Текущий выпуск Выпуск 4, 2025 Том 35

Движение уравновешенного кругового профиля в поле неподвижных точечных источников

 pdf (1524K)

В данной работе рассматривается движение кругового профиля в идеальной несжимаемой жидкости, в которой находится два неподвижных точечных источника. Показано, что исследование такой системы сводится к исследованию движения материальной точки (геометрического центра профиля) в потенциальном поле. Указаны неподвижные точки системы, соответствующие стационарным конфигурациям профиля в абсолютном пространстве. Рассмотрен предельный случай, когда источники имеют противоположные по знаку, но одинаковые по модулю, интенсивности и стянуты в одну точку, то есть рассмотрено движение профиля в поле неподвижного диполя. Показано, что в этом случае система интегрируема, выполнен ее полный анализ.

Ключевые слова: идеальная жидкость, круговой профиль, точечный источник, гамильтонова форма
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2025, т. 35, вып. 4, с. 601-618
DOI: 10.35634/vm250406

The motion of a balanced circular foil in the field of fixed point sources

This paper is concerned with the motion of a circular foil in an ideal incompressible fluid containing two fixed point sources. It is shown that the study of such a system reduces to investigating the motion of a material point (the geometric center of the foil) in a potential field. Fixed points of the system corresponding to stationary configurations of the foil in absolute space are found. An analysis is made of the limiting case with sources whose intensities are opposite in sign, but have the same absolute value and which are contracted to a single point, that is, the motion of the foil in the field of a fixed dipole is considered. It is shown that in this case the system is integrable, and a complete analysis of the system is carried out.

Keywords: ideal fluid, circular foil, point source, Hamiltonian form
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2025, vol. 35, issue 4, pp. 601-618

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref