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Introduction

In mathematics, the concept of real numbers is one of the most important concepts. The
whole mathematical analysis is built on the basis of this concept: the concepts of limit, continuity,
derivatives, integrals, ordinary differential equations, and partial differential equations. The set of
real numbers is also the basis for complex analysis, probability theory, and many other sciences.
The achievements of science based on real numbers are hard to overestimate. Almost all physical
models of the world are built on real numbers. However, it can be noted that all practical
calculations are not related to real numbers, but to rational numbers. Irrational numbers are
basically inaccessible to practical use since they are described by an infinite non-periodic sequence
of numbers. For example, the simplest elementary functions, such as the square root or the
trigonometric function sine, cannot be used in calculations. Instead, their rational approximations
are taken. Real numbers are closely related to the concept of limit. In practice, calculation
of limits is often impossible. This is due to the fact that we cannot proceed to measure any
small time interval, and also cannot measure the coordinates of a body with any accuracy. If
the measurement accuracy is too high, the problem of identifying the body itself arises. The
boundaries of the body become too blurry. In addition, the modern physical picture of the world
is based on the quantum hypothesis, which does not correspond to the classical analysis. It turns
out that classical analysis does not correspond to practical calculations and requires a theory that
operates on similar concepts (continuity, derivative, integral), but uses only rational numbers.

The main difficulty in constructing an analysis on the set of rational numbers is based on the
fact that the set of rational numbers is not a complete space with respect to the natural metric i.e.
with respect to the module of difference. The boundaries of bounded sets may not exist; the limits
of fundamental sequences may also not exist. All these circumstances significantly complicate
the construction of classical analysis on incomplete space.

Some requirements for new analysis on rational numbers can be formulated. The requirements
are as follows:
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1) a new analysis should only deal with rational numbers;
2) a new analysis should abandon the use of limits;

3) anew analysis should be constructed based on soft set theory that has interpretations similar
to interpretations of continuity, derivative, and integral.

These requirements, of course, are not quite formal; rather, they express some trends and
wishes. They will acquire a very strict form below with the introduction of the corresponding
formal concepts. Similar attempts to build a new analysis were made as part of a soft analysis
[1-11], but using real numbers. In [8], the beginning of such an analysis was built only on rational
numbers. This work continues the development of this direction.

§ 1. One-dimensional tools of rational analysis

The main tool for working in rational analysis is the set of rational numbers. The set of
rational numbers is denoted by Q and the set of real numbers by R. Therefore, we introduce the
necessary operations and relations for the rational subsets.

Definition 1. Let A, B and C' be subsets of Q, and a,b,c € Q be rational numbers. Then,
arithmetic operations with subsets are defined as given below:

(i) A+ B={r € Q| 3Jac A bec B such that z = a + b};
(i) A—B={r€Q|dJdac A bec Bsuchthat z = a — b};
(i) Ae B={r € Q|3a € A, be B such that z = ab};
(iv) 4 ={z € Q|3Ja € A, b€ B\ {0} such that z = ¢}.

Definition 2. Let A be a subset of Q. Then, the non-negative and non-positive parts of A are
defined as given below:

(i) A®={xeAlx>0}
(i) A ={zr e A|x <0}

For rational numbers, in addition to the standard relations <, >, <, >, we shall use perturbed
relations, which are defined as in the following Definition 3.

Definition 3. Let a, b, c € Q be rational numbers and § € Q. Then,
() a>bsa>b—0;
(i) a>bea>b—4;
(iii) a <’ b a < b+ 6;
(iv) a<’b<a < b+

Now, let us consider R as a relation on the set Q, that is R C Q x Q, and () as a relation for
the power set Q, that is, ) C 29 x 2Q. We derive some relations for subsets of the set Q.

Definition 4. Let a,b € Q and A, B C Q. Then,
(1) aR“b < bRa;
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(i) AQ B < BQA;
(iii) AAI(R)B < aRbVa € A, Vb € B;
(iv) AExist(R)B < Vb € B, da € A such that aRD.

By a rational segment or simply a segment we mean the set of rational numbers, that are
defined in the following Definition 5.

Definition 5. Let, A, B be the subsets of Q. Then,
(@) [A, B] ={z € Q| AAN(<){z} A {z}AI(<)B};
(i1) let, A, B be the subsets of Q, then, the rational interval is defined as

(A, B) = {z € Q | AAI(<){z} A {z}All(<)B}.

Definition 6. Let, A, B be the subsets of Q. Naturally, we can consider the half-intervals of
the form (A, B] and [A, B) as given below:

() (A, B] = {z € Q | AAN(<){z} A {z}AN(<)BY;
(ii) [A, B) = {z € Q| AAN(<){z} A {z}All(<)B}.
Definition 7. Let A be the subset of Q. Then,

(i) [A,00) = {z € Q| AAN(S){z}};

(i) (A4,00) ={z € Q[ AAN(<){z}};
(i) (—o0, A) = {z € Q[ {z}Al(<)A};
(iv) (—00,A] ={z € Q| {z}AlI(<)A}.

For rational subsets, we introduce the boundaries of these subsets that are defined in the
following Definition 8.

Definition 8. Let A be the subset of Q. Then,
(i) the upper bounds of the set A is Up(A) ={b e Q| Va € A,a < b};
(i) the lower bounds of the set A is Down(A) ={b € Q |Va € A,a > b};
(iii) the maximum element of the set A is Max(A) = AN Up(A);
(iv) the minimal element of the set A is Min(A) = AN Down(A);
(v) a subset A for which Up(A) # () and Down(A) # () will be called bounded,
(vi) a subset A for which Up(A) # () will be called bounded from above;
(vii) a subset A for which Down(A) # () will be called bounded from below.

A bounded set A C Q will be called an interval if for any two numbers a,b € A, a < b, the
inclusion [a, b] C A holds.

Theorem 1. If A C Q is interval and bounded, then
(Down(A), Up(A)) € A € [Down(A), Up(A)].
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§ 2. The multidimensional tools of rational analysis

For simplicity, we consider the set Q® as a three dimensional rational space. Traditionally,
we denote an element of Q* by r = (z,y,2) = (r4,7y,7,). The main tools when working
with rational vectors are the subsets of rational vectors and families of these types of subsets.
Therefore, we introduce the necessary operations and relations for rational vectors and the subsets
of rational vectors.

Definition 9. Let u, v € Q? be rational vectors. Then,

(1) u+v=(uy+ vy, uy + vy, u, +0,);
(i) u—v = (Uy — Vg, Uy — Vy, Uy — V,);
(iil) tu = (tuy, tuy, tu,), t € Q;
(iv) (u,v) = uyvy + uyvy + u,v,.
Now, we define the arithmetic operations with subsets of rational vectors.

Definition 10. Let U,V be subsets of Q?; u,v € Q? be rational vectors and t € Q. Then,
() U+V={reQ®|JuelUIveV suchthatr =u+v};

(i) U-V={reQ®|JuelJveV suchthat r = u — v};
(iii) tU = {r € Q* | Ju € U such that r = tu}.

Let P be a relation on the set Q3 and S be a relation for power set of Q3. We have the
following derived relations for the subsets of Q3.

Definition 11. Let, U,V be subsets of Q?, and u, v € Q3 be rational vectors. Then,
(1) uP“v < vPu;

(i) US“V < VPU:

(iii) UAI(P)V < Vu € UVv € V such that uPuv;

(iv) UExist(P)V < Vv € V3u € U such that uPu.

§3. Vicinity mappings

In this section we introduce vicinity mappings and discuss some results.

Definition 12. Let / be a set. The mappings of the form 7: H — 2 will be called point-set
mappings. The set of all such mappings is denoted by F'(H). A subset of the set H for which
the 7 images of each point of this subset is not empty, will be called a domain of this map and it
will be denoted by Dom(H, 1) = {r € H | 7(r) # 0}.

Definition 13. If the image of a point-set mapping of the form 7: H — 2 for any argument
has cardinality no more than unity, then such a mapping will be called a function. We denote a
set of functions by ®(H).

Definition 14. The mappings of the form 7: 2/ — 21 will be called set-set mappings. The
notation for the domain remains unchanged Dom(H,7) = {U C H | 7(U) # 0}.
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For each point-set mapping 7: H — 2, we define a set-set mapping 7': 27 — 2 using

the formula 71(U) = |J 7(r) if U # 0, and 7*(0) = (). If there is no confusion, then we write
relU
71(U) = 7(U). We note the monotonicity property for such extensions of mappings. If U,V C H

and U C V, then 7/(U) C 71(V).

Any point-set mapping 7: H — 2/ can be considered as a vicinity mapping. Essentially,
vicinity mapping is simply an equivalent name for point-set mapping. The mapping value 7(r) is
interpreted as the set of points (or vectors) 7-close to the point r.

Example 1. Some of the vicinity mappings are waps(], wspla] € F(Q?), where
wabs{g](m = {U € Q3 | HTI - UJCH < ea(r), HTy - Uy” < 5y(r)7 Hrz - UZH < 52(T)}7
and
wepla](r) ={v € Q[ (ry —va)* + (ry —v,)* + (r. —v.)? <o}, aeQ.

Definition 15. For two vicinity mappings 7,0 € F(H), we say that 7 is narrower than 6 or
0 is wider that 7, if for any » € H we have 7(r) C 6(r). We denote thisas 7 C 6 or § D 7.

Definition 16. The mapping 7 : H — 2 for the mapping 7: H — 2 is determined by the
formula 7 (v) ={u € H | v € 7(u)}. It is easy to see that the condition # O 7 implies < D 7.

In addition to vicinity mappings, families of vicinity mappings, which are naturally called soft
vicinity mappings, will be used as our requirements.

Definition 17. By soft vicinity mapping, we mean a parameterized family of vicinity mappings
of the form 7: L — F(H), where L is a set of parameters of an arbitrary structure.

Example 2. A few soft vicinity mappings are 0[a, 3, .], 67 [«, ], 7[5, .]: L — F(Q), where
Olo, B,7](t) = [t = B(r),t +a(r)],  L=2(Q°) x »(Q) xQ,
0t la,r)(t) = (—oo,t +a(r)],  L=2(Q") xQ,
0718,7(t) = [t = B(r),00),  L=2(Q") xQ,
,B:Q—=Q, reQ’ teqQ.

The vicinity mappings 7 € F'(Q) are used to determine the following characteristics of subsets
of rational numbers.

Definition 18.
(i) The neighborhood of the set U C Q is Close[r|(U) = |J ({u} U7 (U)), Close[r](D) = 0.

uelU

(ii) The touching points of the set U C Q is Touch[7](U) = {u € Q | Close[r]({u})NU # 0}.
(iii) The soft maximal elements of the set U C Q is Sup|7](U) = U N Touch[r|(Up(U)).
(iv) The soft minimal elements of the set U C Q is Inf[7](U) = U N Touch[r](Down(U)).

Along with the introduced notation, sometimes when the set U is given by the values of
some function f on the set V, i.e., U = f(V), equivalent notations of this type will be used

Sup[7]|(U) = Su‘I/) [7]f(v) and Up(U) = Ug f(v).
ve ve
In determining soft maximal and soft minimal elements, one may also use the neighborhood

of the set instead of the touching points. However, such a technique does not give an essentially
new concept, which follows from the following proposition.
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Proposition 1. Close[7|(U) = Touch[r]|(U).

