Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2

 pdf (268K)

Разметка ребер связного графа $G = (V, E)$ называется локальной антимагической, если она является биекцией $f\colon E \to\{1,\ldots ,|E|\}$ такой, что для любой пары смежных вершин $x$ и $y$ выполнено $f^+(x)\not= f^+(y)$, где $f^+(x)= \sum f(e)$ — индуцированная метка вершины, а $e$ пробегает все ребра, инцидентные $x$. Локальное антимагическое хроматическое число графа $G$, обозначаемое $\chi_{la}(G)$, — это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок $G$. В данной статье мы охарактеризуем $s$-мостовые графы с локальным антимагическим хроматическим числом 2.

Ключевые слова: локальная антимагическая разметка, локальное антимагическое хроматическое число, $s$-мостовые графы
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2024, т. 34, вып. 3, с. 375-396
DOI: 10.35634/vm240305

Complete characterization of bridge graphs with local antimagic chromatic number 2

An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f\colon E \to\{1,\ldots ,|E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we characterize $s$-bridge graphs with local antimagic chromatic number 2.

Keywords: local antimagic labeling, local antimagic chromatic number, $s$-bridge graphs
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 3, pp. 375-396

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref