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Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a
finite network. A discretized equation on an unbounded plane or space results in an infinite network. In
an infinite network, Schrodinger operator (perturbed Laplace operator, g-Laplace) is defined to develop
a discrete potential theory which has a model in the Schrodinger equation in the Euclidean spaces. The
relation between Laplace operator A-theory and the A,-theory is investigated. In the A ,-theory the Poisson
equation is solved if the network is a tree and a canonical representation for non-negative g-superharmonic
functions is obtained in general case.
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Introduction

The classical Schrodinger equation in the Euclidean space is Au(z) = Au(z), A > 0, in its
simplest form. In a discretised form, finding solution to this equation is an eigenvalue problem
when considered on a finite graph with a set of transition functions (as in the case of a finite
dedicated network with known conductance on the branches). A suitable method [1] to consider
this discrete problem is to make use of the Perron—Forbenius Theorem (see Gantmacher [2]).

A strikingly similar equation Au(z) = p(x)u(z) where p(z) > 0 is a C''-function is con-
sidered in the classification theory of Riemannian manifolds [3]. Here the Dirichlet norm on a
Riemannian manifold is widely used. Some of the questions not considered in this context are:

(1) Can we avoid the use of the Dirichlet norm and the Dirichlet principle so that the equation
can be solved in a larger context?

(77) Is it possible to relax the condition p(z) > 0 to include some negative values for p(x)?

(iii) If there is a positive solution ¢(z), Ap(x) = p(x)¢(z), then p(z) = 222 s it possible to

o(x)
carry out the investigation if there exists a C'-function £(z) > 0 such that p(z) = Aég)?

As a prelude to investigate these questions by developing new techniques for proofs, we
fall back on a discretised version of Riemannian manifolds: In an infinite graph with a countable
number of vertices and a countable number of edges, provided with a set of transition indices (as in
an infinite random walk with known transition probabilities) study the properties of the solutions
to the equation Au(x) = g(z)u(z) where g(z) > Agﬁ—g) for a function £(z) > 0. The methods we
are using here to study functions on an infinite graph with a set of transition functions (named
here an infinite network) have a reflection on the study of potential theory on locally compact
spaces. Our investigation uses extensively the properties of superharmonic functions, potentials
etc. defined on an infinite network by means of the discrete Laplace operators. Recall that such
properties are variously introduced and studied extensively by different authors like Cartier [4],

Yamasaki [5], Soardi [6], Cohen—Colonna—-Singham [7], Soardi [8], Woess [9] and Anandam [10,
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11], Hedenmalm-M. Rodriguez [12], Alyusof—~Colonna [13], Simon [14], Colonna-Tjani [15,16].
For these works, the basic idea comes from Algebraic Geometry, Electric Networks, Random
Walks or Classical and Axiomatic Potential Theory.

In a finite electrical network, the Schrodinger operator appears as a pertubation of the combi-
natorial Laplacian [17, 18]. It introduces generalised versions of the classical condenser principle
and the effective resistance. Abstracting this situation, let us take a finite graph X provided
with a set of transition indices t(x,y) > 0 between the vertices. Suppose ¢(x) is a real-valued
function on X. Then using Perron—Forbenius Theorem (see Gantmacher [2]), it is shown that

q(z) = (i) + ¢ where {(x) > 0 with )~ &(z) = 1 and the constant ‘¢’ is uniquely determined.

Further study of functions defined on { X ¢, ¢} diversifies depending on whether ¢ = 0 or ¢ > 0 or
¢ < 0. In a broad sense, these three cases correspond to the Laplace, Schrodinger, and Helmholtz
operators respectively in the Euclidean spaces.

In this paper, we examine only the case ¢ > 0 in an infinite network {X, ¢}, where X is
an infinite graph and {t(z,y)} is a set of transition indices. We fix a function ¢(x) such that
q(z) > g(( ) for some function &(x) > 0. Remark that ¢(z) can take negative values also.
In this case, the Schrodinger operator A, is given by Aju(x) = Au(z) — g(z)u(x). Then we
develop a discrete Schrodinger potential theory based on the operator A,. These results finally
lead to an integral representation of positive A -harmonic functions, by using a Choquet theorem.
We conclude by proving A,-harmonic extension theorem and obtaining a solution to the Poisson
equation, if the network X is actually an infinite tree.

§ 1. Preliminaries

Consider a graph X with countable infinite number of vertices and countable infinite number
of edges (see Yamasaki [5]). We say two vertices x,y are neighbours if and only if there exists
an edge joining these two vertices, denoted by = ~ y. For any pair of vertices x,y we associate
a transition function ¢(z,y) such that ¢(x,y) > 0 and ¢(z,y) > 0 if and only if z ~y. We
assume that ¢(x,y) may be asymmetric, that is ¢(x,y) and ¢(y,x) may be different. We write

t(x) = (Z)t(ﬂc,y)-
Y~x
The following terms are defined in [10]:

e (Infinite Network) A pair { X, ¢} is said to be an infinite network if it satisfies the following
conditions:

(1) X is connected, that is, for any two distinct vertices = # y there exists a path {z =
= Zg, Ty, -+ , %, =y} connecting x and y.
(17) X is locally finite, that is, for any vertex € X has only finite number of neighbours.
(771) X has no self-loops, that is, any x there is no edge connecting x to x.
e (Interior and Boundary of a set) We say a vertex x is an interior vertex of a subset F' if and
only if z and all its neighbours are in F'. The set of all interior vertices of ' is denoted
by F and the boundary of F' by O0F = F \F

e (Circled Sets) An arbitrary set I’ in X is said to be circled if every vertex in OF has at

least one neighbour in F'.

e (Laplacian operator) Let v be a real-valued function defined on F'. For z € F', the Laplacian

of v at x is defined as
Av(z) =Y ta,y)[v(y) — v(z)).

Y~
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We say that v is harmonic, superharmonic or subharmonic at z if and only if Av(z) = 0,
Av(z) < 0 or Av(x) > 0 respectively. If Av(xz) = 0 (respectively Av(z) < 0) for every

[e]
x € F, then v is said to be harmonic (respectively superharmonic) on F'.

e A Schrodinger network {X,t,q} is an infinite network {X, ¢}, in which ¢(z) is a real-

valued function on X such that ¢(z) > Agf—g), for some positive real-valued function &(x)
on X.

e (g-Laplacian) Let v be a real valued function defined on { X, ¢, q}. The ¢-Laplacian of v at
x € X is defined by,

Ago(x) = Av(z) — g(x)o(w)
= > i@ w)[e(y) — ()] ~ glx)o(a)

Y~z

="t y)oly) - ) + g(@)]o(z).

y~z

We say that v is g-harmonic, g-superharmonic or g-subharmonic at x if and only if
Ayv(z) =0, Aju(x) <0 or Ayu(z) > 0 respectively.

Note:

1. &(x) is a positive g-superharmonic function, that is, A,{(x) = Aé(x) — q(z)€&(z) < 0.

2. t(x) +g(w) > 0 on X, for g(w) > &L = 37 LW _ 4(p) 50 that g(x) + (x) > 0.

Yy~

e (g.qg-h.m, greatest g-harmonic minorant) Let s be a ¢-superharmonic function and v is a ¢-
subharmonic function on ' C X such that s > v. Then there exists a g-harmonic function
h on F such that s > h > v. This function h can be chosen such that if there is another
g-harmonic function A* on F' such that s > h* > v then A > h*. This g-harmonic function
h is called the greatest g-harmonic minorant, (g.qg-h.m) of s on F.

e (g-potentials) A non-negative g-superharmonic function s defined on a subset F' is said to
be a g-potential if and only if the greatest g-harmonic minorant of s on £ is 0.

Some of the propositions and theorems in the case of a Schrodinger network can be proved
in a fashion similar to those of a usual infinite network, as given in [10]. Here we mention some
of those results which we use in this paper.

Theorem 1 (Generalized g-Dirichlet Problem). Let E be a subset of a Schrodinger network X

and F C E. Suppose f is a function defined on E\F such that u > f > v on E\F where u and
v are defined on E, w> v on E, Aju <0 and Ajv > 0 at each vertex in F. Then, there exists a
function h on E such thatw> h > v on E, h = f on E\F, and Aqh(x) =0ateachz € F, and
the function h can be so chosen that if hy is another such q-harmonic function on E with these
three properties, then hy < h. However, the function h is uniquely determined if F' is a finite set.

Theorem 2 (Riesz representation). If's > 0 is a q-superharmonic function on E, then it can be
represented as a sum of a q-potential p and a non-negative q-harmonic function h, s = p + h on
E; and this representation is unique.
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Theorem 3 (¢-Domination Principle). Let v and f be two functions on X. Let Ajv < 0 on X
and A ={x: Ayf(x) <0} Ifv> fon A thenv > fon X.

Remark 1. Let s be a g-superharmonic function on X. Suppose A is the smallest subset of X
such that s is g-harmonic at each vertex of X'\ A. Then A is referred to as the g-harmonic support
of sin X.

Theorem 4. Let f(x) be a real-valued function on X. Suppose the family § of q-superharmonic
functions s majorizing f on X is non-empty. Then Rf(x) = ing s(x) is g-superharmonic on X
sE

and q-harmonic at each vertex a where f(x) is q-subharmonic.

Theorem 5 (¢-Balayage). Consider an arbitrary subset F' of X and let w > 0 be a g-
superharmonic function on X. Then a q-superharmonic function RE > 0 exists on X, such
that RE < w on X, RE = w on F and RE is q-harmonic at each vertex in X\ F.

§ 2. The operator A* and its relation to the operator A,

Aé

Let { X, ¢, q} be a Schrodinger network. Since we have taken ¢(z) > ) for some &(z) > 0

there exists a positive g-superharmonic function £(z) on X (see [10, Theorem 4.1.9]). That is,
q(x) = Agﬁ(x however now —A, R (b) = Ad,(b) where ) is a constant, so that —A, R (a) =
Mg (a) = A. Consequently —A,R% (b) = [A R} (a)]d,(b). This shows that —A,[G,(b)] = d4(D).
This does not ensure the existence of a ¢g-potential on X.

The following proposition gives the relation between the Laplacian and the g-Laplacian oper-
ators.

Proposition 1. Let u(x) be a real valued function on {X,t,q}. If v(z) =

u(x)
@) then

Agu(r) =Ytz y)uy)vly) — v()].

Proof.
Aqu(z) = Au(z) — g(z)u(z)
u(x A,u(x)u T

()
:ﬁ )3 ta,y)] (2) Dty ()]
= > ) )l oty) = ) () )
=Dtz y)u)(y) — v(@)]

O
Now we consider a new set of transition functions t*(z,y) = t(x,y){(y). Then {X,t*(x,y)} is
an infinite network and A* denotes the Laplacian of this network. From Proposition 1 we get
Agu(x) = A*[ ] for any real valued function u(z) on X. Consequently u(z) is g-superhar-

monic (g¢- harmonlc or g-subharmonic) in { X, ¢, ¢} if and only 1f is superharmonic (harmonic



644 Infinite Schrédinger networks

or subharmonic respectively) in {X,¢*}. So the potential theoretic properties of the Schrodinger
network {X ¢, ¢} can be deduced from those of the network { X, ¢*}. It follows from the above
narrative that, for any vertex a in X, it is not difficult to see that there exists a g-superharmonic
function s,(z) on X such that —A,[s,(z)] = 0,(x). It is possible to give some more special
properties of this function s,(x) depending on whether there exist positive g-potentials or not on
X. Functions with these special properties will be named ¢-Green potentials or q-logarithmic
potentials. In the classical potential theory, in R? the basic kernel is the Newtonian potential
Gy(x) = ﬁ A generalisation of this kernel in measure spaces and topological spaces leads to
a rich theory in random walks, Markov processes, elliptic differential equations etc. However in
R? the basic function is the logarithmic kernel — log |z — y| which is not a positive kernel. But
this kernel is very useful in the study of function theory on Riemann surfaces and Riemannian
manifolds. The two kernels, when a point is fixed, are superharmonic functions. Abstracting
these in the context of a discrete potential theory on networks, we study hyperbolic and parabolic
networks.

Theorem 6 (¢-Green potentials). If there are q-potentials on X, then for any vertex a, a unique
g-potential G,(b) > 0 exists on X, such that A;G,(b) = —6,(b), for all b € X.

P r o o f. To construct this function, if w > 0 is a ¢-potential on X, then take

R (b)

Ga(b) = ———r—~
(~20) Ry (a)
where RLY > 0 is a g-potential and R < w. Since a positive g-superharmonic function

dominated by a g-potential is itself a g-potential (see Theorem 3), then GY > 0isa g-potential.
To prove the uniqueness, consider another g-potential ¢ > 0 such that

—2,Q(b) = da(b).

Then Q(b) = G,(b) + u(b), where u is a g-harmonic function on X. We note that u = 0, by
Riesz decomposition of a positive g-superharmonic function (see Theorem 2), as the unique sum
of a ¢g-potential and a non-negative g-harmonic function. 0

An infinite network X is said to be parabolic if and only if there exists no positive potential
in X. So from above Propositions 1 there are positive g-potentials in a Schrodinger network
{X,t,q} if and only if there are positive potentials on the network {X,¢*(z,y)}. Consequently
the network { X, ¢, ¢} is parabolic if and only if { X, ¢*} is parabolic.

Let us consider a parabolic Schrodinger network { X, ¢, ¢}. Fix the vertex e € X. Then in
the parabolic network {X,¢*} there exists a function H(z) on X such that A*[H}(x)] = 0 if
x # e and HY(z) > 0 outside a finite set A in X (Theorem 3.2.4 [10]). Set H.(z) = u(x)H}(z).
Note that A (H.(z)) = Ay(u(x)H (z)) = A*(H}(x)) = 0 and if z # 0 H.(z) > 0 outside the
finite set A. Fixing the function H}(z) on X some of the results in the parabolic Schrodinger
network {X, ¢, ¢} can be deduced from the corresponding results known in the parabolic network
{X,t*}. This function H.(z) has many important properties which are discrete analogous of the
logarithmic function log |x| on R

§ 3. Integral representation of non-negative g-superharmonic functions on Schrodinger
networks

Let {X,t,q} be a hyperbolic Schrodinger network. In this section we give an integral repre-
sentation of positive g-harmonic functions, using the Choquet Integral Representation Theorem
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as in [19]. Later we obtain a canonical representation for non-negative g-superharmonic functions
on X.

Let H; be the set of all non-negative g-harmonic functions defined on {X,¢,q}. H; is a
convex cone which is a lattice for the natural order. Consider B to be the base of H ; , consist-
ing of the functions i such that for a fixed vertex e € X, h(e) = 1, h € HS. By using the
Harnack property [20, Lemma 3.1], we see that ‘5 is compact. The extremal elements £ of the
base B consist of the minimal g-harmonic functions. Take H = H — H.f, we define the norm

for f,g € H, as ||f — g|| = sg}g%. In H, H is a convex cone, which is a lattice,

with a compact base 8. By using the Choquet integral representation theorem from the lecture
notes [20,21] we have the following integral representation of a positive g-harmonic function.

Theorem 7. Let X be a Schrodinger network. Then there exists a unique unitary measure
v > 0 with support in the extremal set E' in B such that for any f € H],

flx) = / h(z)dv(h), forz e X.

We have just seen a representation for positive g-harmonic functions on a Schrodinger network
{X,t,q} as integrals. Let us now represent a g-potential as an infinite sum of g-potentials. For
that recall that in a hyperbolic Schrodinger network, for any y in X there exists a g-potential
G{(r) such that A,[GY(x)] = —d,(x) for all  in X.

Theorem 8. Let p(xv) be a g-potential on X. Then p(x) = »_ GI(x)[-Ap(y)].
yeX

Proof Write p,(z) = > G%(z)[~Ayp(y)]. Then as a finite sum of g-potentials, p, () is a

lyl<n
g-potential. Now p,,(z) < p(z), for

—Apa(r) = > [=Agp(y)d,(2)] < —Agp(z),

ly|<n

hence, —A,[p(z) —pn(x)] > 0. This means that there exists a g-superharmonic function s(x) such
that p(x) — p,(x) = s(z). Now —s(z) is a g-subharmonic function dominated by the potential
pn(x) so that —s(x) < 0; consequently, p(x) > p,(z).

Then take limits as n — oo to arrive at

Y Gi@)[-Ap(y)] = lim »y  Gi(x)[~Ap(y)] < p().

yeX lyl<n

Now as the limit of ¢g-potentials, the infinite sum represents a g-superharmonic function which
is dominated by a g-potential. Hence, the infinite sum u(z) = ZXGg(x)[—qu(y)] is a g-
ye

potential. Moreover,

—Agfu(@)] = 8,(2)[~Agp(y)] = ~Agp(2).

yeX

Since Ay[p(x) — u(x)] = 0, then there is a g-harmonic function h(x) on X such that p(z) =
u(z) + h(z). Then h = 0 by the uniqueness of representation of g-potentials. Thus, p(z)

u(@) = Y GI(x)[~Agp(y)). 0

lyl<n
Let now s(x) > 0 be a g-superharmonic function on a Schrodinger network. Then s(z) is
the unique sum of a g-potential p(x) and a non-negative g-harmonic function A(z). Note that
—Ayp(x) = —Ays(x). Let us now apply Theorem 7 and Theorem 8 to these two functions p(z)
and h(z). Consequently we have proved the following theorem.
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Theorem 9. Let s(x) be a non-negative q-superharmonic function on a Schrodinger network
{X,t,q}. Then there exists a unique unitary Radon measure v with the support in the set E of
the minimal q-harmonic functions such that

s(x) = Z Gl(r)[=Ays(y)] + /h(x)du(h), hekE.

yeX

§ 4. g-Poisson equation on infinite trees

In this section, we restrict ourselves to the consideration of functions defined on an infinite
tree 7. Recall that an infinite tree {7',¢} is an infinite network in which there is no closed path
containing more than 2 vertices without terminal vertices (if a vertex has only one neighbour, then
it is called a terminal vertex). Consequently, there is a unique path joining two given vertices.
Let us fix a vertex e in 7" and measure distances from e; that is if x is any vertex in 7" and
{e = xp, 21, 29,...,2, = x} is a unique path joining e to x, write |z| = n. Then remark that for
any vertex z, |x| = n > 1, there is a unique predecessor vertex z such that |z| = n — 1; and if
{y1,Y2, ..., Ym} are the other neighbours of = then |y;| =n+1fori=1,2,...,m.

The reason for restricting our functions to an infinite tree without terminal vertices is that we
are able to prove the crucial Lemma 1 only in this restricted case, not in the context of a general
infinite network.

Lemma 1. Suppose u(x) is a g-harmonic function on |x| < n. Then there exists a q-harmonic
Sfunction v(x) on T such that v(z) = u(x), for all |x| < n.

Pro o f. Let xy be any vertex on the boundary of |z| < n, then |zq| = n and let {Zo, 1, ..., Ym}
be the neighbours of x, as given above.

Since u(x) is ¢-harmonic on |z| < n, Aju(z) = 0, for all |x| < n. Choose a constant /3,
such that Au(zg) = q(x¢)u(xo); for this to happen we should have > t(zo, 2)[u(z) — u(zg)] =

— alan)u(zn). Thatis, 3= tzo, 2)u(=) = [tzo) a(ao)uzo). That is, #(zo, Fo)u(Fo )+ B[t (o) —
— t(xo, To)] = [t(x0) + q(oxo)]u(xo). Since t(xg) — t(xo, To) # 0 (because xq is not a terminal

vertex), the constant 3 is well-defined. By continuing this process at each vertex at the boundary
of the set {z: |z| < n}, we will get a function v(z) on {z: |z| < n + 1}, such that u(z) = v(x)
and Av(z) = g(x)v(x) at each vertex on {z: || < n}. Then v(x) can be extended to a ¢-
harmonic function on 7', preserving the value u(x) on {z: |z| < n}. O

Theorem 10 (¢-Poisson equation on an infinite tree). Suppose f(x) is a real-valued function
on an infinite tree T'. Then there exists a function u(x) such that Aju(z) = f(x).

Proof By[10, Lemma 3.5.4] for any vertex a, there exists a g-superharmonic function s, ()
such that A,s,(z) = —d,(z). Let f,,(x) be the restriction of f(x) to the set n < |z| <n + 1 and
fn(z) = 0 outside this set. Let

un(w) = Y sa@)f,f(a)

n<|a|<n+1

which is a g-superharmonic function such that —A,u,(z) = f(z) on X. Now u,(z) is a ¢-
harmonic function on {z: |z| < n}. Hence, by Lemma 1, there exists a g-harmonic function
hn(x) on X such that h,(z) = u,(z) on {x: |x| < n}. Write v,(z) = u,(z) — hp(2).

Let v (x) = > w,(x). This is a real-valued function since at any vertex, all but a finite
n=1
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number of terms in the infinite sum are zero and has the super mean-value property, hence, a
g-superharmonic function. Also

—A v (2) + se(x) fT(e)] = £ ()

for all z in X.

Similarly there exists a g-superharmonic function [v~(z) + ( )f~(e)] on T such that
—Ag[v7(x) + se(x) f~(€)] = f () on T. Take now u(z)=[v™(x) — v"(x) — se(x) f(e)] which is
a difference of two g-superharmonic functions on 7" such that A,u(z) = f(z). O
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Beckoneunnie cern IlIpénuurepa

Kniouegvie cnosa: g-rapmoHnyeckue GyHKLMH, g-cyneprapmonnueckue ¢pyHkuuu, cetb Llpéaunrepa, ru-
nepoonmueckas cets Llpénunarepa, mapadonndeckas cethb Lpéaunarepa, MHTErpanbHOE MPEACTaBICHNUE.

VJIK 517
DOI: 10.35634/vm210408

Koneuno-pasHoctabie Moaenu 1uddepeHnanbHbIX YPaBHEHUH B YaCTHBIX POW3BOAHBIX, TAKHE KaK ypaB-
HeHus Jlannaca wnu IlyaccoHa, mpuBOIsAT K KOHEYHOU ceTH. JJUCKpETU3UPOBAHHOE YpaBHEHHE Ha HEorpa-
HUYEHHOM MHO)XE€CTBE Ha IJIOCKOCTH WJIM B IPOCTPAHCTBE IPUBOANT K OECKOHEUHO# ceTr. B 6eckonedHoi
cetn onepatop Llpénuarepa (BosmymieHHbIH onepartop Jlamaca, g-onepatop Jlanmaca) onpenensiercst s
Pa3BUTHS TEOPUH JUCKPETHOTO MOTEHIMaNa, KoTopas UMeeT MoJelb B ypaBHeHuH Llpénunrepa B eBKIM-
noBBIX NpocTpaHcTBax. Mecnenyercs ca3p Mexay A-teopueii oneparopa Jlannaca u Ag-teopueil. B Ay-
Teopuu ypaBHeHHe [lyaccoHa pernaercs, €ciau CeTh SABISIETCSA IEPEBOM, M B OOIEM ciydae MOIydaeTcs
KaHOHHYECKOe TPEeCTaBIeHNE I HEOTPUIATENBHBIX ¢-CYIIePrapMOHNYECKIX (PyHKITHA.
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