In the future, constructions in the form of the intersection of a family of rational segments
will be often encountered, therefore, we consider this question in more detail. So, let us consider
a nonempty set W and two given mappings F,G: W — Q. For any w € W, the inequality

F(w) < G(w) holds. We denote S = [ [F(w), G(w)]. Now, we are interested in two questions.
weW
How can we write the set S without using the intersection? Under what conditions will the set .S

be nonempty?

Proposition 2. [\ [F(w),G(w)] = [F(W),G(W)].

weW

Now, we state the following proposition without discussing the proof.

Proposition 3. Let o, € R; o,8 > 0 and the vicinity mapping is given by the formula
wla](u) = [u—a,u+ al. If F(W) is bounded from above, and G(W) is bounded from below,
then:

1) Inflw[B(G(W)) # 0

2) Suplwla]](F(W)) # 0;

3) ifa € Inf[w[B]](G(W)), b € G(W) and b < a, then b € Inf[w[B]](G(W));

4) if a € Suplwla]](F(W)), b € F(W) and b > a, then b € Sup|w[a]](G(W));

5) Inflw[BJ(G(W))AU(<)G(W) \ Inflw[S]|(G(W)),

6) Suplw[a]](F(W))AU(>)F (W) \ Suplw[a]](F(W)),

7) [F(W), GW)] = [Sup[w[o]](F (W), Inf[w[B]|(G(W))],

8) if there exists a number ¢ > 0 such that for any number v € Sup|w[c]|(F'(W)) and for any

number v € Inf[w[B)](G(W)), the inequality v — u > € holds, then [F (W), G(W)] # 0.
Here are some simple properties of the mappings Sup|w|«]] and Inf[w[5]].

Proposition 4. Let two bounded mappings f,qg: X — Q and k,«, 3,7 > 0 be given. Then:
1) (Suplwla]]f(z) + Suplw[B]]g(x))Exist(>) Sg)lg[w[v]](f () + g(x));

zeX zeX

2) (Inflw[o]]f(z) + Inf[w[p]lg(x))Exist(<) Inf [w[y]](f(x) + g(x));

3) Supluy])(F(@) + gla) AU Suplufal}f (@) + Suplu{dllg(z):
4) Tnf [P ])(F(2) + g)) A=) (Tnf [wlo]] £ (&) + Tof [w[B]]g(x));
5) K(Supluwla]f(x)) = Suplufral](kf(x)):

6) k(Inf[w[8llg(x)) = Inf [wlkB])(kg(x));

7) —Suplwla]l(=f(z)) = Inflwla]]f(2).

rzeX zeX
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Proof.
1. Let us consider an arbitrary point u € Sup [w[y]](f(z) + g(z)). Then, there exists x € X
zeX

such that u = f(x) + g(x) and the inequality u + v > f(y) + g(y) holds for any y € X. Now,
consider an arbitrary point v € Sup [w[a]] f(z).
reX

If v < f(x), then f(x) € Sup [w[a]]f(z), otherwise v > f(x). Therefore, there always
zeX
exists a point v* € Sup [w|a]]f(x) such that v* > f(xz). Similarly, there always exists a point
reX

w* € Sup[w[f]]g(x) such that w* > g(x). Hence, v* + w* > f(z) + g(x).
reX
2. The proof is similar to the above one.

3. Let us take two arbitrary points v € Suplw[a]]f(z) and v € Sup[w[f]]g(x). Since,
zeX zeX

Suplw[a]]f(z) € f(X) and Sup[w[f]]g(x) C g(X), then there exist two points y,z € X such
reX zeX

that u = f(y) and v = g(z). For any ¢ € f(X) and any b € ¢g(X), the inequalities f(y) > ¢ — «
and g(z) > b— (8 hold. We choose points ¢ and b agreed, namely, ¢ = f(z) and b = g(z). Hence,
we finally get the inequality f(y) + g(2) > f(z) + g(z) —a — .
4. This can be proven in a similar way. The remaining proofs are obvious. 0
Now, we discuss below some properties of rational segments and intervals.

Proposition 5. Let A, B,C, D C Q and k,6 > 0. Then, the following properties are true:
1) if (A, B) # 0, (C,D) # 0, then (A, B) + (C,D) C (A+ C, B + D);

2) if [A,B] # 0, [C,D] # 0, then |A, B] + [C, D] C [A+ C, B + D;

3) if [A,B] #0, [C,D] # 0, then [A+ C,B + D] C [A, B] + [C, D] + [0, ],

4) k[A, B] = [kA, kB], k(A, B) = (kA, kB);

5) —[A,B] = [-B,-A], =(4,B) = (=B, - A);

6) let [A,B] # 0 and x,y € [A, B), then, v —y € [A — B, B — AJ;

7) let AC C, BC D, and [C, D) # 0, then [C, D] C [A, B).

Proof

1. Let x € (A, B) and y € (C, D). This means that for arbitrary points a € A, b € B, c € C,
d € D; the inequalities a < z < b, ¢ < y < d are valid. Adding these inequalities, we obtain
inequality a + ¢ < x +y < b+ d. Therefore, (A, B)+ (C,D) C (A+ C,B+ D).

2. The proof can be obtained following similar steps as the proof of 1.

3. Let z € [A+ C, B+ D]. This means that for arbitrary pointsa € A, b€ B,ce€ C,d € D,
the inequality @ + ¢ < z < b+ d is valid. Since [A, B] # 0, [C, D] # 0, there are two rational
numbers 2° € [A, B] and ¢° € [C, D].

Now, we take four points a € Sup[w[2]](A4), ¢ € Sup[w[4]](C), b € Inf[w[$])(B) and d €
& Il [3])(D).

Then, a+ 2 € Up(4), c+ 2 € Up(C), b— 2 € Down(B), d — £ € Down(D) are valid. Now,
we consider the following four points:

J J J J
a® = min{a + é,xo}, & = min{c + §,y0}, b° = max{b — §’x0}’ d° = max{d — §,y0}.
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Then, the following inequalities are valid.
AAN(L)a® < VAN(L) B, CAI(L)? < d°AN(L)D,
and a® + — 6 <2<’ +d°+0.
There is a rational number ¢ € [0, 1] such that
z=a"+ =6+t +d° —a® - +20).

We set two points z* = a’ + t(0° — a°) and y* = & + t(d° — ).

Then, we finally have z = 2* + y* +0(2t — 1), =9 < §(2t — 1) < 4.

Hence, AAN(<)z* A z*All(<)B and CAI(<)y* A y*All(<)D.

The other proofs are easy to be obtained. U
§4. The gradient of a function in the multidimensional case

Let a function f € ®(Q?), a vicinity mapping 7 € F(Q?), and a soft vicinity mapping of the
form u: Q* — F(Q) be given.

Definition 19. A vector u € Q3 is called a (7, j1)-gradient of the function f at the rational point

r € Dom(Q3, f) N Dom(Q3, 7) if, for any w € 7(r) N Dom(Q?, f) the inclusion (u,w —r) €
€ ulr](f(w) — f(r)) is valid.

The set of (7, uu)-gradients of the function f at the point r is denoted by Grad(f,r, T, ). We
denote Dom(Q?, Grad(f,.,7, 1)) = {r € Q* | Grad(f,r, 7, u) # 0}.

The definition of a soft gradient is quite similar in its ideas to various generalizations of a
gradient and differential in the non-smooth analysis [4, 8, 11].

The meaning of the concept of a soft gradient is very simple. If a vector r is fixed, then
f(w) — f(r) is a function of an argument w. The formula (u,w — r) defines a linear function of
an argument w. The terms of Definition 19 mean the approximation of the function f(w) — f(r)
by the function (u,w — r) on the set 7(r) N Dom(Q?, f) with accuracy p[r].

Definition 20. The mapping ¢: Q> — 2Q° is said to be a selector for soft gradient
Grad(f,., 7, p) if:

(i) each image g(r) consists of one point or is empty;

(i) Dom(Q?, g) = Dom(Q?, Grad(f, ., 7, u));
(iii) for any point r € Dom(Q?, Grad(f, ., 7, t)); the inclusion g(r) € Grad(f,r, 7, ) is valid.

The set of selectors for soft gradient Grad(f, ., 7, 1) is denoted by grad(f, 7, ). It is to be
noted that the property of the monotonicity of a soft gradient is true under very general conditions.

Proposition 6. Let us consider two vicinity mappings 7,7 € F(Q?), two soft vicinity mappings
w, X of the form u, \: Q> — F(Q), 7 D v, and for any r € Q> we have u[r] O Mr]. Then for
any r € Q3, the inclusion Grad(f,r,7,\) C Grad(f,r,~, u) is true.

Let u = 0lo, B, 7] and we can remember that 0[«, 5,7|(t) = [t — B(r),t + «(r)]. Then, we
have the following:

Grad(f,r, 1,0, B,.]) =
={ue Q| (u,w—r) € [f(w)=f(r)=B(r), f(w)—f(r)+a(r)],Yw € 7(r)NDom(Q’, f)} =
={ue Q| (u,w—r) = flw)+ f(r) € [-B(r),a(r)], Vw e 7(r)NDom(Q’ f)}.
It is easy to find that the set Grad(f,r, 7, 0[«, 3, .]) is described by a system of linear inequal-

ities and a number of these inequalities is equal to the power set P(7(r) N Dom(Q3, f)}).
Now, we present some properties of the mapping Grad(f,r, 7, 0[«, 53, .]).
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Proposition 7. Suppose 7(r) N Dom(Q3, f)} # 0.
1. Let Grad(f,r, 7,0, B3,.]) # 0 and k € Q,k > 0. Then,

Grad(kf,r,7,0lka, kS,.]) = k Grad(f,r,7,0[a, 5, .]).

2. Let Grad(f,r,,0[a, 8,.]) # 0 and Grad(g,r,T,0[d,7,.]) # 0. Then,
Grad(f7 T? T? Q[Q’ /8’ ':I) +Grad(g’ r’ 7—79[57 77 ']) g Grad(f+g’ r? 770[a+5’/6+77 ':I)'

3. Grad(—f,r,7,0]c, B,.]) = —Grad(f,r,1,0[a, 5, .]).
4. If f is a constant function, then 0 € Grad(f,r,1,0|c, 3, .]).

A soft gradient can also be used to formulate the conditions for an approximate local extremum
of a function.

Definition 21. For a function f € ®(Q?), we call the point r € Dom(Q?, f) as

1) (a, B8, 7)-stationary if for any point w € 7(r) N Dom(Q?3, f), the inequality f(r) — a(r) <
< f(w) < f(r) + S(r) holds;

2) («, 7)-maximal if for any point w € 7(r)NDom(Q?, f), the inequality f(w) < f(r)+a(r)
holds;

3) (o, 7)-minimal if for any point w € 7(r) NDom(Q?, f), the inequality f(r) —a(r) < f(w)
holds.

We state the following proposition without discussing the proof.

