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STABILITY OF GAP SOLITON COMPLEXES

IN THE NONLINEAR SCHR

�

ODINGER EQUATION

WITH PERIODIC POTENTIAL AND REPULSIVE NONLINEARITY

The work is devoted to numeri
al investigation of stability of stationary lo
alized modes (�gap solitons�) for the

one-dimentional nonlinear S
hr�odinger equation (NLSE) with periodi
 potential and repulsive nonlinearity.

Two 
lasses of the modes are 
onsidered: a bound state of a pair of in-phase and out-of-phase fundamental

gap solitons (FGSs) from the �rst bandgap separated by various numbers of empty potential wells. Using the

standard framework of linear stability analysis, we 
omputed the linear spe
tra for the gap solitons by means

of the Fourier 
ollo
ation method and the Evans fun
tion method. We found that the gap solitons of the �rst

and se
ond 
lasses are exponentially unstable for odd and even numbers of separating periods of the potential,

respe
tively. The real parts of unstable eigenvalues in 
orresponding spe
tra de
ay exponentially with the

distan
e between FGSs. On the 
ontrary, we observed that the modes of the �rst and se
ond 
lasses are either

linearly stable or exhibit weak os
illatory instabilities if the number of empty potential wells separating FGSs

is even and odd, respe
tively. In both 
ases, the os
illatory instabilities arise in some vi
inity of upper bandgap

edge. In order to 
he
k the linear stability results, we ful�lled numeri
al simulations for the time-dependent

NLSE by means of a �nite-di�eren
e s
heme. As a result, all the 
onsidered exponentially unstable solutions

have been deformed to long-lived pulsating formations whereas stable solutions 
onserved their shapes for

a long time.
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Introdu
tion

In the past few de
ades the nonlinear S
hrödinger equation (NLSE) with an additional non-

autonomous linear term has be
ome one of the a
tual and 
hallenging physi
al problems whi
h has

been studied worldwide by di�erent s
ienti�
 groups. This equation 
an be written in the following

three-dimensional form:

iUt = −∆U + V (x, y, z)U + σ|U |2U, (1)

U = U(x, y, z, t), ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, σ = ±1.

From a physi
al viewpoint, equation (1) is related to the models of plasma physi
s [8,12℄, nonlinear

opti
s [15, 20, 21, 26, 27℄ and Bose�Einstein 
ondensation theory [13℄. It is worth mentioning that

in the latter 
ontext, equation (1), also 
alled the Gross�Pitaevskii equation (GPE), has be
ome

espe
ially relevant after experimental observation of the Bose�Einstein 
ondensate in 1995 [6,11,14℄.

Su
h a state of matter has been predi
ted in 1924 by Einstein and Bose [10,16℄. In the 
ontext of the

mean�eld theory of the Bose�Einstein 
ondensate, the term |U |2 des
ribes the lo
al density of the


ondensate. The fun
tion V (x, y, z) has the meaning of an external potential whi
h allows one to


on�ne the 
ondensate spatially. Parameter σ des
ribes interparti
le intera
tions in the 
ondensate:

the value σ = +1 
orresponds to repulsive intera
tions between atoms whereas σ = −1 
orresponds

to attra
tive intera
tions.

The one-dimensional version of (1):

iUt = −Uxx + V (x)U + σ|U |2U, (2)

U = U(x, t), σ = ±1,

http://dx.doi.org/10.20537/vm160412
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des
ribes an elongated (
igar-shaped) 
loud of the 
ondensate. An important set of solutions of (2)

is a 
lass of so-
alled stationary modes having the following form:

U(x, t) = u(x)e−iµt, (3)

where µ has the meaning of the 
hemi
al potential of the 
ondensate. Stationary modes u(x) satisfy
the lo
alization 
ondition:

lim
x→±∞

u(x) = 0. (4)

In what follows, it is assumed that u(x) is a real-valued fun
tion [5℄. Besides, the parameter σ is


hosen a

ording to the repulsive 
ase of intera
tions, σ = +1, and the potential V (x) is �xed in the

model form V (x) = −V0 cos 2x. Here, the parameter V0 is related to the depth of potential wells.

Substituting (3) into (2), one arrives at the following time-independent equation:

µu = −uxx − V0 cos(2x)u+ u3. (5)

Due to the lo
alization 
ondition (4), for |x| ≫ 1 equation (5) 
an be repla
ed by the linear

S
hr�odinger equation:

µu = −uxx − V0 cos(2x)u. (6)

It is well-known [7℄ that the spe
trum of problem (6) has a band-gap stru
ture, whi
h is depi
ted in

Figure 1. There is a 
ountable number of bands separated by bandgaps. Su
h a band-gap stru
ture

of linearized equation imposes several restri
tions for existen
e of lo
alized solutions of (5). If the

point (µ, V0) lies in a band, equation (6) has no solutions that tend to zero at +∞ or at −∞.

This means that the lo
alization 
ondition (4) for equation (5) for these values µ and V0 
annot

be satis�ed, ex
ept for the trivial solution u(x) ≡ 0. Therefore, the stationary lo
alized modes (3)


an be obtained only in bandgaps. For this reason, the lo
alized solutions of (5) are also 
alled gap

solitons.

The simplest lo
alized solution of (5) is 
alled fundamental gap soliton (FGS). This solution

represents a single density hump with de
aying tails. It was 
onje
tured in [30℄ and later proven

in [2℄ that more 
omplex solitons 
an be 
onsidered as 
ompositions of several FGSs situated at

di�erent potential wells. More pre
isely, all solutions of (5) situated in Region 1 in Figure 1 
an be


oded by means of bi-in�nite symboli
 sequen
es of the �nite alphabet A = {+, 0,−}. The symbol
�+� (or �−�) at the n-th entry of the bi-in�nite sequen
e, where n ∈ Z, indi
ates that the n-th
potential well is o

upied by the FGS (or by the FGS taken with the negative sign). Respe
tively,

the zero symbol means that the 
orresponding potential well is �empty�. Thus, the 
ode of the FGS

has the form (. . . , 0, 0,+, 0, 0, . . .) and the 
ode of the FGS taken with the negative sign has the form

(. . . , 0, 0,−, 0, 0, . . .). More generally, the 
ode of an arbitrary gap soliton �starts� and �ends� with

the in�nite number of zero symbols, i.e., has the form (. . . , 0, 0, s1, s2, . . . , sn, 0, 0, . . .), 0 ∈ A, si ∈ A,

s1 6= 0, sn 6= 0. These in�nite sequen
es of zero symbols des
ribe the asymptoti
ally de
aying tails of

the soliton. For the sake of brevity, in what follows we omit the zero symbols situated at the soliton

tails. Then the 
ode of the FGS 
an be written as (+). The 
ode (++) 
orresponds to a soliton


omposed of two neighbor FGSs, both taken with the positive sign, and the 
ode (+−) des
ribes a

omposition of two FGSs taken with di�erent signs. The 
ode (+0+) des
ribes a bound state of two

FGSs separated by an �empty� potential well.

An important property of a gap soliton is its stability whi
h indi
ates the robustness of the

soliton under perturbations. Various arti
les have reported analyti
al and numeri
al results about

stability of gap solitons of (5). Let us list the known results about stability of gap solitons of (5)

situated in Region 1 in Figure 1.

It was 
laimed in [24℄ that the small-amplitude FGS having the 
ode (+) is linearly stable.

However, in [24℄ it was also suggested that the FGS of greater amplitudes may su�er weak os
illatory

instabilities 
aused by 
omplex eigenvalues in the linear spe
trum [see the spe
tral problem (9)℄.

