Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Неустойчивость по Ляпунову положения равновесия нелокального уравнения неразрывности
pdf (233K)
Статья посвящена развитию методов Ляпунова для анализа неустойчивости положения равновесия динамической системы в пространстве вероятностных мер, задаваемой нелокальным уравнением неразрывности. Рассматривается случай лишь барицентрически субдифференцируемой функции Ляпунова. Получены достаточные условия неустойчивости, которые являются аналогом теоремы Четаева и опираются на анализ поведения негладкой функции Ляпунова в окрестности положения равновесия. Приведен пример динамической системы, неустойчивость положения равновесия которой доказывается с использованием полученной теоремы.
Lyapunov instability of the equilibrium of the non-local continuity equation
The article is devoted to the development of Lyapunov methods for analyzing the instability of the equilibrium of a dynamical system in the space of probability measures, given by the nonlocal continuity equation. We consider the case of non-smooth Lyapunov function, but barycentrically subdifferentiable only. Sufficient instability conditions are obtained, which are an analogue of the Chetaev theorem and are based on an analysis of the behavior of the non-smooth Lyapunov function in the neighbourhood of the equilibrium. Also we give an example of a dynamical system, the instability of whose equilibrium position is proved using the obtained theorem.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



