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STABILITY OF GAP SOLITON COMPLEXES

IN THE NONLINEAR SCHR

�

ODINGER EQUATION

WITH PERIODIC POTENTIAL AND REPULSIVE NONLINEARITY

The work is devoted to numerial investigation of stability of stationary loalized modes (�gap solitons�) for the

one-dimentional nonlinear Shr�odinger equation (NLSE) with periodi potential and repulsive nonlinearity.

Two lasses of the modes are onsidered: a bound state of a pair of in-phase and out-of-phase fundamental

gap solitons (FGSs) from the �rst bandgap separated by various numbers of empty potential wells. Using the

standard framework of linear stability analysis, we omputed the linear spetra for the gap solitons by means

of the Fourier olloation method and the Evans funtion method. We found that the gap solitons of the �rst

and seond lasses are exponentially unstable for odd and even numbers of separating periods of the potential,

respetively. The real parts of unstable eigenvalues in orresponding spetra deay exponentially with the

distane between FGSs. On the ontrary, we observed that the modes of the �rst and seond lasses are either

linearly stable or exhibit weak osillatory instabilities if the number of empty potential wells separating FGSs

is even and odd, respetively. In both ases, the osillatory instabilities arise in some viinity of upper bandgap

edge. In order to hek the linear stability results, we ful�lled numerial simulations for the time-dependent

NLSE by means of a �nite-di�erene sheme. As a result, all the onsidered exponentially unstable solutions

have been deformed to long-lived pulsating formations whereas stable solutions onserved their shapes for

a long time.
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Introdution

In the past few deades the nonlinear Shrödinger equation (NLSE) with an additional non-

autonomous linear term has beome one of the atual and hallenging physial problems whih has

been studied worldwide by di�erent sienti� groups. This equation an be written in the following

three-dimensional form:

iUt = −∆U + V (x, y, z)U + σ|U |2U, (1)

U = U(x, y, z, t), ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, σ = ±1.

From a physial viewpoint, equation (1) is related to the models of plasma physis [8,12℄, nonlinear

optis [15, 20, 21, 26, 27℄ and Bose�Einstein ondensation theory [13℄. It is worth mentioning that

in the latter ontext, equation (1), also alled the Gross�Pitaevskii equation (GPE), has beome

espeially relevant after experimental observation of the Bose�Einstein ondensate in 1995 [6,11,14℄.

Suh a state of matter has been predited in 1924 by Einstein and Bose [10,16℄. In the ontext of the

mean�eld theory of the Bose�Einstein ondensate, the term |U |2 desribes the loal density of the

ondensate. The funtion V (x, y, z) has the meaning of an external potential whih allows one to

on�ne the ondensate spatially. Parameter σ desribes interpartile interations in the ondensate:

the value σ = +1 orresponds to repulsive interations between atoms whereas σ = −1 orresponds

to attrative interations.

The one-dimensional version of (1):

iUt = −Uxx + V (x)U + σ|U |2U, (2)

U = U(x, t), σ = ±1,
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desribes an elongated (igar-shaped) loud of the ondensate. An important set of solutions of (2)

is a lass of so-alled stationary modes having the following form:

U(x, t) = u(x)e−iµt, (3)

where µ has the meaning of the hemial potential of the ondensate. Stationary modes u(x) satisfy
the loalization ondition:

lim
x→±∞

u(x) = 0. (4)

In what follows, it is assumed that u(x) is a real-valued funtion [5℄. Besides, the parameter σ is

hosen aording to the repulsive ase of interations, σ = +1, and the potential V (x) is �xed in the

model form V (x) = −V0 cos 2x. Here, the parameter V0 is related to the depth of potential wells.

Substituting (3) into (2), one arrives at the following time-independent equation:

µu = −uxx − V0 cos(2x)u+ u3. (5)

Due to the loalization ondition (4), for |x| ≫ 1 equation (5) an be replaed by the linear

Shr�odinger equation:

µu = −uxx − V0 cos(2x)u. (6)

It is well-known [7℄ that the spetrum of problem (6) has a band-gap struture, whih is depited in

Figure 1. There is a ountable number of bands separated by bandgaps. Suh a band-gap struture

of linearized equation imposes several restritions for existene of loalized solutions of (5). If the

point (µ, V0) lies in a band, equation (6) has no solutions that tend to zero at +∞ or at −∞.

This means that the loalization ondition (4) for equation (5) for these values µ and V0 annot

be satis�ed, exept for the trivial solution u(x) ≡ 0. Therefore, the stationary loalized modes (3)

an be obtained only in bandgaps. For this reason, the loalized solutions of (5) are also alled gap

solitons.

The simplest loalized solution of (5) is alled fundamental gap soliton (FGS). This solution

represents a single density hump with deaying tails. It was onjetured in [30℄ and later proven

in [2℄ that more omplex solitons an be onsidered as ompositions of several FGSs situated at

di�erent potential wells. More preisely, all solutions of (5) situated in Region 1 in Figure 1 an be

oded by means of bi-in�nite symboli sequenes of the �nite alphabet A = {+, 0,−}. The symbol
�+� (or �−�) at the n-th entry of the bi-in�nite sequene, where n ∈ Z, indiates that the n-th
potential well is oupied by the FGS (or by the FGS taken with the negative sign). Respetively,

the zero symbol means that the orresponding potential well is �empty�. Thus, the ode of the FGS

has the form (. . . , 0, 0,+, 0, 0, . . .) and the ode of the FGS taken with the negative sign has the form

(. . . , 0, 0,−, 0, 0, . . .). More generally, the ode of an arbitrary gap soliton �starts� and �ends� with

the in�nite number of zero symbols, i.e., has the form (. . . , 0, 0, s1, s2, . . . , sn, 0, 0, . . .), 0 ∈ A, si ∈ A,

s1 6= 0, sn 6= 0. These in�nite sequenes of zero symbols desribe the asymptotially deaying tails of

the soliton. For the sake of brevity, in what follows we omit the zero symbols situated at the soliton

tails. Then the ode of the FGS an be written as (+). The ode (++) orresponds to a soliton

omposed of two neighbor FGSs, both taken with the positive sign, and the ode (+−) desribes a
omposition of two FGSs taken with di�erent signs. The ode (+0+) desribes a bound state of two

FGSs separated by an �empty� potential well.

An important property of a gap soliton is its stability whih indiates the robustness of the

soliton under perturbations. Various artiles have reported analytial and numerial results about

stability of gap solitons of (5). Let us list the known results about stability of gap solitons of (5)

situated in Region 1 in Figure 1.

It was laimed in [24℄ that the small-amplitude FGS having the ode (+) is linearly stable.

However, in [24℄ it was also suggested that the FGS of greater amplitudes may su�er weak osillatory

instabilities aused by omplex eigenvalues in the linear spetrum [see the spetral problem (9)℄.

These instabilities were found in the same paper for the ase of attrative nonlinearity [i.e., the ase

σ = −1 in (2)℄. Turning to the large amplitudes, the stability of the FGS was examined numerially
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Figure 1. A band-gap struture of linear equation (6). The gray areas orrespond to the bands of the spetrum µ.

The white and blak areas represent the bandgaps. In addition, the blak regions depit a parametri area where all

solutions of (5) an be oded by symboli sequenes. The red dashed line represents the value V0 onsidered in the

present study

in [22℄ where the authors onluded that it is a stable mode as well. Besides, the authors of [22℄

mentioned their �nding of omplex eigenvalues with small non-zero real parts for (9), but they

attributed them to the insu�ient auray of their omputations. Reently, in [19℄ stability of the

FGS was studied using the Evans funtion approah, and it was onluded that the spetrum of

the FGS does inlude omplex eigenvalues with small real parts whih leads to weak instabilities.

Therefore, the FGS typially is either stable or exhibits weak osillatory instabilities.

The next basi solution of (5) has the ode (+−). It was studied analitially in [18,24℄ using the

small-amplitude approximation and turned out to be unstable (the spetrum inludes a pair of real

eigenvalues, whih implies so-alled exponential instability). For large amplitudes, this solution was

studied numerially [22℄ and turned out to be exponentially unstable as well.

Stability of more omplex modes of (5), double-humped and triple-humped gap solitons with

the odes (++) and (+ + +) (also alled Trunated-Bloh-wave solitons), was heked numerially

in [28℄ where these solutions were reported to be stable. However, it was shown reently in [19℄ that

these solutions also may su�er from small osillatory instabilities.

Two families of separated FGSs having the odes (+0+) and (+0−) have been studied numerially

in [22℄ where they were found to be osillatory unstable. However, stability of the gap solitons

with the odes (+0 . . . 0+) and (+0 . . . 0−), i.e., having the symbols �+� or �−� separated by some

number of symbols �0�, up to the moment have not been studied in detail. An interesting analysis

of bifurations of these solutions an be found in [1℄. In the present study we fous our attention

on omplexes of gap solitons of (5) having the odes (+0 . . . 0+) and (+0 . . . 0−) with a di�erent

number of separating periods. We do not onsider the odes (−0 . . . 0−) and (−0 . . . 0+) due to

the symmetry of (5). We study numerially linear stability of these modes and hek it by diret

integration of equation (2) using an appropriate numerial sheme. In Setion 1, we desribe the

linear stability problem in detail and desribe the required numerial methods. In Setion 2, we

present the main outomes of this paper and in Setion 3 we summarize the results of the work.

� 1. Stability of gap solitons

� 1.1. Linear stability problem

From a physial viewpoint, stability is an important property of solutions of equation (2). We

study linear (spetral) stability following traditional approah [29℄. Let u(x) be an arbitrary solution

of (5) satisfying the boundary onditions (4). This solution an be regarded as the initial ondition
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Figure 2. Two lasses of gap solitons of (5) onsidered in the present study. The �rst lass onsists of two separated

in-phase FGSs with the odes of the form (+0 . . . 0+): (a) (+0+); (b) (+00+); () (+000+). The seond lass

onsists of two separated out-of-phase FGSs with the odes (+0 . . . 0−): (d) (+0−); (e) (+00−); (f) (+000−).
The parameters are µ = 1 and V0 = 6

U(x, 0) for equation (2). Adding a small perturbation to the funtion u(x) and substituting it to (3),

we get the following perturbed solution of (2):

U(x, t) =
(

u(x) + eλt[a(x) + ib(x)]
)

e−iµt, (7)

where a(x) and b(x) are real and small enough: |a|, |b| ≪ 1. Substituting (7) into (2) and omitting

all high-order terms with respet to a(x) and b(x), we ome to the following system:

{

λb = axx + (µ− V (x)) a− 3u2a,
λa = −bxx − (µ− V (x)) b+ u2b.

(8)

After introduing the linear operators

L0 = d2/dx2 + (µ − V (x))− u2 and L1 = d2/dx2 + (µ− V (x))− 3u2,

the system (8) an be rewritten in the form of the spetral problem:

λ

(

a
b

)

=

(

0 −L0

L1 0

)(

a
b

)

. (9)

In general, the spetrum of (9) onsists of an essential part and a disrete part. Sine linear stability

of onsidered modes is related to the latter part, let us mention some properties of disrete eigenvalues

of (9). The eigenvalue λ = 0 is double, with the eigenvetor (0, u)T and the generalized eigenvetor

(∂u/∂µ, 0)T that satisfy

0 =

(

0 −L0

L1 0

)(

0
u

)

, 0 =

(

0 −L0

L1 0

)2 (

∂u/∂µ
0

)

,

respetively. This fat allows one to hek the auray of numerial tehniques in a simple way.

We use it to hek the Evans funtion method whih is desribed in [9℄ in detail. Besides, if the
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Figure 3. Eigenvalues of (9) for gap solitons depited in Figure 2. The parameters are µ = 1, V0 = 6

spetrum of (9) ontains an isolated eigenvalue λ, it ontains also the values −λ, λ∗
and −λ∗

where

the asterisk means the omplex onjugation.

Solving the problem (9) one an �nd whether the regarding mode (3) is stable or unstable. In

the ase of the whole spetrum is purely imaginary, the solution (3) is said to be linearly stable. On

the other hand, if there is at least one eigenvalue with the non-zero real part, then the perturbation

grows exponentially and the solution (3) is regarded to be unstable.

� 1.2. Numerial methods

In order to onstrut the gap solitons of (5), we applied the modi�ed shooting algorithm [4℄.

This algorithm allows one to ompute the pro�le of a required mode by its symboli representation.

It inludes solving a Cauhy problem for equation (5) whih was implemented by using the Runge�

Kutta 4-order sheme.

Conerning the numerial solution of the spetral problem (9), we used two alternative algo-

rithms. One of them is the well-elaborated Fourier olloation method (FCM, see [29℄ for details).

It is well-suited for fast and aurate deteting of relatively strong instabilities. However, its auray

may not be su�ient for traing relatively weak instabilities assoiated with eigenvalues with small

nonzero real parts. For aurate detetion of suh weak osillatory instabilities, we take advantage

of the seond algorithm based on the Evans funtion (EFM) that allows one to ompute omplex

eigenvalues with tiny real parts with the high preision. On the other hand, the realization of EFM

is quite sophistiated (see [9℄).

The linear stability results for gap solitons of (5) obtained by both FCM and EFM allow us to

predit the dynamis of the orresponding solution of (2) in the time. To hek suh a predition, we

integrated (2) by means of a �nite-di�erene sheme desribed in [25℄. In the ase where the solution

U(x, t) undergoes any type of instabilities, the pro�le of the initial ondition U(x, 0) is expeted to

undergo a deformation due to the growth of the perturbation whereas the pro�le of a stable solution

is expeted to preserve approximately its shape during any time interval.

� 2. Results

By using the numerial shemes desribed above, we ful�lled two series of numerial experiments

for equations (2) and (9). Setions 2.1 and 2.2 below are devoted to two lasses of gap solitons
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Figure 5. Families of the gap solitons depited in Figure 2. Piture (a): families (µ,M) of two separated in-phase

FGSs. Piture (b): families (µ,M) of two separated out-of-phase FGSs. Thin lines orrespond to linearly unstable

solutions while the bold lines represent stable ones. The left edges of presented families are depited in the insets

onsisting of two separated in-phase and out-of-phase FGSs, respetively. Notie that sine the

pro�le of eah gap soliton depends on the parameters µ and V0, for a �xed V0 there is a one-

parametri family of gap solitons having the same ode. Sine only two gap solitons with the odes

(+) and (+−) an be ontinued to the lower boundary of the �rst bandgap, µ = µ−, the solutions

with all other odes �die� in bifurations for some greater values µ > µ−.

� 2.1. The stability of in-phase FGSs

We started our investigation with bound states onsisting of two in-phase FGSs separated by an

arbitrary number of empty potential wells. Suh solutions have the odes of the form (+0 . . . 0+) and
(−0 . . . 0−) with various numbers of the zero symbols �0� in the middle. The simplest representatives

of this lass are depited in Figure 2, (a)�() for the parameter µ = 1. On the one hand, they all are

situated in Region 1 in Figure 1, far away from the upper bandgap edge. This implies the absene of

weak osillatory instabilities in their spetra [19℄. On the other hand, they feature di�erent stability

properties. Looking at orresponding spetra presented in Figure 3, (a)�(), one an onlude that

the mode (b) is stable whereas the solutions (a) and () undergo a strong exponential instability

aused by a pair of real eigenvalues.
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Let us illustrate the results by �xing the depth of the potential V0 = 6. The lower boundary

of the �rst bandgap in this ase is µ− ≈ −2.785. Being ontinued from the upper edge of the

bandgap, the solutions with the odes (+0 . . . 0+) and (−0 . . . 0−) �die� in bifurations at some

values of µ > µ−. For instane, the gap solitons (a)�() bifurate at µ ≈ −2.752, µ ≈ −2.775,
and µ ≈ −2.771, respetively. Traditionally, a family of gap solitons is desribed by a urve on

the plane (µ,N) where N is the squared L2
-norm, N =

∫

R

u2 dx, of a gap soliton. However, for

the solutions formed by a pair of well-separated FGSs, suh representation is not onvenient sine

their L2
-norms are very lose to eah other and are equal approximately to the doubled L2

-norm

of FGS [for instane, the families of gap solitons (a)�() are almost indistinguishable on the plane

(µ,N)℄. Therefore, we hoose another harateristi, whih is free of this disadvantage and allows

us to display the families properly:

M =

∫

R

xu2 dx.

