Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Движение уравновешенного кругового профиля в поле неподвижных точечных источников
pdf (1524K)
В данной работе рассматривается движение кругового профиля в идеальной несжимаемой жидкости, в которой находится два неподвижных точечных источника. Показано, что исследование такой системы сводится к исследованию движения материальной точки (геометрического центра профиля) в потенциальном поле. Указаны неподвижные точки системы, соответствующие стационарным конфигурациям профиля в абсолютном пространстве. Рассмотрен предельный случай, когда источники имеют противоположные по знаку, но одинаковые по модулю, интенсивности и стянуты в одну точку, то есть рассмотрено движение профиля в поле неподвижного диполя. Показано, что в этом случае система интегрируема, выполнен ее полный анализ.
The motion of a balanced circular foil in the field of fixed point sources
This paper is concerned with the motion of a circular foil in an ideal incompressible fluid containing two fixed point sources. It is shown that the study of such a system reduces to investigating the motion of a material point (the geometric center of the foil) in a potential field. Fixed points of the system corresponding to stationary configurations of the foil in absolute space are found. An analysis is made of the limiting case with sources whose intensities are opposite in sign, but have the same absolute value and which are contracted to a single point, that is, the motion of the foil in the field of a fixed dipole is considered. It is shown that in this case the system is integrable, and a complete analysis of the system is carried out.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