These instabilities were found in the same paper for the 
ase of attra
tive nonlinearity [i.e., the 
ase

σ = −1 in (2)℄. Turning to the large amplitudes, the stability of the FGS was examined numeri
ally
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Figure 1. A band-gap stru
ture of linear equation (6). The gray areas 
orrespond to the bands of the spe
trum µ.

The white and bla
k areas represent the bandgaps. In addition, the bla
k regions depi
t a parametri
 area where all

solutions of (5) 
an be 
oded by symboli
 sequen
es. The red dashed line represents the value V0 
onsidered in the

present study

in [22℄ where the authors 
on
luded that it is a stable mode as well. Besides, the authors of [22℄

mentioned their �nding of 
omplex eigenvalues with small non-zero real parts for (9), but they

attributed them to the insu�
ient a

ura
y of their 
omputations. Re
ently, in [19℄ stability of the

FGS was studied using the Evans fun
tion approa
h, and it was 
on
luded that the spe
trum of

the FGS does in
lude 
omplex eigenvalues with small real parts whi
h leads to weak instabilities.

Therefore, the FGS typi
ally is either stable or exhibits weak os
illatory instabilities.

The next basi
 solution of (5) has the 
ode (+−). It was studied analiti
ally in [18,24℄ using the

small-amplitude approximation and turned out to be unstable (the spe
trum in
ludes a pair of real

eigenvalues, whi
h implies so-
alled exponential instability). For large amplitudes, this solution was

studied numeri
ally [22℄ and turned out to be exponentially unstable as well.

Stability of more 
omplex modes of (5), double-humped and triple-humped gap solitons with

the 
odes (++) and (+ + +) (also 
alled Trun
ated-Blo
h-wave solitons), was 
he
ked numeri
ally

in [28℄ where these solutions were reported to be stable. However, it was shown re
ently in [19℄ that

these solutions also may su�er from small os
illatory instabilities.

Two families of separated FGSs having the 
odes (+0+) and (+0−) have been studied numeri
ally

in [22℄ where they were found to be os
illatory unstable. However, stability of the gap solitons

with the 
odes (+0 . . . 0+) and (+0 . . . 0−), i.e., having the symbols �+� or �−� separated by some

number of symbols �0�, up to the moment have not been studied in detail. An interesting analysis

of bifur
ations of these solutions 
an be found in [1℄. In the present study we fo
us our attention

on 
omplexes of gap solitons of (5) having the 
odes (+0 . . . 0+) and (+0 . . . 0−) with a di�erent

number of separating periods. We do not 
onsider the 
odes (−0 . . . 0−) and (−0 . . . 0+) due to

the symmetry of (5). We study numeri
ally linear stability of these modes and 
he
k it by dire
t

integration of equation (2) using an appropriate numeri
al s
heme. In Se
tion 1, we des
ribe the

linear stability problem in detail and des
ribe the required numeri
al methods. In Se
tion 2, we

present the main out
omes of this paper and in Se
tion 3 we summarize the results of the work.

� 1. Stability of gap solitons

� 1.1. Linear stability problem

From a physi
al viewpoint, stability is an important property of solutions of equation (2). We

study linear (spe
tral) stability following traditional approa
h [29℄. Let u(x) be an arbitrary solution

of (5) satisfying the boundary 
onditions (4). This solution 
an be regarded as the initial 
ondition
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Figure 2. Two 
lasses of gap solitons of (5) 
onsidered in the present study. The �rst 
lass 
onsists of two separated

in-phase FGSs with the 
odes of the form (+0 . . . 0+): (a) (+0+); (b) (+00+); (
) (+000+). The se
ond 
lass


onsists of two separated out-of-phase FGSs with the 
odes (+0 . . . 0−): (d) (+0−); (e) (+00−); (f) (+000−).
The parameters are µ = 1 and V0 = 6

U(x, 0) for equation (2). Adding a small perturbation to the fun
tion u(x) and substituting it to (3),

we get the following perturbed solution of (2):

U(x, t) =
(

u(x) + eλt[a(x) + ib(x)]
)

e−iµt, (7)

where a(x) and b(x) are real and small enough: |a|, |b| ≪ 1. Substituting (7) into (2) and omitting

all high-order terms with respe
t to a(x) and b(x), we 
ome to the following system:

{

λb = axx + (µ− V (x)) a− 3u2a,
λa = −bxx − (µ− V (x)) b+ u2b.

(8)

After introdu
ing the linear operators

L0 = d2/dx2 + (µ − V (x))− u2 and L1 = d2/dx2 + (µ− V (x))− 3u2,

the system (8) 
an be rewritten in the form of the spe
tral problem:

λ

(

a
b

)

=

(

0 −L0

L1 0

)(

a
b

)

. (9)

In general, the spe
trum of (9) 
onsists of an essential part and a dis
rete part. Sin
e linear stability

of 
onsidered modes is related to the latter part, let us mention some properties of dis
rete eigenvalues

of (9). The eigenvalue λ = 0 is double, with the eigenve
tor (0, u)T and the generalized eigenve
tor

(∂u/∂µ, 0)T that satisfy

0 =

(

0 −L0

L1 0

)(

0
u

)

, 0 =

(

0 −L0

L1 0

)2 (

∂u/∂µ
0

)

,

respe
tively. This fa
t allows one to 
he
k the a

ura
y of numeri
al te
hniques in a simple way.

We use it to 
he
k the Evans fun
tion method whi
h is des
ribed in [9℄ in detail. Besides, if the
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Figure 3. Eigenvalues of (9) for gap solitons depi
ted in Figure 2. The parameters are µ = 1, V0 = 6

spe
trum of (9) 
ontains an isolated eigenvalue λ, it 
ontains also the values −λ, λ∗
and −λ∗

where

the asterisk means the 
omplex 
onjugation.

Solving the problem (9) one 
an �nd whether the regarding mode (3) is stable or unstable. In

the 
ase of the whole spe
trum is purely imaginary, the solution (3) is said to be linearly stable. On

the other hand, if there is at least one eigenvalue with the non-zero real part, then the perturbation

grows exponentially and the solution (3) is regarded to be unstable.

� 1.2. Numeri
al methods

In order to 
onstru
t the gap solitons of (5), we applied the modi�ed shooting algorithm [4℄.

This algorithm allows one to 
ompute the pro�le of a required mode by its symboli
 representation.

It in
ludes solving a Cau
hy problem for equation (5) whi
h was implemented by using the Runge�

Kutta 4-order s
heme.

Con
erning the numeri
al solution of the spe
tral problem (9), we used two alternative algo-

rithms. One of them is the well-elaborated Fourier 
ollo
ation method (FCM, see [29℄ for details).

It is well-suited for fast and a

urate dete
ting of relatively strong instabilities. However, its a

ura
y

may not be su�
ient for tra
ing relatively weak instabilities asso
iated with eigenvalues with small

nonzero real parts. For a

urate dete
tion of su
h weak os
illatory instabilities, we take advantage

of the se
ond algorithm based on the Evans fun
tion (EFM) that allows one to 
ompute 
omplex

eigenvalues with tiny real parts with the high pre
ision. On the other hand, the realization of EFM

is quite sophisti
ated (see [9℄).

The linear stability results for gap solitons of (5) obtained by both FCM and EFM allow us to

predi
t the dynami
s of the 
orresponding solution of (2) in the time. To 
he
k su
h a predi
tion, we

integrated (2) by means of a �nite-di�eren
e s
heme des
ribed in [25℄. In the 
ase where the solution

U(x, t) undergoes any type of instabilities, the pro�le of the initial 
ondition U(x, 0) is expe
ted to

undergo a deformation due to the growth of the perturbation whereas the pro�le of a stable solution

is expe
ted to preserve approximately its shape during any time interval.

� 2. Results

By using the numeri
al s
hemes des
ribed above, we ful�lled two series of numeri
al experiments

for equations (2) and (9). Se
tions 2.1 and 2.2 below are devoted to two 
lasses of gap solitons
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Figure 5. Families of the gap solitons depi
ted in Figure 2. Pi
ture (a): families (µ,M) of two separated in-phase

FGSs. Pi
ture (b): families (µ,M) of two separated out-of-phase FGSs. Thin lines 
orrespond to linearly unstable

solutions while the bold lines represent stable ones. The left edges of presented families are depi
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onsisting of two separated in-phase and out-of-phase FGSs, respe
tively. Noti
e that sin
e the

pro�le of ea
h gap soliton depends on the parameters µ and V0, for a �xed V0 there is a one-

parametri
 family of gap solitons having the same 
ode. Sin
e only two gap solitons with the 
odes

(+) and (+−) 
an be 
ontinued to the lower boundary of the �rst bandgap, µ = µ−, the solutions

with all other 
odes �die� in bifur
ations for some greater values µ > µ−.

� 2.1. The stability of in-phase FGSs

We started our investigation with bound states 
onsisting of two in-phase FGSs separated by an

arbitrary number of empty potential wells. Su
h solutions have the 
odes of the form (+0 . . . 0+) and
(−0 . . . 0−) with various numbers of the zero symbols �0� in the middle. The simplest representatives

of this 
lass are depi
ted in Figure 2, (a)�(
) for the parameter µ = 1. On the one hand, they all are

situated in Region 1 in Figure 1, far away from the upper bandgap edge. This implies the absen
e of

weak os
illatory instabilities in their spe
tra [19℄. On the other hand, they feature di�erent stability

properties. Looking at 
orresponding spe
tra presented in Figure 3, (a)�(
), one 
an 
on
lude that

the mode (b) is stable whereas the solutions (a) and (
) undergo a strong exponential instability


aused by a pair of real eigenvalues.
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Let us illustrate the results by �xing the depth of the potential V0 = 6. The lower boundary

of the �rst bandgap in this 
ase is µ− ≈ −2.785. Being 
ontinued from the upper edge of the

bandgap, the solutions with the 
odes (+0 . . . 0+) and (−0 . . . 0−) �die� in bifur
ations at some

values of µ > µ−. For instan
e, the gap solitons (a)�(
) bifur
ate at µ ≈ −2.752, µ ≈ −2.775,
and µ ≈ −2.771, respe
tively. Traditionally, a family of gap solitons is des
ribed by a 
urve on

the plane (µ,N) where N is the squared L2
-norm, N =

∫

R

u2 dx, of a gap soliton. However, for

the solutions formed by a pair of well-separated FGSs, su
h representation is not 
onvenient sin
e

their L2
-norms are very 
lose to ea
h other and are equal approximately to the doubled L2

-norm

of FGS [for instan
e, the families of gap solitons (a)�(
) are almost indistinguishable on the plane

(µ,N)℄. Therefore, we 
hoose another 
hara
teristi
, whi
h is free of this disadvantage and allows

us to display the families properly:

M =

∫

R

xu2 dx.

Noti
e that if a solution u(x) is either even or odd, then its 
hara
teristi
 M is equal to zero.

Therefore we shift the solutions shown in Figure 2 in su
h a way that one of two FGSs is situated

in the zero potential well, x = 0. The 
orresponding families on the plane (µ,M) are depi
ted in

Figure 5, (a) by the bla
k 
urves. Thin and thi
k segments of a 
urve are related to regions of linear

stability and instability of gap solitons, respe
tively. These 
urves are situated in the white spa
ious

region of Figure 5, whi
h represents the �rst bandgap. We found that the whole families (a) and

(
) are linearly unstable due to the presen
e of one pair of real eigenvalues in spe
trum of (9). In

the same time, the family (b) is stable for µ− < µ < µ∗
where the threshold value is µ∗ ≈ 1.57. If

µ is greater than µ∗
, then the family (b) undergoes weak os
illatory instabilities whi
h are similar

to those des
ribed in [19℄. For instan
e, the spe
trum of the solution (b) in
ludes the quartet of


omplex eigenvalues with the real part Reλ ∼ 10−5
for the 
ase µ = 1.7 and Reλ ∼ 10−4

for µ = 2.3.
In addition, the inset presented in the left top 
orner in Figure 5, (a) zooms in the bifur
ation edges

of 
onsidered families.

To summarize, our numeri
al observations allow one to 
onje
ture that if the number of empty

potential wells between two in-phase FGSs (zero symbols in the middle of the 
ode) is odd, then the


omposed gap soliton is unstable due to strong exponential instability. Otherwise, it is either stable

or exhibits weak os
illatory instability.

� 2.2. Stability of out-of-phase FGSs

Now let us 
onsider the se
ond 
lass of bound states 
onsisting of two separated out-of-phase

FGSs with the 
odes of the form (+0 . . . 0−) and (−0 . . . 0+). Let us �x again the depth of the

potential, V0 = 6. One 
an �nd the simplest states from this 
lass in Figure 2, (d)�(f) for parameter

µ = 1. Using FCM and EFM, we found that the gap soliton (d) and (f) are linearly stable, see

Figure 3, (d), (f). On the 
ontrary, the gap soliton (e) was found to be unstable, see Figure 3, (e).

The families of bound states (d)�(f), see Figure 5, (b), 
an be extended numeri
ally from the

value µ = 1 to the smaller and greater values. But none of these families 
an be 
ontinued to the

lower bandgap edge. The bifur
ation points of solutions (d)�(f) are µ ≈ −2.774, µ ≈ −2.765, and
µ ≈ −2.777, respe
tively. Our numeri
al �nding here is that the families (d) and (f) are linearly

stable for all values of µ up to some threshold µ∗ ≈ 1.57. Noti
e that it is similar to the 
ase of two

in-phase FGSs. Moreover, in [19℄ the equality of the stability thresholds among another families of

gap solitons with 
odes (+), (++) and (+ ++) was also observed. The existen
e of su
h threshold

may be related to the FGS itself whi
h is an elementary entity for more 
omplex gap solitons. For

greater values of µ, the families of two out-of-phase FGSs exhibit weak os
illatory instabilities similar

to [19℄. The orders of the real parts of the unstable eigenvalues are approximately the same as in

the 
ase of two separated in-phase FGSs des
ribed above. The family (e) is unstable for the entire

interval of its existen
e.
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Figure 6. Numeri
al integration of equation (2) with the initial 
onditions depi
ted in Figure 2, (a) and (d).

Pseudo
olor plots of |U(x, t)|2 are shown. Pi
tures (a) and (b): the initial pro�le of the mode (+0−) with the

parameter µ = 1 and µ = 2, respe
tively. Pi
ture (
): the initial pro�le of the mode (+0+) with the parameter

µ = 1. The spatial step h ≈ 0.1 and the time step τ = 0.01. The initial pro�les were perturbed by the 3-per
ent

perturbation. The absorbing layers for |x| > 20 were in
luded to remove the re�e
tion from the boundaries

Looking to these linear stability results, one 
an 
onje
ture that the solutions from the se
ond


lass are linearly stable if two FGSs are separated by an odd number of empty potential wells and the


orresponding value µ is situated far enough from the upper bandgap edge. If the number of empty

sites is even, then these solutions are supposed to be unstable.

To study the dependen
e between instability of a gap soliton and the number of empty potential

wells in its middle, we 
omputed the spe
tra of �ve solutions with 
odes (+0+), (+00−), (+000+),
(+0000−) and (+00000+). All these gap solitons exhibit a strong exponential instability 
aused by

a pair of real eigenvalues. In Figure 4 one 
an �nd the results of this experiment. Real parts of

unstable eigenvalues de
ay exponentially as the number of empty potential wells grows. It may be

related to the 
oupling and un
oupling of two separated FGSs due to the short and long distan
e of

separating, respe
tively. If the separated FGSs are un
oupled, then the 
orresponding gap soliton is

linearly stable.

� 2.3. The dynami
s of time-dependent GPE

In order to 
he
k the predi
tions of linear stability analysis, we integrated numeri
ally the time-

dependent NLSE (2) with the initial 
onditions depi
ted in Figure 2, (a) and (d) with di�erent

parameters µ and V0. As we mentioned above, we used a �nite-di�eren
e s
heme with the spatial

step h ≈ 0.1 and the time step τ = 0.01 in the domain [−10π; 10π] × [0; 40000]. In order to

eliminate the re�e
tion from the boundaries, we added arti�
ial absorbing layers for x > 20 and

x < −20. Besides, we perturbed the initial 
ondition by means of the 3-per
ent perturbation, i.e.,
U(x, 0) 7→ 1.03 × U(x, 0). The results of this experiment are shown in Figure 6. Pi
tures (a) and

(b) 
orrespond to the mode (+0−) for the parameter µ = 1 and µ = 2, respe
tively. One 
an see
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that the results of numeri
al integration of (2) are in a good agreement with linear stability analysis


onsidered in the previous subse
tions. The gap soliton 
omputed in the pi
ture (a) preserved its

shape for the whole time of 
omputation while that in the pi
ture (b) has been deformed due to

weak os
illatory instabilities. Pi
ture (
) exhibits the evolution of the mode (+0+) for µ = 1. It

has been 
on�rmed by the simulations that this mode is unstable. Noti
e that the 
hara
teristi


time ne
essary for the growing perturbation to manifest itself is mu
h smaller for the exponential

instability than for weak os
illatory instability.

One more observation is as follows. The temporal evolution of the unstable mode (+0+) results
not in its destroying, but in forming of some pulsating formation resembling a breather. Simulations

for the 
odes (+00−), (+000+) and di�erent parameters µ and V0 yield the similar result. We


onje
ture that this phenomenon is typi
al and every exponentially unstable bound state, e.g., one

with the 
odes (+0 . . . 0+), (−0 . . . 0−), (+0 . . . 0−) and (−0 . . . 0+), transforms into a pulsating

formation instead of being 
ompletely destroyed.

� 3. Con
lusion

In the paper, we studied the stability of gap solitons for the one-dimensional nonlinear Shrödinger
equation (NLSE) with the 
osine potential (2). It is known, that under 
ertain 
onditions [2℄ ea
h

gap soliton of this equation 
an be 
oded by means of a bi-in�nite sequen
e of symbols of some �nite

alphabet. In our study, the parameters µ and V0 (µ is the 
hemi
al potential, see the ansatz (3),

V0 is the depth of the potential) were 
hosen from the Region 1 in Figure 1 where three-symbols

alphabet, �−�, �0�, and �+�, for the 
oding is relevant. The gap solitons of interest are the bound

states of a pair of fundamental gap solitons (FGSs) separated by some number of periods of the

potential. In-phase bound states 
orrespond to the 
odes (+0 . . . 0+) and (−0 . . . 0−) (the top row

in Figure 2) and out-of-phase ones have the 
odes (+0 . . . 0−) and (−0 . . . 0+) (the bottom row of

Figure 2).

In order to study linear stability of above-mentioned 
lasses of gap solitons, we solved numeri
ally

the spe
tral problem (9) using the Fourier 
ollo
ation method (FCM) and the Evans fun
tion method

(EFM). It follows from our 
omputations that some of the 
onsidered gap solitons are stable, some of

them exhibit strong (exponential) instabilities and other ones undergo weak os
illatory instabilities.

