Обратная коэффициентная задача для уравнения в частных производных со многими производными дробных порядков Римана–Лиувилля

 pdf (235K)

В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

Ключевые слова: уравнение дробного порядка, прямая задача, обратная задача, метод Фурье, функция Миттаг–Леффлера, преобразование Лапласа, существование, единственность
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2024, т. 34, вып. 3, с. 321-338
DOI: 10.35634/vm240302

Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives

This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

Keywords: fractional order equation, direct problem, inverse problem, Fourier method, Mittag–Leffler function, Laplace transform, existence, uniqueness
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 3, pp. 321-338

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref