Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Проблема П.С. Новикова для суперинтуиционистской логики $L$ состоит в описании семейства всех максимальных консервативных (то есть полных по П.С. Новикову) расширений $L$ в обогащенном дополнительными логическими связками и константами языке. В связи с континуальностью семейства всех суперинтуиционистских логик имеет смысл рассматривать проблему П.С. Новикова применительно к логикам, уже попавшим по тем или иным причинам в поле зрения исследователей.
Известно, что существуют три так называемые предтабличные суперинтуиционистские логики (то есть не являющиеся табличными, но такие, что все их собственные расширения уже табличны). Одна из них - логика $L2$ - характеризуется классом корневых упорядоченных множеств глубины 2. Установлено, что для суперинтуиционистской логики $L2$ в языке с единственной дополнительной константой существует ровно пять полных по Новикову расширений; дано их семантическое описание.
В настоящей работе предлагается явная аксиоматика гильбертовского типа для каждого из пяти существующих полных по П.С. Новикову расширений суперинтуиционистской логики $L2$ в языке с одной дополнительной логической константой.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.