Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Неосцилляция решений дифференциального уравнения второго порядка с обобщенными функциями Коломбо в коэффициентах
Рассматривается уравнение
$$Lx\doteq x''+P(t)x'+Q(t)x=0,\quad t\in[a, b]\subset \mathcal{I}\doteq(\alpha,\beta)\subset\mathbb{R}, \qquad (1)$$где $P$, $Q$ - $C$-обобщенные функции, определенные на $ \mathcal I$ и представляющие собой смежные классы фактор-алгебры Коломбо. Пусть $ \mathcal{R}_P$, $ \mathcal{R}_Q$ - представители этих классов соответственно, $\mathcal{A}_N$ - классы финитных функций, необходимые для определения алгебры Коломбо. Получены новые достаточные условия неосцилляции уравнения $(1)$: доказано, что если выполнено условие $$(\exists\, N\in\mathbb{N}) (\forall\, \varphi\in \mathcal{A}_N) (\exists\, \mu_0<1) \; \int_a^b| \mathcal{R}_P(\varphi_\mu,t)|\,dt+\int_a^b| \mathcal{R}_Q(\varphi_\mu,t)|\,dt<\\<\frac{4}{b-a+4}\quad (0<\mu<\mu_0),$$где $\varphi_{\mu}\doteq \frac{1}{\mu}\varphi\left(\frac{t}{\mu}\right)$, то уравнение $(1)$ неосцилляционно на $[a, b]$. Доказана теорема о разделении нулей и следствие, вытекающее из нее.
Disconjugacy of solutions of a second order differential equation with Colombeau generalized functions in coefficients
We consider a differential equation $$Lx\doteq x''+P(t)x'+Q(t)x=0,\quad t\in[a, b]\subset \mathcal{I}\doteq(\alpha,\beta)\subset\mathbb{R}, \qquad(1)$$where $P$, $Q$ are $C$-generalized functions defined on $\mathcal{I}$ and are known as equivalence classes of Colombeau algebra. Let $\mathcal{R}_P$ and $\mathcal{R}_Q$ be representatives of $P$ and $Q$ respectively, $\mathcal{A}_N$ are classes of functions with compact support used to define Colombeau algebra. We obtain new sufficient conditions for disconjugacy of the equation $(1)$. We prove that if the condition$$(\exists\, N\in\mathbb{N}) (\forall\, \varphi\in \mathcal{A}_N) (\exists\, \mu_0<1)\ \int_a^b|\mathcal{R}_P(\varphi_\mu,t)|\,dt+\int_a^b|\mathcal{R}_Q(\varphi_\mu,t)|\,dt<\\<\frac{4}{b-a+4}\quad (0<\mu<\mu_0)$$is satisfied, where $\varphi_{\mu}\doteq \frac{1}{\mu}\varphi \left(\frac{t}{\mu}\right)$, then the equation $(1)$ is disconjugate on $[a, b]$. We prove the separation theorem and its corollary.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.