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Introduction and background

The concept of statistical convergence was developed by Fast [21] and Steinhaus [35] inde-

pendently in the year 1951. The notion of natural density plays a prime role in the statistical

convergence of sequences. If A ⊆ N, then the natural density of A is denoted and defined by

δ(A) = lim
n→∞

1

n

∣

∣

∣

{

k ≤ n : k ∈ A
}

∣

∣

∣
,

where the vertical bars indicate the cardinality of the enclosed set. A real valued sequence

x = (xk) is said to be statistically convergent to the number x0 if for each η > 0,

δ
(

{

k ∈ N : |xk − x0| ≥ η
}

)

= 0.

Later on, statistical convergence was further investigated and worked from the sequence space

point of view by Fridy [23,24], Šalát [34], Tripathy [37,38], Connor [15], and many others [3–6,

26].

In an attempt to generalize the notion of statistical convergence, in 2012 Özgüc and Yur-

dakadim [30] generalized natural density to quasi density and statistical convergence to quasi

statistical convergence as follows.

Let A be a subset of N. The quasi-density of A is given by

δc(A) = lim
n→∞

1

cn
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∣

{

k ≤ n : k ∈ A
}

∣

∣

∣
,

where c = (cn) is a sequence of real numbers satisfying the following properties:

cn > 0 ∀n ∈ N, lim
n→∞

cn = ∞ and lim sup
n

cn
n

< ∞. (0.1)

It is clear that, for any two subsets A and B of N,

δc(N \ A) + δc(A) = 1 and A ⊆ B implies δc(A) ≤ δc(B).
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A real valued sequence x = (xk) is said to be quasi statistical convergent to a real number x0

if for each ε > 0,

δc

(

{

k ∈ N : |xk − x0| ≥ ε
}

)

= 0.

Here, x0 is called the quasi statistical limit of the sequence x and symbolically it is expressed as

xk

stq
−→ l. For cn = n, quasi density reduces to natural density and quasi statistical convergence

turns to statistical convergence. For more information on quasi statistical convergence, one may

refer to [25, 29, 39].

In another direction, Phu [31] introduced and investigated the concept of rough convergence

in finite dimensional normed spaces. It should be noted that the idea of rough convergence

occurs quite naturally in numerical analysis and has interesting applications there. In 2003,

Phu [32] further investigated the notion of rough convergence in infinite dimensional normed

space setting. Combining the notion of rough convergence and statistical convergence, in 2008,

Aytar [10] developed rough statistical convergence. But Akcay and Aytar [2] were the first who

introduced and investigated the notion of rough convergence of a sequence of fuzzy numbers.

For extensive study in this direction, one may refer to [7–9, 11, 16, 18, 28], where many more

references can be found.

On the other hand, in 1965, the notion of fuzzy sets was introduced by Zadeh [40] as one

of the extensions of the classical set-theoretical concept. These days, it has wide applications

in different branches of science and engineering. The term “fuzzy number” is important in the

study of fuzzy set theory. Fuzzy numbers were essentially the generalization of intervals, not

numbers. Indeed fuzzy numbers do not obey a couple of algebraic properties of the classical

numbers. So the term “fuzzy number” is debatable to many researchers due to its different

behavior. The term “fuzzy intervals” is often used by many authors in place of fuzzy numbers.

To overcome the confusion among the researchers, in 2008, Fortin et al. [22] introduced the

notion of gradual real numbers as elements of fuzzy intervals. Gradual real numbers are mainly

known by their respective assignment function whose domain is the interval (0, 1]. So, every real

number can be thought of as a gradual number with a constant assignment function. The gradual

real numbers also obey all the algebraic properties of the classical real numbers and have been

used in computation and optimization problems.

In 2011, Sadeqi and Azari [33] were the first to introduce the concept of gradual normed

linear space. They studied various properties from both the algebraic and topological points of

view. Further development in this direction has been taken place due to Ettefagh et al. [19, 20],

Choudhury and Debnath [12, 13], and many others. For an extensive study on gradual real

numbers, one may refer to [1, 17, 27, 36].

§ 1. Definitions and preliminaries

In this section, we present some definitions, notions and results that will be exclusively used

in the subsequent section. Throughout the paper, we use c = (cn) to denote a real valued sequence

which satisfies (0.1).

Definition 1.1 (see [22]). A gradual real number s̃ is defined by an assignment function

Rs̃ : (0, 1] → R. The set of all gradual real numbers is denoted by G(R). A gradual real number s̃
is said to be non-negative if, for every 0 < ϑ ≤ 1, Rs̃(ϑ) ≥ 0. The set of all non-negative gradual

real numbers is denoted by G∗(R).

Definition 1.2 (see [22]). Let ∗ be any operation in R and suppose s̃1, s̃2 ∈ G(R) with assign-

ment functions Rs̃1 and Rs̃2 respectively. Then, s̃1 ∗ s̃2 ∈ G(R) is defined with the assignment
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function Rs̃1∗s̃2 given by

Rs̃1∗s̃2(ϑ) = Rs̃1(ϑ) ∗ Rs̃2(ϑ), ∀ 0 < ϑ ≤ 1.

In particular, the gradual addition s̃1 + s̃2 and the gradual scalar multiplication cs̃ (c ∈ R) are

defined as follows:

Rs̃1+s̃2(ϑ) = Rs̃1(ϑ) +Rs̃2(ϑ) and Rcs̃(ϑ) = cRs̃(ϑ), ∀ 0 < ϑ ≤ 1.

Definition 1.3 (see [33]). Let X be a real vector space. The function ‖ · ‖G : X → G∗(R) is

said to be a gradual norm on X if, for every 0 < ϑ ≤ 1, the following conditions are true for

any x0, y0 ∈ X:

(1) R‖x0‖G (ϑ) = R0̃(ϑ) if and only if x0 = 0;

(2) R‖µx0‖G(ϑ) = |µ|R‖x0‖G (ϑ) for any µ ∈ R;

(3) R‖x0+y0‖G(ϑ) ≤ R‖x0‖G (ϑ) +R‖y0‖G(ϑ).

The pair (X, ‖ · ‖G) is called a gradual normed linear space (GNLS).

Example 1.1 (see [33]). Suppose X = R
n and for x0 = (x1, x2, . . . , xn) ∈ R

n, 0 < ϑ ≤ 1, define

‖ · ‖G by

R‖x0‖G(ϑ) = eϑ
n
∑

i=1

|xi|.

Then, ‖ · ‖G is a gradual norm on R
n and (Rn, ‖ · ‖G) is a GNLS.

Definition 1.4 (see [33]). Let x = (xk) be a sequence in the GNLS (X, ‖ · ‖G). Then, x is

said to be gradually convergent to x0 ∈ X if, for every 0 < ϑ ≤ 1 and η > 0, there exists

N(= Nη(ϑ)) ∈ N such that

R‖xk−x0‖G(ϑ) < η, ∀k ≥ N.

Symbolically, xk

‖·‖G
−−→ x0.

Definition 1.5 (see [20]). Let (X, ‖ · ‖G) be a GNLS. Then, a sequence x = (xk) in X is said to

be gradually bounded if, for every 0 < ϑ ≤ 1, there exists M = M(ϑ) > 0 such that

R‖xk‖G (ϑ) < M, ∀k ∈ N.

Definition 1.6 (see [31]). Let r be a non-negative real number. A sequence x = (xk) in a normed

linear space (X, ‖ · ‖) is said to be roughly convergent to x0 ∈ X with roughness degree r if, for

every η > 0, there exists N = (Nη) such that for all k ≥ N ,

‖xk − x0‖ < r + η.

Symbolically, it is denoted as xk

r−‖·‖
−−−→ x0.

Definition 1.7 (see [14]). Let x = (xk) be a sequence in the GNLS (X, ‖ · ‖G). Then, x is

said to be gradually quasi statistically convergent (in short, stq(G)-convergent) to x0 ∈ X if, for

every 0 < ϑ ≤ 1 and η > 0,

δc

(

{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ η
}

)

= 0.

Symbolically, xk

stq(G)
−−−→ x0.
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Definition 1.8 (see [14]). Let x = (xk) be a sequence in the GNLS (X, ‖ · ‖G). Then, x is said

to be gradually quasi statistically bounded if, for every 0 < ϑ ≤ 1, there exists M(= M(ϑ)) > 0
such that

δc

(

{

k ∈ N : R‖xk‖G(ϑ) > M
}

)

= 0.

§ 2. Main results

In this section, we present the main results of the paper. We begin with the following defini-

tion.

Definition 2.1. Let x = (xk) be a sequence in the GNLS (X, ‖ · ‖G) and r be a non-negative

real number. Then, x is said to be gradually quasi statistically roughly convergent (in short,

strq(G)-convergent) to x0 ∈ X , if for every 0 < ϑ ≤ 1 and η > 0,

δc

(

{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r + η
}

)

= 0.

Symbolically, we write xk

strq(G)
−−−→ x0.

Here, x0 is called as the strq(G)-limit of x, where r is the degree of roughness. For r = 0,
the above definition turns to the Definition 1.7. But our main aim is to deal with the case r > 0.
There are several reasons for such interest. Since a stq(G)-convergent sequence y = (yk) with

yk
stq(G)
−−−→ x0 often cannot be measured or calculated accurately, one has to deal with a quasi

statistically approximated sequence x = (xk) satisfying

δc

(

{

k ∈ N : R‖xk−yk‖G(ϑ) > r
}

)

= 0.

Then, no one can assure the stq(G)-convergence of x, but since for any η > 0, the following

inclusion
{

k ∈ N : R‖yk−x0‖G(ϑ) ≥ η
}

⊇
{

k ∈ N : R‖xk−x0‖G (ϑ) ≥ r + η
}

holds, one can certainly assure the strq(G)−convergence of x. We present the following example

to illustrate the above fact more preciously.

Example 2.1. Let X = R
n and ‖ · ‖G be the gradual norm defined in Example 1.1. Consider the

sequence (cn) defined by cn = n
3
. Suppose y = (yk) in R

n be defined as

yk =

{

(0, 0, . . . , 0, 0.5), if k is not a perfect square,
(

0, 0, . . . , 0, 0.5 + 2 · (−1)k

k

)

, otherwise.

Then, we have

R‖yk−(0,0,...,0,0.5)‖G (ϑ) =

{

0, if k is not a perfect square,
2eϑ

k
, otherwise.

Therefore, for any η > 0, the following inclusion
{

k ∈ N : R‖yk−(0,0,...,0,0.5)‖G(ϑ) ≥ η
}

⊆
{

1, 4, 9, . . .
}

holds and eventually yk
stq(G)
−−−→ (0, 0, . . . , 0, 0.5). But, for sufficiently large k, it is impossible to

calculate yk exactly by computer but it is rounded to the nearest one. So, for the sake of simplicity,

we approximate yk by xk = (0, 0, . . . , 0, z) at the perfect square positions where z is the integer

satisfying z − 0.5 < yk < z + 0.5. Then, the sequence x = (xk) does not stq(G)-converge

anymore. But, by definition, xk

strq(G)
−−−→ (0, 0, . . . , 0, 0.5) for r = 0.5. �
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So our main interest is to investigate the case r > 0. Therefore, we construct strq(G)-limit set

of a sequence x = (xk) denoted and defined as follows:

stq − LIM r
x(G) =

{

x0 ∈ X : xk

strq(G)
−−−→ x0

}

.

Theorem 2.1. Let (xk) and (yk) be two sequences in the GNLS (X, ‖ · ‖G) such that xk

st
r1
q (G)

−−−−→ x0

and yk
st

r2
q (G)

−−−−→ y0. Then,

(i) xk + yk
st

(r1+r2)
q (G)

−−−−−−−→ x0 + y0, and

(ii) µxk

st
|µ|r1
q (G)

−−−−−→ µx0 for any µ ∈ R.

P r o o f. (i) Since, xk

st
r1
q (G)

−−−−→ x0 and yk
st

r2
q (G)

−−−−→ y0, so for any 0 < ϑ ≤ 1 and η > 0,

δc(P ) = δc(Q) = 0,

where

P =
{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r1 +
η

2

}

and Q =
{

k ∈ N : R‖yk−y0‖G(ϑ) ≥ r2 +
η

2

}

.

Now, as the inclusion

(N \ P ) ∩ (N \Q) ⊆
{

k ∈ N : R‖(xk+yk)−(x0+y0)‖G (ϑ) < r1 + r2 + η
}

holds, so we must have

δc

(

{

k ∈ N : R‖(xk+yk)−(x0+y0)‖G (ϑ) ≥ r1 + r2 + η
}

)

≤ δc(P ∪Q) = 0;

and consequently, xk + yk
st

(r1+r2)
q (G)

−−−−−−−→ x0 + y0.
(ii) If µ = 0, then there is nothing to prove. So, let us assume that µ 6= 0. Now as the

conditions

R‖xk−x0‖G(ϑ) ≤ r1 and R‖µxk−µx0‖G(ϑ) ≤ |µ|r1

are equivalent in gradual normed algebras, so the result follows. �

Remark 2.1 (see [14]). Let (xk) and (yk) be two sequences in the GNLS (X, ‖ · ‖G) such that

xk

stq(G)
−−−→ x0 and yk

stq(G)
−−−→ y0. Then,

(i) xk + yk
stq(G)
−−−→ x0 + y0, and

(ii) µxk

stq(G)
−−−→ µx0 for any µ ∈ R.

Theorem 2.2. Let x = (xk) be a sequence in a GNLS (X, ‖ · ‖G). Then,

diam
(

stq − LIM r
x(G)

)

= sup
{

R‖y−z‖G (ϑ) : y, z ∈ stq − LIM r
x(G), ϑ ∈ [0, 1)

}

≤ 2r.

In general, diam
(

stq − LIM r
x(G)

)

has no smaller bound.
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P r o o f. If possible, let us assume that diam
(

stq −LIM r
x(G)

)

> 2r. Then, there exists y0, z0 ∈
∈ stq −LIM r

x(G) and 0 < ϑ0 ≤ 1 such that R‖y0−z0‖G (ϑ0) > 2r. Choose η > 0 in such a manner

that

η <
R‖y0−z0‖G(ϑ0)

2
− r. (2.1)

Since, y0, z0 ∈ stq − LIM r
x(G), so for any 0 < ϑ ≤ 1 and η > 0, δc(P ) = 0 and δc(Q) = 0,

where

P =
{

k ∈ N : R‖xk−y0‖G(ϑ) ≥ r + η
}

and Q =
{

k ∈ N : R‖xk−z0‖G(ϑ) ≥ r + η
}

.

By the property of quasi density, it is clear that the set (N \ P ) ∩ (N \ Q) is non-empty. Take

p ∈ (N \ P ) ∩ (N \Q). Then, we have

R‖y0−z0‖G(ϑ0) ≤ R‖xp−y0‖G(ϑ0) +R‖xp−z0‖G (ϑ0) < 2(r + η),

which contradicts (2.1).

For the second part, suppose (xk) is a sequence in a GNLS (X, ‖ · ‖G) such that xk

stq(G)
−−−→ x0.

Then, for any 0 < ϑ ≤ 1 and η > 0,

δc

(

{

k ∈ N : R‖xk−x0‖G (ϑ) ≥ η
}

)

= 0.

Now, for each y0 ∈
(

x0 + N̄(r, ϑ)
)

=
{

x ∈ X : R‖x0−x‖G(ϑ) ≤ r
}

, the following inequality

holds:

R‖xk−y0‖G(ϑ) ≤ R‖xk−x0‖G (ϑ) +R‖x0−y0‖G(ϑ) < r + η,

whenever k /∈
{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ η
}

. This shows that y0 ∈ stq − LIM r
x(G) and subse-

quently

stq − LIM r
x(G) =

(

x0 + N̄(r, ϑ)
)

holds. Since, diam
(

x0 + N̄(r, ϑ)
)

= 2r, so, in general upper bound 2r of the gradual diameter

of the set stq − LIM r
x(G) cannot be decreased anymore. �

Remark 2.2 (see [14]). Let x = (xk) be a sequence in a GNLS (X, ‖ · ‖G) such that xk

stq(G)
−−−→ x0.

Then, x0 is unique.

Theorem 2.3. A sequence x = (xk) in a GNLS (X, ‖ · ‖G) is gradually quasi statistically bounded

if and only if there exists some r ≥ 0 such that stq − LIM r
x(G) 6= ∅.

P r o o f. Let x = (xk) be gradually quasi statistically bounded. Then, for every ϑ ∈ (0, 1], there

exists M(= M(ϑ)) > 0 such that

δc(P ) = 0, where P =
{

k ∈ N : R‖xk‖G (ϑ) > M
}

.

Suppose

r′ = sup
{

R‖xk‖G (ϑ) : k ∈ N \ P, ϑ ∈ [0, 1)
}

.

Then, the set stq − LIM r′

x (G) contains the zero vector of X and eventually

stq − LIM r′

x (G) 6= ∅.

Conversely, suppose that stq−LIM r
x(G) 6= ∅ for some r ≥ 0. Then, for x0 ∈ stq−LIM r

x(G),

δc

(

{

k ∈ N : R‖xk−x0‖G (ϑ) ≥ r + η
}

)

= 0

holds for any 0 < ϑ ≤ 1 and η > 0. This means that almost all xk’s are contained in some ball

with any radius greater than r. Therefore, x is gradually quasi statistically bounded. �
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Theorem 2.4. Let x = (xk) be a sequence in a GNLS (X, ‖ · ‖G). Then, the set stq − LIM r
x(G)

is gradually closed.

P r o o f. Let y = (yk) be a sequence in stq − LIM r
x(G) such that

yk
‖·‖G
−−→ y0.

Then, for every 0 < ϑ ≤ 1 and η > 0, there exists N(= Nη(ϑ)) ∈ N such that for all k ≥ N ,

R‖yk−y0‖G (ϑ) <
η

2
.

Choose k0 ∈ N such that k0 ≥ N . Then, R‖yk0−y0‖G (ϑ) < η

2
. On the other hand, since

(yk) ⊆ stq − LIM r
x(G), we must have

δc

(

{

k ∈ N : R‖xk−yk0‖G
(ϑ) ≥ r +

η

2

}

)

= 0. (2.2)

Suppose p /∈
{

k ∈ N : R‖xk−yk0‖G
(ϑ) ≥ r + η

2

}

. Then, R‖xp−yk0‖G
(ϑ) < r + η

2
and eventually

R‖xp−y0‖G (ϑ) ≤ R‖xp−yk0‖G
(ϑ) +R‖yk0−y0‖G (ϑ) < r + η.

This means that p /∈
{

k ∈ N : R‖xk−y0‖G (ϑ) ≥ r + η
}

and subsequently from (2.2) we obtain

δc

(

{

k ∈ N : R‖xk−y0‖G(ϑ) ≥ r + η
}

)

= 0.

Hence, y0 ∈ stq − LIM r
x(G) and the proof ends. �

Theorem 2.5. Let x = (xk) be a sequence in a GNLS (X, ‖ · ‖G). If y0 ∈ stq − LIM r0
x (G) and

y1 ∈ stq − LIM r1
x (G), then

yτ = (1− τ)y0 + τy1 ∈ stq − LIM (1−τ)r0+τr1
x (G), for τ ∈ [0, 1].

P r o o f. Since y0 ∈ stq − LIM r0
x (G) and y1 ∈ stq − LIM r1

x (G), so, for every 0 < ϑ ≤ 1
and η > 0, δc(P ) = 0 and δc(Q) = 0, where

P =
{

k ∈ N : R‖xk−y0‖G (ϑ) ≥ r0 + η
}

and Q =
{

k ∈ N : R‖xk−y1‖G (ϑ) ≥ r1 + η
}

.

Subsequently, for any k ∈ (N \ P ) ∩ (N \Q),

R‖xk−yτ‖G(ϑ) ≤ (1− τ)R‖xk−y0‖G (ϑ) + τR‖xk−y1‖G(ϑ)

< (1− τ)(r0 + η) + τ(r1 + η)

= (1− τ)r0 + τr1 + η.

This proves that

{

k ∈ N : R‖xk−yτ‖G(ϑ) ≥ (1− τ)r0 + τr1 + η
}

⊆ P ∪Q.

Now, since the quasi density of the set in the right-hand side of the above inclusion is zero, so the

quasi density of the set in the left-hand side is also zero. Hence, yτ ∈stq−LIM
(1−τ)r0+τr1
x (G). �

Remark 2.3. Let x = (xk) be a sequence in a GNLS (X, ‖ · ‖G). Then, the set stq −LIM r
x(G) is

convex.
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Theorem 2.6. Let r1 ≥ 0 and r2 ≥ 0. A sequence x = (xk) in a GNLS (X, ‖ · ‖G) is

st
(r1+r2)
q (G)-convergent to x0 if and only if there exists a sequence y = (yk) such that

yk
st

r1
q (G)

−−−−→ x0 and R‖xk−yk‖G (ϑ) ≤ r2

for all k ∈ N.

P r o o f. Let us assume that yk
st

r1
q (G)

−−−−→ x0. Then, by definition, for any 0 < ϑ ≤ 1 and η > 0,

δc(P ) = 0, where P =
{

k ∈ N : R‖yk−x0‖G (ϑ) ≥ r1 + η
}

.

Now, since R‖xk−yk‖G(ϑ) ≤ r2 holds for all k ∈ N, so for all k /∈ P ,

R‖xk−x0‖G(ϑ) ≤ R‖xk−yk‖G (ϑ) +R‖yk−x0‖G (ϑ) < r1 + r2 + η.

This implies that
{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r1 + r2 + η
}

⊆ P

and eventually by the property of quasi density,

δc

(

{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r1 + r2 + η
}

)

= 0.

Hence, xk

st
(r1+r2)
q (G)

−−−−−−−→ x0.

For the converse part, let us assume that

xk

st
(r1+r2)
q (G)

−−−−−−−→ x0. (2.3)

Define y = (yk) by

yk =

{

x0, if R‖xk−x0‖G(ϑ) ≤ r2,

xk + r2
x0−xk

R‖xk−x0‖G
(ϑ)

, otherwise.

Then, it is easy to observe that R‖xk−yk‖G(ϑ) ≤ r2 for all k ∈ N.

Moreover,

R‖yk−x0‖G(ϑ) =

{

0, if R‖xk−x0‖G (ϑ) ≤ r2,

R‖xk−x0‖G(ϑ)− r2, otherwise.

By (2.3), for every 0 < ϑ ≤ 1 and η > 0,

δc

(

{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r1 + r2 + η
}

)

= 0.

Now, as the inclusion
{

k ∈ N : R‖xk−x0‖G(ϑ) ≥ r1 + r2 + η
}

⊇
{

k ∈ N : R‖yk−x0‖G (ϑ) ≥ r1 + η
}

holds, so we must have

δc

(

{

k ∈ N : R‖yk−x0‖G (ϑ) ≥ r1 + η
}

)

= 0.

Hence, yk
st

r1
q (G)

−−−−→ x0 and the proof ends. �

Remark 2.4. A sequence x = (xk) in a GNLS (X, ‖ · ‖G) is strq(G)-convergent to x0 ∈ X with

roughness degree r ≥ 0 if and only if there exists a sequence y = (yk) in X such that xk

stq(G)
−−−→ x0

and R‖xk−yk‖ ≤ r for all k ∈ N.
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В настоящей статье мы излагаем новое понятие квазистатистически грубой сходимости в граду-

альных нормированных линейных пространствах. Мы устанавливаем важные результаты, которые

представляют несколько фундаментальных свойств этого нового понятия. Мы также вводим поня-

тие strq(G)-предельного множества и доказываем, что оно градуально замкнуто, выпукло и играет

важную роль для квазистатистической ограниченности последовательности в градуальном норми-

рованном линейном пространстве.
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26. Karakaş A., Altın Y., Altınok H. On generalized statistical convergence of order β of sequences of

fuzzy numbers // Journal of Intelligent and Fuzzy Systems. 2014. Vol. 26. No. 4. P. 1909–1917.

https://doi.org/10.3233/IFS-130869

27. Lietard L., Rocacher D. Conditions with aggregates evaluated using gradual numbers // Control and

Cybernetics. 2009. Vol. 38. No. 2. P. 395–417. https://zbmath.org/1301.68226

28. Pal Sudip Kumar, Chandra Debraj, Dutta Sudipta. Rough ideal convergence // Hacettepe Journal of

Mathematics and Statistics. 2013. Vol. 42. Issue 6. P. 633–640. https://zbmath.org/1310.40007
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