Proposition 8. For any function f € ®(Q?), the following propositions are valid.

1. The point r € Dom(Q?, f) is («, 3, T)-stationary for the function f € ®(Q?) if and only if
0 € Grad(f,r,7,0)c, B3, .]).

2. The point r € Dom(Q?, f) is (o, 7)-maximal for the function f € ®(Q?) if and only if
0 € Grad(f,r, 7,0 [a,.]).

3. The point v € Dom(Q3, f) is («, T)-minimal for the function f € ®(Q?) if and only if
0 € Grad(f,r,7,0"[a,.]).

A soft gradient is a universal concept with which one can build various analogues results
of derivatives from classical analysis. For example, we can consider an analogue of directional
derivatives. Let [ € Q®. For the vector r € Q3, we define the set L(r,]) = {u € Q° |
Jt € Q such that w = r + tl}. As an analogue of directional derivatives, we consider the
set of (7, u)-derivatives in the direction [ of the function f at the point r, which is defined
as % (f,r,7,1,0) = Grad(f,r,7(.) N L(.,1), ). Naturally, this formula only makes sense if
7(r) N L(r,1) N Dom(Q3, f) # 0.

From Proposition 6, we can establish the following proposition.

Proposition 9. Let Grad(f,r, 7, 1u) # 0. Then, the following equality holds.

0
Grad(f,r, 7, 1) = ﬂ a(fa T, ).
7(r)NL(r,)NDom(Q3, f)#0
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If we take vectors coinciding with the direction vectors of the coordinate axes as the vector
I € Q3, then we obtain the analogues of partial derivatives

0 0 .
8_x<f’ r,T, :u) = a(f; T, Tv:ual)7
0 0 .
8_y(f7T777M) = a(fv,nTnuvj))
0 0

&(fa T7T7N) = a(fa T77—7/'L7k)7

where, i = (1,0,0), j = (0,1,0), £ = (0,0, 1).
From Proposition 6 the following proposition immediately follows.

Proposition 10. Let

om0, S A0, L (fnm) £0. Grad(frr ) #0.

Then, the inclusion

) ) )
CcC — — —
Grad(f,r,7,pu) C ax(fa T, ) N é)y(f, 7T, @) N az(f’ T, T, L)
holds.

We now consider the question of what values the subset of Grad(f,r, 7, 1) can take. Directly
from Definition 19, we obtain the following result.

Proposition 11. Let Grad(f,r, 7, ) # 0. Then, for any point w € 7(r) N Dom(Q?, f) the
inclusion f(w) — f(r) € ﬂ 1 r]((u, w — r)) holds.

u€Grad(f,r,m,u)

Now suppose that for any r € Q?, the condition 0 € p*[r](0) is satisfied and a set U C Q?
is taken such that for any point w € 7(r), we have (| u“[r]((u,w — r)) # 0. We define a
uelU

function g as follows: g(r) = 0, g(w) € () x[r]({u,w — r)), for any point w € 7(r) \ {r}.
uelU
Then, for any u € U and any w € 7(r), we have g(w) € g(r)+u~[r]({u,w—r)), or in equivalent

form (u, w —r) € p[r](g(w) — g(r)).
It follows that U C Grad(g,r, 7, ). So, the following proposition can be proven easily.

Proposition 12. Suppose that for any r € Q3, the condition 0 € p*~[r)(0) is satisfied and the
set U C Q3 satisfies the condition: for any w € 7(r), the set (| p*[r]({u,w — r)) is not empty.
uelU

Then, there exists a function g such that U C Grad(g,r, T, 11).

Thus, the condition of Proposition 12 is necessary and sufficient for the set U to be a subset
of the soft gradient of some function. One of the arguments justifying the need to build a new
analysis was the remark about the impossibility of numerically finding the limit. Therefore, the
question naturally arises: is it possible to numerically find a soft gradient? The answer to this
question substantially depends on how the function is set and how the soft gradient parameters
are set. If the function is given only on a finite set of points, which is characteristic of many
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practical problems, then the problem of finding the set Grad(f,r, T, 0[«, (3, .]) reduces to solving
a finite system of linear inequalities of the form given below.

flw) = f(r) = Br) < (w,w —r) < f(w) = f(r) + a(r) Yw € 7(r)NDom(Q?, f).

If the function is given on an infinite set, for example, in the form of an algorithm, then we
can choose the vicinity mapping 7 so that the set 7(r) is always finite. In this case, we also arrive
at a finite system of linear inequalities of the indicated type. Finally, a situation may arise when
it is not necessary to find the whole set of gradients Grad(f,r, 7, 8[«, 3,.]) but it is required for
a given vector u to find the minimum values of the parameters «(r) and §(r) which guarantee
the inclusion v € Grad(f,r,7,0[a, 3,.]). For a finite system of inequalities, this problem is also
easily solved.

§5. Soft integral and path

In this section, we study some properties of soft line integrals using paths. We procure the
following two paragraphs from [4].

First, we find out on which set it makes sense to consider the integration problem. Knowing
the value of the soft (7, u)-gradient of the function f at the point r imposes restrictions on the
values of the function f on the set 7(r). If the values of the soft gradient on the set 7(r) are
known, then this imposes restrictions on the values of the function f on the set 7(7(r)) = 72(r),
and so on. As a result, we come to a set Pro(r, 7)= [J 7"(r).

n>1

This set can be described in the language of graph theory. Each vector is considered a vertex.
An edge is a pair of vectors u,v if v € 7(u). The set Q3 with vicinity mapping 7 defines an
ordered graph. The set Pro(r, 7) is simply the set of vertices v for which there exists a path which
starts at  and ends at v. In other words, Pro(r, 7) is the connected component generated by the
vector r. Therefore, it is natural to pose the integration problem on the set Pro(r, 7). Since the
term “path” was used, we give its definition below.

Definition 22 (see [4]). A sequence of vectors R = (rq,7s,...,7,),n > 1, is called a T-path
if 7,41 € 7(r;) holds for any i = 1,2,3,...,n — 1. The set of 7-paths with a starting point r and
an ending point v is denoted by Path(r, v, 7).

It may be necessary to consider not all paths from a vertex to a vertex, but only some that
belong to a certain set, for example, a curve. If we denote this set by ¢ C Q?, then instead of
the vicinity mapping 7, we can take the mapping 7(r) N ¢ and then, under the condition r € ¢,
all points of any path from the set Path(r, v, 7 N ) will lie in the set ¢. Therefore, the use of
arbitrary vicinity mapping 7 is a universal tool of describing any path.

Let g: Q% — Q?, 7 be a vicinity mapping, i.e., 7 € F(Q?), 1 be a soft vicinity mapping
of the form p: Q* — F(Q) and R = (ry,72,...,7,) € Path(u,v,7). Generally speaking, a
soft mapping p can also have a wider set of parameters. In this case, these parameters will be
indicated additionally in the arguments of this mapping .

Definition 23 (see [4]). The soft (7, uu)-integral of the mapping g from wu to v is the set
n—1
Slgrul= () D aT[rlg(ri) v — ).
RePath(u,v,r) i=1

Throughout this section, we will always assume that a mapping ¢ is defined on the set

n—1
Pro(r, 7). The physical meaning of the integral sum > u*[r;]({g(r;), ;11 — 7;)) is completely
=1
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analogous to the corresponding sum of a line integral with the only difference that each element
of the sum (g(r;), 741 — r;) is calculated not exactly, but approximately and instead of the exact
number, some set p [r;]({g(r;), 41 — 7;)) of approximate values of this element. The method
of forming the value of a line integral and a soft integral is essentially different. A line integral is
the limit of integral sums with infinite fragmentation of the step of the path. This method requires
an infinite number of paths.

A soft integral is simply the values of approximate integral sums common to all the paths
considered. This method works for any power on paths set.

Theorem 2. Suppose that Path(u,v,7) # () and there exists a function f such that for any
path R = (ry,79,...,1r,) € Path(u,v,7), points r; belong to the domain of definition of the
gradient of the function f, i.e., r; € Dom(Q?, Grad(f,.,7,u) for i = 1,2,...,n. Then, the
inclusion f(v) — f(u) € N S 1g, T, u] holds.

g€Grad(f,7,u)

Proof. Let us consider an arbitrary path R = (r1,79,...,7,) € Path(u,v,7). We also
consider an arbitrary selector g € Grad(f, 7, ). By the definition of a soft gradient, for any
i=1,2,...,n—1, the inclusion (g(r;), ri11 — 1) € p[ri](f(riy1) — f(r;)) holds, or in equivalent
form we have f(riy1) — f(r:) € p[ri]((g(ri), i1 — 13)).

Since the path was chosen arbitrarily, on the right side of the inclusion we can take the
intersection along all admissible paths. Then, since the selector is also chosen arbitrarily, we can
take the intersection for all selectors as well. Hence, the proof is done. 0

The above theorem can also be treated as a theorem on the existence of a soft integral. If a
mapping g: Q® — Q3 is a selector of some soft gradient Grad(f, ., 7, u) and Path(u, v, ) # 0,
where u, v, € Dom(Q?3, g), then the soft (7, u1)-integral of the mapping ¢ from u to v exists, i.e.,

Svlg, T, u] # 0.
Another result of theorem 2 turns out if we consider a closed path, i. e., the case when u = v.
Then, under the conditions of theorem 2, we obtain 0 € N SYg, 7, ul

g€Grad(f,7,u)
The construction of a soft integral was carried out in a very general way and this certainly

constrains the ability to establish the properties of a soft integral. For further research, we specify
some parameters of a soft integral. As a soft vicinity mapping p: Q¥ — F(Q), we consider the
soft vicinity mapping w(e](r) = {v € Q| |[v — 7| < €}, € € Q¥,r € Q. Inverse of it is easy to
compute as w* [¢](r) = wle](r).

Now, the soft integral takes the following form:

S rwlll= () SUalri)rier — i) — e {g(ri), e — i) + €

RePath(u,v,7) i=1

= ﬂ i(@(ri)ariﬂ —r;) + ne[—1,1])

RePath(u,v,7) i=1

Following proposition can be obtained from Proposition 2.

Proposition 13. Let o, 5,c € Q and o, 5, > 0, then

Algrolel] = | S ola] (o ((a(r) e =) = ne),

n—1

Inf [W[ﬂ]](Z«g(m), Tiy1 — Ti) + ne)

RePath(u,v,7) T
1=
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The soft integral can also be written in another form. Let R = (rq,79,...,7,) € Path(u,v, 7).
We first define the following notions.

Z g(ri),riz1 — i), 0(R,g,6) = 0(R, g) — N(R)e,
o(R,g,e) = o(R,g) + N(R)e.
Proposition 14. Let ¢ € Q and ¢ > 0, then
Vg, T, wle]] = [e(Path(u, v, 7),g9,¢),d(Path(u, v, 1), g,¢)].
Now, we discuss some properties of the functions ¢ and &.

Proposition 15. Let o, .,k € Q, R € Path(u,v,7) and o, B,k > 0. Then,

7) o(Path(u,v,7),9+ f,a+ B) C o(Path(u,v,7), g, ) + o(Path(u, v, 7), f, 5)
8) o(Path(u,v,7),9+ f,a+ B) C g(Path(u,v,7), g, a) + o(Path(u, v, 7), f, 3)
9) o(Path(u,v,7), kg, ka) = ka(Path(u,v, 1), g, ),

(10) o(Path(u,v,7), kg, ka) = ko (Path(u,v,7), g, a);

(11) o(Path(u,v,7),—g,a) = —a(Path(u,v, 1), g, a)

(12) a(Path(u,v,7),—g,a) = —a(Path(u,v, 1), 9, a)

Using the above results, it is easy to obtain the following properties of the soft integral.

Proposition 16. Assume that (g, 7, w(e]] # 0, SU[f, 7,w[\] # 0 and k,e,\ € Q, k,e, A > 0.

Then,
(1) Solg, 7o wlel] + Sl 7wl € Sl + f, 7 wle + Al
(2) Sulkg, 7 wike]] = kylg, 7, wlell;
(3) Sul=g, 7 wlell = =Sly, 7 wiell;
(4)

Stlg. mwle]) € lo(R.9.2).7(P.g.))
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Proof
1. From Propositions 4 and 14, the following properties hold.

Shlg, mowlel] + Sl 7 wlA]]
[o(Path, g,¢),5(Path, g, )] + [g(Path, f,\),7(Path, f, \)]
lo(Path, g,¢) + a(Path, f, \),a(Path, g,e) + a(Path, f, \)]

C
C [g(Path, g + f,e + ), 7(Path, g + f,e + \)] = Sylg + f,7,wle + AJ].

e

In these results, the argument Path(u, v, 7) in all the functions g, & is the same and is replaced
by the symbol Path for brevity. We skip the other proofs. U

The soft integral I [g, 7, wle]] is a rational segment. Let us estimate the size of this segment
and the segment itself. We introduce a set of paths that give the minimum number of steps in a
path belonging to the set Path(u, v, 7).

We define MinPath(u,v,7) = {P € Path(u,v,7) | N(P) = . thi(n )N(R)}.
€Path(u,v,m
Proposition 17. Assume that S%[g, 7, w[e|] # 0. Then,
(1) SU[g, T ,wle]] Co(R,g9) +eN(R)[—1,1] VR € MinPath(u,v,7);

(2) for any z,y € SUlg, T, w(e]] the inequality | x —y |< 25R thi(n )N(R) holds.
€Path(u,v,m

We now consider the question of additivity with respect to the upper limit of a soft integral.
We need a concatenation operation for paths.

Definition 24 (see [4]). Let R = (ry,79,...,7,) € Path(u,v,7), P = (p1,p2,---,Pm) €
€ Path(v,w, 7). Then, the concatenation of T-paths R and P is called a 7-path ), where
Q = REB P = (r177a27 <oy Tpy P2, 7pm) = (T177027 ey Tn—1,P1,- - - 7pm)

An obvious proposition directly follows from the above definition.
Proposition 18. Ler Path(u, v, 7) # 0 and Path(v,w, ) # 0. Then,
Path(u, v, 7) @ Path(v,w, ) C Path(u, w, 7).

Proposition 19. Let u # v # w, S[g, T,wle]] # 0, SY[g, 7,we]] # 0, S¥[g, 7,wle]] # 0 and
€,0 > 0. Then,

%3[977—7“}[6“ + gf[g,r,w[a]] + [_57 6] 2 %5[977—76‘][&?]]'

P r o o f. From Proposition 18 it follows that Path(u, v, 7) & Path(v,w, ) C Path(u,w, 7).

From here we get o(Path(u,v,7),g,¢) + o(Path(v,w, 1), g,¢) C a(Path(u,w, 1), g,¢), and
o(Path(u,v,7),g,¢) + a(Path(v,w, 1), g,¢) C a(Path(u,w, ), g,¢).

For the sum of the integrals from Proposition 5 we have

Sulg, 7 wle]] + S7lg, 7 wlel) + [=6,0] 2
2 [Q(P&th(u, v, T)? 9, 6) + Q(Path(va w, T)7E(Path(u7 v, T)J 9, 8) + E(Path(’l]7 w, T)? 9, 6)] 2
2 |o(Path(u, . 7), 9,¢),7(Path(u, w, ), 9,¢)] = Iy [g, 7, wle]]-

O
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§ 6. Comparison

The area of soft rational analysis was established by the second author of this paper in [8].
Here, several properties of continuous function were introduced in the sense of soft rational
analysis. These properties are fundamental building blocks of soft rational analysis. But, it is
known to us that derivatives and integrals are two of the main building blocks of real analysis
and allied areas of mathematics, thus it is important to introduce concepts of derivatives, integrals
and then to study their properties from the viewpoint of soft rational analysis.

The concepts of derivatives and integrals were introduced by Molodtsov [4] and their many
fundamental properties were studied. In [4], the notion of 7-path, soft (7, u1)-integral of mapping
g from point u to point v, etc. were introduced. The idea of proximity mapping was considered
in [4]. Several properties of paths were studied from the perspective of soft rational analysis and
proximity mappings.

In this paper, we investigate some new properties of soft rational line integrals by introducing
a new concept of a soft gradient. Using a soft gradient, properties of paths are studied under
concatenation. Moreover, properties of paths are investigated for two mappings ¢ and f under
various structures viz. g + f, kg, etc. where k € Q and k£ > 0. We also show some properties
of (7, u)-integrals for two mappings g and f with some of the above structures. In this manner,
it is important to ensure that the results of this paper may be found similar in nature to some
results of [4], but in reality, they are completely different and newly established results. The
differences between the second author’s work in [4] and this paper are based on two ideas:
proximity mappings and gradients in soft set setting from the perspective of rational analysis. Our
present paper studies several new fundamental results in the paths of soft rational line integrals
with the help of the concepts viz. soft gradients, («, 3, T)-stationary points, etc. Some of the
inclusion properties are studied in the settings of soft gradients, and these properties are used to
investigate several properties of paths under the various structures viz. concatenation, g + f, kg,
etc. where £ € Q and k£ > 0. This paper extends the concept of a soft rational line integral as a
continuation [4] but in an independent manner with several new notions as stated above.

§ 7. Conclusion

In this paper, some concepts of a soft rational gradient and a soft rational integral are proposed.
Some properties of a soft rational gradient are established. A necessary and sufficient condition
is found so that a certain set can be a subset of the gradient of a certain function. Moreover, the
important properties of the soft rational integral are established. The inclusion for the integral
of a gradient is proved. Semi-additivity and positive uniformity of a soft rational integral are
established. Estimates are obtained for a soft rational integral and the size of its segment. Semi-
additivity with respect to the upper limit of integration is proved.

However, only the first step has been taken towards the construction of soft rational analysis,
and the theory of soft rational integration. Many interesting questions are still unexplored. Some
of them are as discussed below.

Q.1. What are the necessary and sufficient conditions for the existence of a soft integral?

Q.2. What are the stability issues of a soft gradient and a soft integral?

Q.3. What is the connection between a one-dimensional soft integral and a multidimensional
soft integral?

Q.4. How to build soft analogues for integration by the area and volume? How to find out
the possibility of constructing analogues of the Green’s formula and Divergence theorem?

Q.5. What are the connections (in the limit) between a soft integral and classical Riemann,
Lebesgue, Perron and Kurzweil integrals?
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Q.6. What will be the consequences of applying the soft rational analysis in various applied
sciences: in theoretical mechanics, in quantum mechanics, etc.?

Thus, we hope that this paper will find suitable scopes for further research for the benefit of
theoretical computer science.
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BECTHUK VIMYPTCKOI'O YHUBEPCHUTETA. MATEMATHUKA. MEXAHUKA. KOMIIBIOTEPHBIE HAVKH

MATEMATHUKA 2021. T. 31. Bem. 4. C. 578-596.

C. Auaposcu, /1. A. Monoouoes
MSrkuii paiiMoHaJ bHbII KPUBOJMHEHHBINA HHTErpai

Krnrouesvie cnosa: MATKUN pallMOHAIBHBIA aHAJIU3, MATKUM TPaUEHT, MITKUNA UHTErpaj, MSATKOe MHOXe-
CTBO.

YIK 517.977
DOLI: 10.35634/vm210404

Teopust MATKMX MHOKECTB — 3TO HOBas 00JacTh MaTeMaTHKU, KOTOpasi HMEET JeJI0 ¢ HeONpeAeIeHHOCTSI-
Mu. [IpunoxeHnss TeOpuu MIATKUX MHOXKECTB IIMPOKO PACHPOCTPAHEHBI B PA3IMUYHBIX OOJIACTAX HAyKH U
COLMAJIbHBIX HAyK, TAKHX KaK NMPHHATHE pelIeHui, nHQopMaTHKa, pacro3HaBaHiHe 00pa3oB, HCKYCCTBEH-
HBIA MHTEJUIEKT | T. 1. BaXKHOCTh MATKHX TEOPETHKO-MHOXECTBEHHBIX BEPCHH MAaTEeMaTHYEeCKOTO aHajn3a
OLIYIIACTCS B HECKOJBbKHUX 00nacTsax MHGopMaTHKU. B 3Tol crarbe mpeanararoTcsi HEKOTOPbIE KOHIETILUH
MSATKOTO TpajiieHTa (PYHKIHUU ¥ MATKOTO HHTETPalla, aHaJora KpUBOJIMHEHHOTO MHTErpaia B KIIACCHYECKOM
aHajJM3e. YCTaHOBJICHBl OCHOBHBIE CBOMCTBA MATKHMX IpaaueHToB. HalineHo HeoOXoauMoe U JOCTaTOYHOE
yCIIOBHE, MIPH KOTOPOM MHOXKECTBO MOXKET OBITh IOAMHOXECTBOM MSTKOTO I'paJHeHTa HEKOTOpoil (yHK-
uu. J{oKa3aHo BKIIIOYEHHE MATKOTO TPAJMEHTa B MATKUI MHTErpas. YCTaHOBJIEHBI MONyaIIUTUBHOCTH U
MIOJIOXKUTENbHAs OMHOPOAHOCTh MATKOTO HHTEerpasa. IlomydeHsl olleHKH MATKOTO HHTErpaia u pasMepa ero
orpeska. [lomyaniuTUBHOCTE OTHOCUTEIBHO BEPXHETO Ipenesia MHTEerPpUpOoBaHMs JokazaHa. Kpome Toro,
9Ta CTaThs pacIIUpseT TEOPETUUYECKHE pa3BUTHE MATKOTO palMOHAIBLHOIO KPUBOJIMHEIHOTO MHTErpana u
CBSI3aHHBIX 00JacTel Ui MOBBIMICHNS (PYHKIMOHAIBHOCTH C TOUYKH 3PEHUS BHIUUCIUTEIBHBIX CUCTEM.

®unancupoBanue. Mccnenosanue JI. A. MojioamoBa ObLUTO TPOBEACHO MPH YaCTUYHOMN mojaepxke Poc-
cuiickoro GoHna GyHIaMEeHTaIbHBIX HcciemoBanmid (mpoekt 19-01-00625).
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