Notie that if a solution u(x) is either even or odd, then its harateristi M is equal to zero.

Therefore we shift the solutions shown in Figure 2 in suh a way that one of two FGSs is situated

in the zero potential well, x = 0. The orresponding families on the plane (µ,M) are depited in

Figure 5, (a) by the blak urves. Thin and thik segments of a urve are related to regions of linear

stability and instability of gap solitons, respetively. These urves are situated in the white spaious

region of Figure 5, whih represents the �rst bandgap. We found that the whole families (a) and

() are linearly unstable due to the presene of one pair of real eigenvalues in spetrum of (9). In

the same time, the family (b) is stable for µ− < µ < µ∗
where the threshold value is µ∗ ≈ 1.57. If

µ is greater than µ∗
, then the family (b) undergoes weak osillatory instabilities whih are similar

to those desribed in [19℄. For instane, the spetrum of the solution (b) inludes the quartet of

omplex eigenvalues with the real part Reλ ∼ 10−5
for the ase µ = 1.7 and Reλ ∼ 10−4

for µ = 2.3.
In addition, the inset presented in the left top orner in Figure 5, (a) zooms in the bifuration edges

of onsidered families.

To summarize, our numerial observations allow one to onjeture that if the number of empty

potential wells between two in-phase FGSs (zero symbols in the middle of the ode) is odd, then the

omposed gap soliton is unstable due to strong exponential instability. Otherwise, it is either stable

or exhibits weak osillatory instability.

� 2.2. Stability of out-of-phase FGSs

Now let us onsider the seond lass of bound states onsisting of two separated out-of-phase

FGSs with the odes of the form (+0 . . . 0−) and (−0 . . . 0+). Let us �x again the depth of the

potential, V0 = 6. One an �nd the simplest states from this lass in Figure 2, (d)�(f) for parameter

µ = 1. Using FCM and EFM, we found that the gap soliton (d) and (f) are linearly stable, see

Figure 3, (d), (f). On the ontrary, the gap soliton (e) was found to be unstable, see Figure 3, (e).

The families of bound states (d)�(f), see Figure 5, (b), an be extended numerially from the

value µ = 1 to the smaller and greater values. But none of these families an be ontinued to the

lower bandgap edge. The bifuration points of solutions (d)�(f) are µ ≈ −2.774, µ ≈ −2.765, and
µ ≈ −2.777, respetively. Our numerial �nding here is that the families (d) and (f) are linearly

stable for all values of µ up to some threshold µ∗ ≈ 1.57. Notie that it is similar to the ase of two

in-phase FGSs. Moreover, in [19℄ the equality of the stability thresholds among another families of

gap solitons with odes (+), (++) and (+ ++) was also observed. The existene of suh threshold

may be related to the FGS itself whih is an elementary entity for more omplex gap solitons. For

greater values of µ, the families of two out-of-phase FGSs exhibit weak osillatory instabilities similar

to [19℄. The orders of the real parts of the unstable eigenvalues are approximately the same as in

the ase of two separated in-phase FGSs desribed above. The family (e) is unstable for the entire

interval of its existene.



598 P.P. Kizin

COMPUTER SCIENCE 2016. Vol. 26. Issue 4

| ( x , t ) |

1 / 3

PSfrag replaements

t t

t

x x

x
0 20000 40000 0 20000 40000

0 250 500

−30

0

30

−30

0

30
30

−30

0

30

(a) (b)

()

Figure 6. Numerial integration of equation (2) with the initial onditions depited in Figure 2, (a) and (d).

Pseudoolor plots of |U(x, t)|2 are shown. Pitures (a) and (b): the initial pro�le of the mode (+0−) with the

parameter µ = 1 and µ = 2, respetively. Piture (): the initial pro�le of the mode (+0+) with the parameter

µ = 1. The spatial step h ≈ 0.1 and the time step τ = 0.01. The initial pro�les were perturbed by the 3-perent

perturbation. The absorbing layers for |x| > 20 were inluded to remove the re�etion from the boundaries

Looking to these linear stability results, one an onjeture that the solutions from the seond

lass are linearly stable if two FGSs are separated by an odd number of empty potential wells and the

orresponding value µ is situated far enough from the upper bandgap edge. If the number of empty

sites is even, then these solutions are supposed to be unstable.

To study the dependene between instability of a gap soliton and the number of empty potential

wells in its middle, we omputed the spetra of �ve solutions with odes (+0+), (+00−), (+000+),
(+0000−) and (+00000+). All these gap solitons exhibit a strong exponential instability aused by

a pair of real eigenvalues. In Figure 4 one an �nd the results of this experiment. Real parts of

unstable eigenvalues deay exponentially as the number of empty potential wells grows. It may be

related to the oupling and unoupling of two separated FGSs due to the short and long distane of

separating, respetively. If the separated FGSs are unoupled, then the orresponding gap soliton is

linearly stable.

� 2.3. The dynamis of time-dependent GPE

In order to hek the preditions of linear stability analysis, we integrated numerially the time-

dependent NLSE (2) with the initial onditions depited in Figure 2, (a) and (d) with di�erent

parameters µ and V0. As we mentioned above, we used a �nite-di�erene sheme with the spatial

step h ≈ 0.1 and the time step τ = 0.01 in the domain [−10π; 10π] × [0; 40000]. In order to

eliminate the re�etion from the boundaries, we added arti�ial absorbing layers for x > 20 and

x < −20. Besides, we perturbed the initial ondition by means of the 3-perent perturbation, i.e.,
U(x, 0) 7→ 1.03 × U(x, 0). The results of this experiment are shown in Figure 6. Pitures (a) and

(b) orrespond to the mode (+0−) for the parameter µ = 1 and µ = 2, respetively. One an see
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that the results of numerial integration of (2) are in a good agreement with linear stability analysis

onsidered in the previous subsetions. The gap soliton omputed in the piture (a) preserved its

shape for the whole time of omputation while that in the piture (b) has been deformed due to

weak osillatory instabilities. Piture () exhibits the evolution of the mode (+0+) for µ = 1. It

has been on�rmed by the simulations that this mode is unstable. Notie that the harateristi

time neessary for the growing perturbation to manifest itself is muh smaller for the exponential

instability than for weak osillatory instability.

One more observation is as follows. The temporal evolution of the unstable mode (+0+) results
not in its destroying, but in forming of some pulsating formation resembling a breather. Simulations

for the odes (+00−), (+000+) and di�erent parameters µ and V0 yield the similar result. We

onjeture that this phenomenon is typial and every exponentially unstable bound state, e.g., one

with the odes (+0 . . . 0+), (−0 . . . 0−), (+0 . . . 0−) and (−0 . . . 0+), transforms into a pulsating

formation instead of being ompletely destroyed.

� 3. Conlusion

In the paper, we studied the stability of gap solitons for the one-dimensional nonlinear Shrödinger
equation (NLSE) with the osine potential (2). It is known, that under ertain onditions [2℄ eah

gap soliton of this equation an be oded by means of a bi-in�nite sequene of symbols of some �nite

alphabet. In our study, the parameters µ and V0 (µ is the hemial potential, see the ansatz (3),

V0 is the depth of the potential) were hosen from the Region 1 in Figure 1 where three-symbols

alphabet, �−�, �0�, and �+�, for the oding is relevant. The gap solitons of interest are the bound

states of a pair of fundamental gap solitons (FGSs) separated by some number of periods of the

potential. In-phase bound states orrespond to the odes (+0 . . . 0+) and (−0 . . . 0−) (the top row

in Figure 2) and out-of-phase ones have the odes (+0 . . . 0−) and (−0 . . . 0+) (the bottom row of

Figure 2).

In order to study linear stability of above-mentioned lasses of gap solitons, we solved numerially

the spetral problem (9) using the Fourier olloation method (FCM) and the Evans funtion method

(EFM). It follows from our omputations that some of the onsidered gap solitons are stable, some of

them exhibit strong (exponential) instabilities and other ones undergo weak osillatory instabilities.

The modes with the odes (+0−), (+00+) and (+000−) are linearly stable for all values of µ below a

ertain threshold. As µ exeeds this threshold, these modes exhibit weak osillatory instabilities. On

the ontrary, the gap solitons with the odes (+0+), (+00−) and (+000+) turned out to be unstable

due to the presene of a pair of real eigenvalues in their spetra for all onsidered parameters µ.
As the result, we onjeture that two separated in-phase (out-of-phase) FGSs are linearly stable

(unstable) for an even (odd) number of empty potential wells between them. Also, two in-phase

(out-of-phase) FGSs are linearly unstable (stable) for an odd (even) number of empty sites between

them. The diret integration of (2) by means of a �nite-di�erene sheme supported the linear

stability results. While all the results presented above orrespond to V0 = 6, we have also heked

that the main onlusions of our study remain valid for several other values of V0 (suh as V0 = 5
and V0 = 7).

It is interesting that the results of this study on�rm the known results on stability/instability

of intrinsi loalized modes (ILM) for the disrete nonlinear Shrödinger equation (DNLSE). It is

known that the DNLSE an be regarded as an approximation for the NLSE with a periodi potential

and ILM an be used for qualitative desription of gap solitons in the �rst bandgap [3,17℄ (so-alled

tight-binding limit). The rigorous statement about the number of unstable eigenvalues for ILM an

be found in [23℄. Theorem 3.6 of [23℄ onnets the number of unstable eigenvalues for an ILM with the

number of �ips in its ode. In [23℄ this result was formulated for the ase of the DNLSE with fousing

nonlinearity and is valid near so-alled antiontinuous limit only. Translating this statement to the

ase of the defousing DNLSE an be made by means of the staggering transformation. However,

using the analogy between the DNLSE and the periodi NLSE, one an expet instability of the

bound states for the odes (+0 . . . 0+) and (−0 . . . 0−) with an odd number of zero symbols between

nonzero symbols and for (+0 . . . 0−) and (+0 . . . 0−) with an even number of zero symbols, exatly
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as it is laimed in this paper. At the same time, the analogy with the disrete model fails to reveal

quite deliate osillatory instabilities desribed above that were not found in the ase of ILM.

A further generalization of this study may be assoiated with the following question: does there

exist a general relation between the stability of a gap soliton and its ode? We believe that the

numerial experiene summarized in [29℄ and in the present paper may be extended to gap solitons

with more omplex odes, as well as to the gap solitons from higher bandgaps. However, this

interesting issue lies beyond the sope of this paper.
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îò âåðõíåé ãðàíèöû ïåðâîé çàïðåùåííîé çîíû, ëèáî äåìîíñòðèðóþò ñëàáóþ îñöèëëÿòîðíóþ íåóñòîé÷è-

âîñòü âáëèçè ãðàíèöû çàïðåùåííîé çîíû. Äëÿ ïðîâåðêè ðåçóëüòàòîâ ëèíåéíîãî àíàëèçà, áûë ïðîâåäåí

÷èñëåííûé ñ÷åò ÍÓØ ñ ïîìîùüþ êîíå÷íî-ðàçíîñòíîé ñõåìû. Â ðåçóëüòàòå ýâîëþöèè, âñå ðàññìîò-

ðåííûå â ðàáîòå ýêñïîíåíöèàëüíî íåóñòîé÷èâûå ùåëåâûå ñîëèòîíû äå�îðìèðîâàëèñü â ïóëüñèðóþùèå

îáúåêòû, òîãäà êàê óñòîé÷èâûå ðåøåíèÿ ñîõðàíèëè ñâîé ïðî�èëü â òå÷åíèå âñåãî âðåìåíè ýêñïåðèìåí-

òà.
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