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STABILITY OF GAP SOLITON COMPLEXES
IN THE NONLINEAR SCHRODINGER EQUATION
WITH PERIODIC POTENTIAL AND REPULSIVE NONLINEARITY

The work is devoted to numerical investigation of stability of stationary localized modes (“gap solitons”) for the
one-dimentional nonlinear Schrédinger equation (NLSE) with periodic potential and repulsive nonlinearity.
Two classes of the modes are considered: a bound state of a pair of in-phase and out-of-phase fundamental
gap solitons (FGSs) from the first bandgap separated by various numbers of empty potential wells. Using the
standard framework of linear stability analysis, we computed the linear spectra for the gap solitons by means
of the Fourier collocation method and the Evans function method. We found that the gap solitons of the first
and second classes are exponentially unstable for odd and even numbers of separating periods of the potential,
respectively. The real parts of unstable eigenvalues in corresponding spectra decay exponentially with the
distance between FGSs. On the contrary, we observed that the modes of the first and second classes are either
linearly stable or exhibit weak oscillatory instabilities if the number of empty potential wells separating FGSs
is even and odd, respectively. In both cases, the oscillatory instabilities arise in some vicinity of upper bandgap
edge. In order to check the linear stability results, we fulfilled numerical simulations for the time-dependent
NLSE by means of a finite-difference scheme. As a result, all the considered exponentially unstable solutions
have been deformed to long-lived pulsating formations whereas stable solutions conserved their shapes for
a long time.
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Introduction

In the past few decades the nonlinear Schrédinger equation (NLSE) with an additional non-
autonomous linear term has become one of the actual and challenging physical problems which has
been studied worldwide by different scientific groups. This equation can be written in the following
three-dimensional form:

iUy = =AU + V(x,y,2)U + o|U|*U, (1)
0? 0? 0?
U—U(x,y,z,t), A_@_}—a—gﬁ_}—@, o==1.

From a physical viewpoint, equation (1) is related to the models of plasma physics [8,12], nonlinear
optics [15,20,21,26,27] and Bose—Einstein condensation theory [13]. It is worth mentioning that
in the latter context, equation (1), also called the Gross—Pitaevskii equation (GPE), has become
especially relevant after experimental observation of the Bose—Einstein condensate in 1995 [6,11,14].
Such a state of matter has been predicted in 1924 by Einstein and Bose [10,16]. In the context of the
meanfield theory of the Bose-Einstein condensate, the term |U|? describes the local density of the
condensate. The function V(z,y, z) has the meaning of an external potential which allows one to
confine the condensate spatially. Parameter o describes interparticle interactions in the condensate:
the value 0 = +1 corresponds to repulsive interactions between atoms whereas 0 = —1 corresponds
to attractive interactions.
The one-dimensional version of (1):

iUy = —Upe + V(2)U + o|U*U, (2)

U=U(x,t), o==l,
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describes an elongated (cigar-shaped) cloud of the condensate. An important set of solutions of (2)
is a class of so-called stationary modes having the following form:

Ul(z,t) = u(z)e ™, (3)

where 1 has the meaning of the chemical potential of the condensate. Stationary modes u(z) satisfy
the localization condition:
li = 0. 4
A ) =0 W
In what follows, it is assumed that u(x) is a real-valued function [5]. Besides, the parameter o is
chosen according to the repulsive case of interactions, o = +1, and the potential V() is fixed in the
model form V(z) = —Vpcos2z. Here, the parameter Vj is related to the depth of potential wells.
Substituting (3) into (2), one arrives at the following time-independent equation:

P = —Ugy — Vo cos(2z)u + u. (5)

Due to the localization condition (4), for |z| > 1 equation (5) can be replaced by the linear
Schrédinger equation:
P = —uUg, — Vo cos(2x)u. (6)

It is well-known [7] that the spectrum of problem (6) has a band-gap structure, which is depicted in
Figure 1. There is a countable number of bands separated by bandgaps. Such a band-gap structure
of linearized equation imposes several restrictions for existence of localized solutions of (5). If the
point (u, Vo) lies in a band, equation (6) has no solutions that tend to zero at 4+o0o or at —oo.
This means that the localization condition (4) for equation (5) for these values p and Vj cannot
be satisfied, except for the trivial solution u(xz) = 0. Therefore, the stationary localized modes (3)
can be obtained only in bandgaps. For this reason, the localized solutions of (5) are also called gap
solitons.

