Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2
Разметка ребер связного графа $G = (V, E)$ называется локальной антимагической, если она является биекцией $f\colon E \to\{1,\ldots ,|E|\}$ такой, что для любой пары смежных вершин $x$ и $y$ выполнено $f^+(x)\not= f^+(y)$, где $f^+(x)= \sum f(e)$ — индуцированная метка вершины, а $e$ пробегает все ребра, инцидентные $x$. Локальное антимагическое хроматическое число графа $G$, обозначаемое $\chi_{la}(G)$, — это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок $G$. В данной статье мы охарактеризуем $s$-мостовые графы с локальным антимагическим хроматическим числом 2.
Complete characterization of bridge graphs with local antimagic chromatic number 2
An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f\colon E \to\{1,\ldots ,|E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we characterize $s$-bridge graphs with local antimagic chromatic number 2.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.