The modes with the 
odes (+0−), (+00+) and (+000−) are linearly stable for all values of µ below a


ertain threshold. As µ ex
eeds this threshold, these modes exhibit weak os
illatory instabilities. On

the 
ontrary, the gap solitons with the 
odes (+0+), (+00−) and (+000+) turned out to be unstable

due to the presen
e of a pair of real eigenvalues in their spe
tra for all 
onsidered parameters µ.
As the result, we 
onje
ture that two separated in-phase (out-of-phase) FGSs are linearly stable

(unstable) for an even (odd) number of empty potential wells between them. Also, two in-phase

(out-of-phase) FGSs are linearly unstable (stable) for an odd (even) number of empty sites between

them. The dire
t integration of (2) by means of a �nite-di�eren
e s
heme supported the linear

stability results. While all the results presented above 
orrespond to V0 = 6, we have also 
he
ked

that the main 
on
lusions of our study remain valid for several other values of V0 (su
h as V0 = 5
and V0 = 7).

It is interesting that the results of this study 
on�rm the known results on stability/instability

of intrinsi
 lo
alized modes (ILM) for the dis
rete nonlinear S
hrödinger equation (DNLSE). It is

known that the DNLSE 
an be regarded as an approximation for the NLSE with a periodi
 potential

and ILM 
an be used for qualitative des
ription of gap solitons in the �rst bandgap [3,17℄ (so-
alled

tight-binding limit). The rigorous statement about the number of unstable eigenvalues for ILM 
an

be found in [23℄. Theorem 3.6 of [23℄ 
onne
ts the number of unstable eigenvalues for an ILM with the

number of �ips in its 
ode. In [23℄ this result was formulated for the 
ase of the DNLSE with fo
using

nonlinearity and is valid near so-
alled anti
ontinuous limit only. Translating this statement to the


ase of the defo
using DNLSE 
an be made by means of the staggering transformation. However,

using the analogy between the DNLSE and the periodi
 NLSE, one 
an expe
t instability of the

bound states for the 
odes (+0 . . . 0+) and (−0 . . . 0−) with an odd number of zero symbols between

nonzero symbols and for (+0 . . . 0−) and (+0 . . . 0−) with an even number of zero symbols, exa
tly
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as it is 
laimed in this paper. At the same time, the analogy with the dis
rete model fails to reveal

quite deli
ate os
illatory instabilities des
ribed above that were not found in the 
ase of ILM.

A further generalization of this study may be asso
iated with the following question: does there

exist a general relation between the stability of a gap soliton and its 
ode? We believe that the

numeri
al experien
e summarized in [29℄ and in the present paper may be extended to gap solitons

with more 
omplex 
odes, as well as to the gap solitons from higher bandgaps. However, this

interesting issue lies beyond the s
ope of this paper.
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ñ ïîìîùüþ ìåòîäà êîëëîêàöèè Ôóðüå (Fourier 
ollo
ation method) è ìåòîäà �óíêöèè Ýâàíñà (Evans

fun
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îò âåðõíåé ãðàíèöû ïåðâîé çàïðåùåííîé çîíû, ëèáî äåìîíñòðèðóþò ñëàáóþ îñöèëëÿòîðíóþ íåóñòîé÷è-

âîñòü âáëèçè ãðàíèöû çàïðåùåííîé çîíû. Äëÿ ïðîâåðêè ðåçóëüòàòîâ ëèíåéíîãî àíàëèçà, áûë ïðîâåäåí

÷èñëåííûé ñ÷åò ÍÓØ ñ ïîìîùüþ êîíå÷íî-ðàçíîñòíîé ñõåìû. Â ðåçóëüòàòå ýâîëþöèè, âñå ðàññìîò-

ðåííûå â ðàáîòå ýêñïîíåíöèàëüíî íåóñòîé÷èâûå ùåëåâûå ñîëèòîíû äå�îðìèðîâàëèñü â ïóëüñèðóþùèå

îáúåêòû, òîãäà êàê óñòîé÷èâûå ðåøåíèÿ ñîõðàíèëè ñâîé ïðî�èëü â òå÷åíèå âñåãî âðåìåíè ýêñïåðèìåí-

òà.
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