The simplest localized solution of (5) is called fundamental gap soliton (FGS). This solution
represents a single density hump with decaying tails. It was conjectured in [30] and later proven
in [2] that more complex solitons can be considered as compositions of several FGSs situated at
different potential wells. More precisely, all solutions of (5) situated in Region 1 in Figure 1 can be
coded by means of bi-infinite symbolic sequences of the finite alphabet A = {4,0,—}. The symbol
“4” (or “—") at the n-th entry of the bi-infinite sequence, where n € Z, indicates that the n-th
potential well is occupied by the FGS (or by the FGS taken with the negative sign). Respectively,
the zero symbol means that the corresponding potential well is “empty”. Thus, the code of the FGS
has the form (...,0,0,+,0,0,...) and the code of the FGS taken with the negative sign has the form
(...,0,0,—,0,0,...). More generally, the code of an arbitrary gap soliton “starts” and “ends” with
the infinite number of zero symbols, i.e., has the form (..., 0,0, 1, 82,...,5,,0,0,...),0 € A, s; € A,
s1 # 0, sp, # 0. These infinite sequences of zero symbols describe the asymptotically decaying tails of
the soliton. For the sake of brevity, in what follows we omit the zero symbols situated at the soliton
tails. Then the code of the FGS can be written as (+). The code (++) corresponds to a soliton
composed of two neighbor FGSs, both taken with the positive sign, and the code (+—) describes a
composition of two FGSs taken with different signs. The code (+0+) describes a bound state of two
FGSs separated by an “empty” potential well.

An important property of a gap soliton is its stability which indicates the robustness of the
soliton under perturbations. Various articles have reported analytical and numerical results about
stability of gap solitons of (5). Let us list the known results about stability of gap solitons of (5)
situated in Region 1 in Figure 1.

It was claimed in [24] that the small-amplitude FGS having the code (+) is linearly stable.
However, in [24] it was also suggested that the FGS of greater amplitudes may suffer weak oscillatory
instabilities caused by complex eigenvalues in the linear spectrum [see the spectral problem (9)].
These instabilities were found in the same paper for the case of attractive nonlinearity [i.e., the case
o = —1in (2)]. Turning to the large amplitudes, the stability of the FGS was examined numerically
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Figure 1. A band-gap structure of linear equation (6). The gray areas correspond to the bands of the spectrum .
The white and black areas represent the bandgaps. In addition, the black regions depict a parametric area where all
solutions of (5) can be coded by symbolic sequences. The red dashed line represents the value Vy considered in the
present study

in [22] where the authors concluded that it is a stable mode as well. Besides, the authors of [22]
mentioned their finding of complex eigenvalues with small non-zero real parts for (9), but they
attributed them to the insufficient accuracy of their computations. Recently, in [19] stability of the
FGS was studied using the Evans function approach, and it was concluded that the spectrum of
the FGS does include complex eigenvalues with small real parts which leads to weak instabilities.
Therefore, the FGS typically is either stable or exhibits weak oscillatory instabilities.

The next basic solution of (5) has the code (+—). It was studied analitically in [18,24] using the
small-amplitude approximation and turned out to be unstable (the spectrum includes a pair of real
eigenvalues, which implies so-called exponential instability). For large amplitudes, this solution was
studied numerically [22] and turned out to be exponentially unstable as well.

Stability of more complex modes of (5), double-humped and triple-humped gap solitons with
the codes (++) and (+ + +) (also called Truncated-Bloch-wave solitons), was checked numerically
in [28] where these solutions were reported to be stable. However, it was shown recently in [19] that
these solutions also may suffer from small oscillatory instabilities.

Two families of separated FGSs having the codes (+-0+) and (+0—) have been studied numerically
in [22] where they were found to be oscillatory unstable. However, stability of the gap solitons
with the codes (+0...0+) and (40...0—), i.e., having the symbols “+” or “—" separated by some
number of symbols “0”, up to the moment have not been studied in detail. An interesting analysis
of bifurcations of these solutions can be found in [1|. In the present study we focus our attention
on complexes of gap solitons of (5) having the codes (+0...0+4) and (+0...0—) with a different
number of separating periods. We do not consider the codes (—0...0—) and (—0...0+) due to
the symmetry of (5). We study numerically linear stability of these modes and check it by direct
integration of equation (2) using an appropriate numerical scheme. In Section 1, we describe the
linear stability problem in detail and describe the required numerical methods. In Section 2, we
present the main outcomes of this paper and in Section 3 we summarize the results of the work.

§ 1. Stability of gap solitons

§ 1.1. Linear stability problem

From a physical viewpoint, stability is an important property of solutions of equation (2). We
study linear (spectral) stability following traditional approach [29]. Let u(x) be an arbitrary solution
of (5) satisfying the boundary conditions (4). This solution can be regarded as the initial condition
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Figure 2. Two classes of gap solitons of (5) considered in the present study. The first class consists of two separated
in-phase FGSs with the codes of the form (+0...0+): (a) (+0+); (b) (+00+); (c) (+000+). The second class
consists of two separated out-of-phase FGSs with the codes (+0...0—): (d) (+0—); (e) (+00—); (f) (+000—).

The parameters are p =1 and Vo =6

U(z,0) for equation (2). Adding a small perturbation to the function u(z) and substituting it to (3),
we get the following perturbed solution of (2):

Uz, t) = (u(m) + eMa(z) + z'b(x)]) ekt (7)

where a(z) and b(z) are real and small enough: |a|, |b| < 1. Substituting (7) into (2) and omitting
all high-order terms with respect to a(x) and b(x), we come to the following system:

Ab = agzy + (p— V() a — 3u’a, .
{ A = —byy — (pn— V(2)) b+ u?b. (8)

After introducing the linear operators
Lo=d*/de?® + (p—V(z)) —u?® and Ly =d?/de* + (pn— V(z)) — 3u?,

the system (8) can be rewritten in the form of the spectral problem:

()= ) 0

In general, the spectrum of (9) consists of an essential part and a discrete part. Since linear stability
of considered modes is related to the latter part, let us mention some properties of discrete eigenvalues
of (9). The eigenvalue A = 0 is double, with the eigenvector (0,u)T and the generalized eigenvector
(Ou/0p,0)T that satisfy

o_( 0 —Lo\[(oO o (0 Lo\ ( du/op
o ﬁl 0 u ’ - £1 0 0 ’
respectively. This fact allows one to check the accuracy of numerical techniques in a simple way.
We use it to check the Evans function method which is described in [9] in detail. Besides, if the
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Figure 3. Eigenvalues of (9) for gap solitons depicted in Figure 2. The parameters are =1, Vo = 6

spectrum of (9) contains an isolated eigenvalue A, it contains also the values —\, A* and —\* where
the asterisk means the complex conjugation.

Solving the problem (9) one can find whether the regarding mode (3) is stable or unstable. In
the case of the whole spectrum is purely imaginary, the solution (3) is said to be linearly stable. On
the other hand, if there is at least one eigenvalue with the non-zero real part, then the perturbation
grows exponentially and the solution (3) is regarded to be unstable.

§ 1.2. Numerical methods

In order to construct the gap solitons of (5), we applied the modified shooting algorithm [4].
This algorithm allows one to compute the profile of a required mode by its symbolic representation.
It includes solving a Cauchy problem for equation (5) which was implemented by using the Runge—
Kutta 4-order scheme.

Concerning the numerical solution of the spectral problem (9), we used two alternative algo-
rithms. One of them is the well-elaborated Fourier collocation method (FCM, see [29] for details).
It is well-suited for fast and accurate detecting of relatively strong instabilities. However, its accuracy
may not be sufficient for tracing relatively weak instabilities associated with eigenvalues with small
nonzero real parts. For accurate detection of such weak oscillatory instabilities, we take advantage
of the second algorithm based on the Evans function (EFM) that allows one to compute complex
eigenvalues with tiny real parts with the high precision. On the other hand, the realization of EFM
is quite sophisticated (see [9]).

The linear stability results for gap solitons of (5) obtained by both FCM and EFM allow us to
predict the dynamics of the corresponding solution of (2) in the time. To check such a prediction, we
integrated (2) by means of a finite-difference scheme described in [25]. In the case where the solution
U(z,t) undergoes any type of instabilities, the profile of the initial condition U(z,0) is expected to
undergo a deformation due to the growth of the perturbation whereas the profile of a stable solution
is expected to preserve approximately its shape during any time interval.

§ 2. Results

By using the numerical schemes described above, we fulfilled two series of numerical experiments
for equations (2) and (9). Sections 2.1 and 2.2 below are devoted to two classes of gap solitons
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Figure 4. Real eigenvalues in the spectrum of (9) for different gap solitons. The codes of the considered gap
solitons are given beside the points. The parameters are p =1, Vo =6
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Figure 5. Families of the gap solitons depicted in Figure 2. Picture (a): families (u, M) of two separated in-phase
FGSs. Picture (b): families (p, M) of two separated out-of-phase FGSs. Thin lines correspond to linearly unstable
solutions while the bold lines represent stable ones. The left edges of presented families are depicted in the insets

consisting of two separated in-phase and out-of-phase FGSs, respectively. Notice that since the
profile of each gap soliton depends on the parameters p and Vg, for a fixed V{ there is a one-
parametric family of gap solitons having the same code. Since only two gap solitons with the codes
(+) and (4+—) can be continued to the lower boundary of the first bandgap, u = p—, the solutions
with all other codes “die” in bifurcations for some greater values y > p_.

§ 2.1. The stability of in-phase FGSs

We started our investigation with bound states consisting of two in-phase FGSs separated by an
arbitrary number of empty potential wells. Such solutions have the codes of the form (+0...0+) and
(=0...0—) with various numbers of the zero symbols “0” in the middle. The simplest representatives
of this class are depicted in Figure 2, (a)—(c) for the parameter ;1 = 1. On the one hand, they all are
situated in Region 1 in Figure 1, far away from the upper bandgap edge. This implies the absence of
weak oscillatory instabilities in their spectra [19]. On the other hand, they feature different stability
properties. Looking at corresponding spectra presented in Figure 3, (a)-(c), one can conclude that
the mode (b) is stable whereas the solutions (a) and (c) undergo a strong exponential instability
caused by a pair of real eigenvalues.
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Let us illustrate the results by fixing the depth of the potential Vj = 6. The lower boundary
of the first bandgap in this case is u_ ~ —2.785. Being continued from the upper edge of the
bandgap, the solutions with the codes (40...04) and (—0...0—) “die” in bifurcations at some
values of p > p_. For instance, the gap solitons (a)-(c) bifurcate at u ~ —2.752, pu ~ —2.775,
and p &~ —2.771, respectively. Traditionally, a family of gap solitons is described by a curve on

the plane (u, N) where N is the squared L?-norm, N = /u2 dz, of a gap soliton. However, for

the solutions formed by a pair of well-separated FGSs, sucthepresentation is not convenient since
their L?-norms are very close to each other and are equal approximately to the doubled L?-norm
of FGS [for instance, the families of gap solitons (a)—(c) are almost indistinguishable on the plane
(11, N)]. Therefore, we choose another characteristic, which is free of this disadvantage and allows

us to display the families properly:
M = / zu? d.
R

Notice that if a solution u(x) is either even or odd, then its characteristic M is equal to zero.
Therefore we shift the solutions shown in Figure 2 in such a way that one of two FGSs is situated
in the zero potential well, z = 0. The corresponding families on the plane (u, M) are depicted in
Figure 5, (a) by the black curves. Thin and thick segments of a curve are related to regions of linear
stability and instability of gap solitons, respectively. These curves are situated in the white spacious
region of Figure 5, which represents the first bandgap. We found that the whole families (a) and
(c) are linearly unstable due to the presence of one pair of real eigenvalues in spectrum of (9). In
the same time, the family (b) is stable for u_ < p < p* where the threshold value is p* ~ 1.57. If
i is greater than p*, then the family (b) undergoes weak oscillatory instabilities which are similar
to those described in [19]. For instance, the spectrum of the solution (b) includes the quartet of
complex eigenvalues with the real part Re A ~ 107° for the case = 1.7 and Re A ~ 10~ for 1 = 2.3.
In addition, the inset presented in the left top corner in Figure 5, (a) zooms in the bifurcation edges
of considered families.

To summarize, our numerical observations allow one to conjecture that if the number of empty
potential wells between two in-phase FGSs (zero symbols in the middle of the code) is odd, then the
composed gap soliton is unstable due to strong exponential instability. Otherwise, it is either stable
or exhibits weak oscillatory instability.

§ 2.2. Stability of out-of-phase FGSs

Now let us consider the second class of bound states consisting of two separated out-of-phase
FGSs with the codes of the form (40...0—) and (—0...0+). Let us fix again the depth of the
potential, V5 = 6. One can find the simplest states from this class in Figure 2, (d)—(f) for parameter
u = 1. Using FCM and EFM, we found that the gap soliton (d) and (f) are linearly stable, see
Figure 3, (d), (f). On the contrary, the gap soliton (e) was found to be unstable, see Figure 3, (e).

The families of bound states (d)-(f), see Figure 5, (b), can be extended numerically from the
value p = 1 to the smaller and greater values. But none of these families can be continued to the
lower bandgap edge. The bifurcation points of solutions (d)—(f) are u ~ —2.774, u ~ —2.765, and
=~ —2.777, respectively. Our numerical finding here is that the families (d) and (f) are linearly
stable for all values of u up to some threshold p* ~ 1.57. Notice that it is similar to the case of two
in-phase FGSs. Moreover, in [19] the equality of the stability thresholds among another families of
gap solitons with codes (4), (++) and (+ + +) was also observed. The existence of such threshold
may be related to the FGS itself which is an elementary entity for more complex gap solitons. For
greater values of u, the families of two out-of-phase FGSs exhibit weak oscillatory instabilities similar
to [19]. The orders of the real parts of the unstable eigenvalues are approximately the same as in
the case of two separated in-phase FGSs described above. The family (e) is unstable for the entire
interval of its existence.
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Figure 6. Numerical integration of equation (2) with the initial conditions depicted in Figure 2, (a) and (d).
Pseudocolor plots of |U(x,t)|* are shown. Pictures (a) and (b): the initial profile of the mode (4+-0—) with the
parameter u = 1 and p = 2, respectively. Picture (c): the initial profile of the mode (+0+) with the parameter
1 = 1. The spatial step h =~ 0.1 and the time step 7 = 0.01. The initial profiles were perturbed by the 3-percent
perturbation. The absorbing layers for |z| > 20 were included to remove the reflection from the boundaries

Looking to these linear stability results, one can conjecture that the solutions from the second
class are linearly stable if two FGSs are separated by an odd number of empty potential wells and the
corresponding value p is situated far enough from the upper bandgap edge. If the number of empty
sites is even, then these solutions are supposed to be unstable.

To study the dependence between instability of a gap soliton and the number of empty potential
wells in its middle, we computed the spectra of five solutions with codes (+0+), (+00—), (+000+),
(40000—) and (+00000+). All these gap solitons exhibit a strong exponential instability caused by
a pair of real eigenvalues. In Figure 4 one can find the results of this experiment. Real parts of
unstable eigenvalues decay exponentially as the number of empty potential wells grows. It may be
related to the coupling and uncoupling of two separated FGSs due to the short and long distance of
separating, respectively. If the separated FGSs are uncoupled, then the corresponding gap soliton is
linearly stable.

§ 2.3. The dynamics of time-dependent GPE

In order to check the predictions of linear stability analysis, we integrated numerically the time-
dependent NLSE (2) with the initial conditions depicted in Figure 2, (a) and (d) with different
parameters p and V. As we mentioned above, we used a finite-difference scheme with the spatial
step h ~ 0.1 and the time step 7 = 0.01 in the domain [—107;107] x [0;40000]. In order to
eliminate the reflection from the boundaries, we added artificial absorbing layers for > 20 and
x < —20. Besides, we perturbed the initial condition by means of the 3-percent perturbation, i.e.,
U(z,0) — 1.03 x U(z,0). The results of this experiment are shown in Figure 6. Pictures (a) and
(b) correspond to the mode (+0—) for the parameter u = 1 and pu = 2, respectively. One can see
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that the results of numerical integration of (2) are in a good agreement with linear stability analysis
considered in the previous subsections. The gap soliton computed in the picture (a) preserved its
shape for the whole time of computation while that in the picture (b) has been deformed due to
weak oscillatory instabilities. Picture (c) exhibits the evolution of the mode (+0+) for p = 1. It
has been confirmed by the simulations that this mode is unstable. Notice that the characteristic
time necessary for the growing perturbation to manifest itself is much smaller for the exponential
instability than for weak oscillatory instability.

One more observation is as follows. The temporal evolution of the unstable mode (+04) results
not in its destroying, but in forming of some pulsating formation resembling a breather. Simulations
for the codes (+00—), (+000+) and different parameters p and Vp yield the similar result. We
conjecture that this phenomenon is typical and every exponentially unstable bound state, e.g., one
with the codes (+0...04+), (=0...0—), (+0...0—) and (=0...0+), transforms into a pulsating
formation instead of being completely destroyed.

§ 3. Conclusion

In the paper, we studied the stability of gap solitons for the one-dimensional nonlinear Shrédinger
equation (NLSE) with the cosine potential (2). It is known, that under certain conditions [2] each
gap soliton of this equation can be coded by means of a bi-infinite sequence of symbols of some finite
alphabet. In our study, the parameters p and Vj (u is the chemical potential, see the ansatz (3),
Vo is the depth of the potential) were chosen from the Region 1 in Figure 1 where three-symbols
alphabet, “—” “0”, and “4”, for the coding is relevant. The gap solitons of interest are the bound
states of a pair of fundamental gap solitons (FGSs) separated by some number of periods of the
potential. In-phase bound states correspond to the codes (+0...0+) and (—0...0—) (the top row
in Figure 2) and out-of-phase ones have the codes (+0...0—) and (—=0...0+) (the bottom row of
Figure 2).

In order to study linear stability of above-mentioned classes of gap solitons, we solved numerically
the spectral problem (9) using the Fourier collocation method (FCM) and the Evans function method
(EFM). It follows from our computations that some of the considered gap solitons are stable, some of
them exhibit strong (exponential) instabilities and other ones undergo weak oscillatory instabilities.
The modes with the codes (+0—), (+00+) and (+000—) are linearly stable for all values of u below a
certain threshold. As p exceeds this threshold, these modes exhibit weak oscillatory instabilities. On
the contrary, the gap solitons with the codes (+0+), (+00—) and (+000+) turned out to be unstable
due to the presence of a pair of real eigenvalues in their spectra for all considered parameters .
As the result, we conjecture that two separated in-phase (out-of-phase) FGSs are linearly stable
(unstable) for an even (odd) number of empty potential wells between them. Also, two in-phase
(out-of-phase) FGSs are linearly unstable (stable) for an odd (even) number of empty sites between
them. The direct integration of (2) by means of a finite-difference scheme supported the linear
stability results. While all the results presented above correspond to Vy = 6, we have also checked
that the main conclusions of our study remain valid for several other values of V4 (such as Vj = 5
and Vp = 7).

It is interesting that the results of this study confirm the known results on stability /instability
of intrinsic localized modes (ILM) for the discrete nonlinear Schrédinger equation (DNLSE). It is
known that the DNLSE can be regarded as an approximation for the NLSE with a periodic potential
and ILM can be used for qualitative description of gap solitons in the first bandgap [3,17] (so-called
tight-binding limit). The rigorous statement about the number of unstable eigenvalues for ILM can
be found in [23]. Theorem 3.6 of [23] connects the number of unstable eigenvalues for an ILM with the
number of flips in its code. In [23] this result was formulated for the case of the DNLSE with focusing
nonlinearity and is valid near so-called anticontinuous limit only. Translating this statement to the
case of the defocusing DNLSE can be made by means of the staggering transformation. However,
using the analogy between the DNLSE and the periodic NLSE, one can expect instability of the
bound states for the codes (+0...0+) and (—0...0—) with an odd number of zero symbols between
nonzero symbols and for (+0...0—) and (+0...0—) with an even number of zero symbols, exactly
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as it is claimed in this paper. At the same time, the analogy with the discrete model fails to reveal
quite delicate oscillatory instabilities described above that were not found in the case of ILM.

A further generalization of this study may be associated with the following question: does there
exist a general relation between the stability of a gap soliton and its code? We believe that the
numerical experience summarized in [29] and in the present paper may be extended to gap solitons
with more complex codes, as well as to the gap solitons from higher bandgaps. However, this
interesting issue lies beyond the scope of this paper.
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Karoueswie caosa: nenmueitnoe ypasuenne IIpéanarepa, mepnoanaeckuit TOTEHNNA, TIOKAJIM30BAHHbIE DeITIe-
HUHA, YCTOUYUBOCTb.
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Pabora TOCBAIIEHA U3yYEHUIO YCTOWYMBOCTU CTAIMOHADHBIX JIOKAJIN30BAHHLIX MOJ, (COMUTOHOB IIEJIEBOTO
Tuna) B omHOMepHOM HenuueiinoMm ypasuenuu [Ipémuarepa (HYIIT) ¢ meprogudeckuM MOTEHIUATIOM U OT-
TATKUBAIOIIEH HETHHEHHOCTHI0. PaccMOTpeHsI ABa Kaacca perneHnii: CBI3aHHOe COCTOSTHNE Maphbl MPOCTEHRTITNX
IIETEBBIX COJTUTOHOB M3 MEPBOM 3aIPEIeHHON 30HbI JUHEHHOTO CIIEKTPa, HAXOMAIMMUXCS B OXHON (ha3e nim B
nporuBodaze U Pa3AeIeHHBIX HEKOTOPHIM KOJIMYECTBOM IMYCTHIX MOTEHIUWATIbHBIX M. J[jis Takux pereHuit
¢ momombio Merona kKojutokanun Pypne (Fourier collocation method) u meroma dbyuxmun Jsamnca (Evans
function method) mocuurans uHelHbIE CIEKTPBI 3a74a9u 06 ycroiunBocTu. OGHAPYKEHO, UTO €C/IU YUCIIO
Pa3IeMIONMX IOTEHIUATIBHBIX M MEXK/y LIEJEBbIMU COJUTOHAMU HEYETHO (YEeTHO), TO PElleHusl B OIHO
daze (B nporusodaze) sKCHOHEHIUMAIBHO HEyCTOWYUBBI. B arOoM ciydae, neficTBUTENbHbIE YaCTU HEyCTOM-
9UBBIX COOCTBEHHBIX 3HAYEHUN B COOTBETCTBYIOIIMX CIEKTPAX IKCIOHEHINATIBLHO yOBIBAIOT C POCTOM UUCIIA
Pa3IeNSAoNInX MEPUOIOB MEXK Y mieaeBbiMu coauToHaMu. C Apyroit CTOPOHBI, eCIN YUCTIO PABAEIISIONINX MO~
TEHIMAIBHBIX sIM 9€THO (HEYETHO), TO perienus B onHoil dase (B mporusodase) JIUHEHHO yCTORIUBLI BAAINA
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OT BepXHel IPAHUIIBI TIEPBOI 3AMPEIEHHON 30HbBI, JIN0O JEMOHCTPUPYIOT CJAA0YI0 OCIUIISTOPHYIO HEYCTONIH-
BOCTb BOJTU3M TPAHUIIBI 3AMPEINEeHHON 30HbI. [[1si MPOBEPKHU PE3yIbTaTOB JTHHEHHOrO aHAIN3A, OBLT MPOBEIeH
quciaenubiit caer HYIII ¢ moMmoInpio KOHEYHO-PA3HOCTHON cxeMbl. B pesysbrare 3BOONME, BCE PACCMOT-
pPeHHbBIE B PADOTE SKCIOHEHITUATHLHO HEYCTONYUBBIE MIEJIEBbIE COMUTOHBI 1e(DOPMUPOBAUCH B ILYILCUPY IOIINE
OOBEKTHI, TOT/IA, KAK YCTOWYMBBIE PEIeHUsT COXPAHWUIN CBOM MPOMUIIL B TEYEHIE BCETO BPEMEHH SKCITEPUMEH-
Ta.
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