Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Об одной задаче группового преследования во временных шкалах
В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается линейная задача преследования группой преследователей одного убегающего, описываемая в заданной временной шкале $\mathbb{T}$ уравнениями вида \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} где $z_i^{\Delta}$ — $\Delta$-производная функций $z_i$ во временной шкале $\mathbb{T}$, $a$ — произвольное число, не равное нулю. Множество допустимых управлений для каждого участника представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — заданные выпуклые компакты в $\mathbb R^k$. Преследователи действуют согласно контрстратегиям на основе информации о начальных позициях и предыстории управления убегающего. В терминах начальных позиций и параметров игры получено достаточное условие поимки. Для случая задания временной шкалы в виде $\mathbb T = \{\tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ найдены достаточные условия разрешимости задач преследования и уклонения. При исследовании в обоих случаях в качестве базового используется метод разрешающих функций.
On a group pursuit problem on time scales
In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.