Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
«Послойное» рассеяние для разностного оператора Шрёдингера
В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.
В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.
“Layerwise” scattering for a difference Schrodinger operator
In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.
In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.