20q+4>, 0(2):Z(q+\/q2+8q—32>,
1 1
9(3):Z(q+5—|—\/q2—|—18q—15), 9(4):Z(m+6+\/m2+20m+4>,
G _1(,_ 7 7
0% = (g m+ 6+ \/m? — 2mq + ¢2 — 20m + 20q + 12).

Remark 3.3. In Theroem 3.1, we obtain the regions of extremality and non-extremality for fer-
romagnetic Potts model with ¢ states. Due to technical complexity, these results may be not
sharp.
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Yucteie ¢a3pl ¢peppomaruutHoii moneau Ilorrca ¢ ¢ cocrosHusiMim Ha JepeBe Kanm Tperbero
nopsaKa

Kniouegvie cnosa: nepeso Konu, kondurypauus, mogens [lorrca, mepa ['mb06ca, TpaHCISIHOHHO-UHBAPH-
aHTHasi Mepa.

YK 517.98
DOI: 10.35634/vm240403

Wzyuenne QazoBoro mepexona SBISETCS OJHON W3 LEHTPAJbHBIX MPOOJIEM CTAaTHCTUYECKOW MEXaHUKH.
OH TPOUCXOTUT, KOTa JJIsT MONIEIH CYIIIECTBYIOT IO KpaifHe# Mepe nBe pa3inmuHbie Mephl | m60ca. M3Bect-
HO, 4TO It peppoMarHuTHON Moxpenu [loTTca ¢ ¢ COCTOSHUSMU NP JOCTATOYHO HU3KHUX TEMIIEpaTypax
cymiecTByloT He Oomnee 29 — 1 TpaHCIANMOHHO-WHBAPUAHTHBIX paclielieHHbIX Mep ['nb6ca. s Hempe-
PBIBHBIX TaMWJIBTOHHAHOB Mepbl [100ca 00pa3yroT HEmycToe, BBIMYKJIOE, KOMIIAKTHOE MOJAMHOMKECTBO
B IIPOCTPAHCTBE BCEX BEPOSTHOCTHBIX Mep. DKCTPEMAalbHBIE MEPHI, KOTOPHIE COOTBETCTBYIOT KpaWHUM
TOYKAM DTOTO MHOXKECTBA, OMPEIEISIOT YUCTHIC (a3bl. MBI M3ydaeM 3KCTPEMATBHOCTh TPAHCISITMOHHO-
WHBapUAHTHBIX paciieruieHHbIXx Mep ['nboca mns deppomarnutHoi momenu [loTTca ¢ ¢ cocTosHUSMU
Ha jgepeBe Kamu Tperhero mopsmka. Mbl ompenenseM 007acTH, B KOTOPBIX H3ydaeMble TPaHCISIIHOHHO-
WHBapuaHTHBIC Mepbl ['m0O0ca ais 3TOW MOIENU SBISIFOTCS IKCTPEMATbHBIMU HIIM HE SIBIISIOTCS 3KCTpe-
MaJbHBIMHA. MBI cBOIUM ommcanue Mep ['mb0ca K pereHnio HeMMHEHHOTO (PYHKIIMOHAIBHOTO YPaBHEHHUS,
Ka)JI0e PellIeHUEe KOTOPOro COOTBETCTBYET OIHOM mpezienbHol Mepe [uboca.
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