Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О решении задач терминального сближения и уклонения для линейных многошаговых систем при фазовых ограничениях
Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.
On solving terminal approach and evasion problems for linear discrete-time systems under state constraints
The paper is devoted to elaboration of polyhedral techniques for solving two control problems for linear discrete-time systems with uncertainties under state constraints, namely, the terminal approach problem and the terminal evasion one. Such problems arise in systems with two controls, where the aim of the first is to steer the trajectory onto a given terminal set at a given instant without violating the state constraints, the aim of the other is opposite. It is assumed that the terminal set is a parallelepiped, the controls are bounded by parallelotope-valued constraints, and the state constraints are given in the form of so-called zones. We present techniques for solving both problems basing on polyhedral (parallelotope-valued or parallelepiped-valued) tubes. The techniques for solving the approach problem were proposed by the author earlier, but here additional properties of them are investigated. In particular, for the case without state constraints, guaranteed estimates are found for the trajectory that ensure that it is inside the tube. Convenient sufficient conditions are given to guarantee the obtaining of nondegenerate cross-sections during the calculations. For the evasion problem, a common solution scheme is considered, and then polyhedral techniques are proposed. The whole parametric families of external and internal polyhedral estimates for the solvability tubes for both problems are presented and compared. An illustrative example is given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.