Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'акустические граничные условия':
Найдено статей: 2
  1. Рассматривается одномерная обратная задача определения ядра интегрального оператора свертки в волновом уравнении на отрезке для сред с дисперсией. Прямая задача представляет собой начально-краевую задачу одновременного нахождения потенциала скорости и смещения точек границы среды. В качестве граничных условий используются условия акустического управления. В качестве дополнительной информации для постановки обратной задачи задается интегральное условие переопределения. Обратная задача сводится к эквивалентной задаче исследования разрешимости замкнутой системы интегро-дифференциальных уравнений вольтерровского типа с нулевыми граничными условиями. С помощью техники оценки интегральных операторов и принципа сжимающих отображений в пространствах Соболева доказана локальная теорема существования и единственности решения обратной задачи.

  2. Представлены результаты численных исследований собственных колебаний усеченных прямых конических оболочек вращения, полностью заполненных идеальной сжимаемой жидкостью. Толщина оболочек непостоянна вдоль образующей и изменяется по различным законам. Поведение упругой конструкции и жидкой среды описывается в рамках классической теории оболочек, основанной на гипотезах Кирхгофа–Лява, и уравнений Эйлера. Уравнения движения оболочки совместно с соответствующими геометрическими и физическими соотношениями сводятся к системе обыкновенных дифференциальных уравнений относительно новых неизвестных. Акустическое волновое уравнение, записанное относительно гидродинамического давления, преобразуется к системе дифференциальных уравнений с помощью метода обобщенных дифференциальных квадратур. Решение сформулированной краевой задачи осуществляется методом ортогональной прогонки Годунова и сводится к вычислению собственных частот колебаний. Для этой цели используется сочетание пошаговой процедуры с последующим уточнением найденных значений в полученном диапазоне методом Мюллера. Достоверность получаемых результатов подтверждена сравнением с известными численными решениями. Для оболочек с различными углами конусности и комбинациями граничных условий (свободное опирание, жесткое и консольное закрепления) исследованы зависимости низших частот колебаний, полученных при степенном (линейном и квадратичном, имеющих симметричную и несимметричную формы) и гармоническом (с положительной и отрицательной кривизной) изменении толщины. Оценено влияние граничных условий на возможность существования конфигураций (угол конусности, закон изменения толщины, отношение максимальной и минимальной толщины профиля), обеспечивавших повышение фундаментальной частоты по сравнению с оболочками постоянной толщины при ограничениях на вес конструкции.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref