Прямая и обратная задачи для дифференциального уравнения дробного порядка по Хильферу

 pdf (208K)

В статье исследуются прямая и обратная задачи для уравнений субдиффузии с участием дробной производной в смысле Хильфера. В качестве эллиптической части уравнения взят произвольный положительный самосопряженный оператор $A$. В частности, в качестве оператора $A$ можно взять оператор Лапласа с условием Дирихле. Сначала доказано существование и единственность решения прямой задачи. Затем с помощью представления решения прямой задачи доказывается существование и единственность обратной задачи нахождения правой части уравнения, зависящей только от пространственной переменной.

Ключевые слова: задачи Коши, производные Хильфера, уравнение субдиффузии, обратные задачи
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2024, т. 34, вып. 2, с. 167-181
DOI: 10.35634/vm240201

Direct and inverse problems for the Hilfer fractional differential equation

The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.

Keywords: Cauchy problems, Hilfer derivatives, subdiffusion equation, inverse problems
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 2, pp. 167-181

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref