Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'блочная матричная система':
Найдено статей: 2
  1. Работа относится к классической задаче назначения спектра собственных значений. Мы рассматриваем эту задачу в обобщенной постановке. Коэффициенты системы являются блочными матрицами. Требуется построить регулятор, который назначает замкнутой системе заданные блочные матричные коэффициенты характеристического матричного полинома. Для блочных матричных билинейных систем управления получены достаточные условия разрешимости задачи назначения произвольных матричных коэффициентов характеристического матричного полинома, когда коэффициенты системы имеют специальный вид, а именно, матрица состояния является нижней блочной матрицей Фробениуса, а матричные коэффициенты при регуляторе содержат некоторые нулевые блоки. Доказано, что основной результат обобщает соответствующую теорему для блочной матричной линейной системы управления, замкнутой линейной статической обратной связью по выходу. Показано, что достаточные условия не являются необходимыми. Рассмотрены частные случаи. Приведены примеры, иллюстрирующие полученные результаты.

  2. Для блочных матричных линейных систем управления изучается свойство, обеспечивающее назначение произвольных матричных коэффициентов для характеристического матричного полинома. Это свойство является обобщением свойства назначаемости спектра собственных значений или назначаемости произвольных коэффициентов характеристического полинома, от систем с блочными матрицами со скалярными блоками $(s=1)$ на системы с блочными матрицами с блоками более высоких размерностей $(s>1)$. По сравнению со скалярным случаем $(s=1)$ в блочных случаях более высоких размерностей $(s>1)$ появляются новые особенности, отсутствующие в скалярном случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных, нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блочных случаях более высоких размерностей это не так. Устанавливаются импликации между этими свойствами.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref