Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучаются некоторые особенности динамики нелинейных двумерных волн давления в жидкости, содержащей пузырьковые зоны конечных размеров. Задача рассматривается с учетом двумерных эффектов. Представлены результаты воздействий волновых импульсов на твердую стенку, частично покрытую пузырьковой завесой.
-
Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.
-
Распространение нелинейных волн в слабосжимаемой жидкости Кельвина-Фойгта, содержащей пузырьковые кластеры, с. 171-194С помощью упрощенного метода возмущений исследуется влияние взаимодействия между пузырьками на распространение волн в однородном слабосжимаемом вязкоупругом пузырьковом потоке. С использованием подхода сохранения кинетической энергии выводится уравнение динамики пузырьков. Динамика пузырьков и уравнения смеси в сочетании с уравнением состояния газа позволяют исследовать явление распространения ударной волны в смеси. Выведено двумерное уравнение Кортевега-де Фриза-Бюргера в терминах профиля давления. Установлено, что при использовании рассматриваемых нами параметров взаимодействие между пузырьками не оказывает влияния.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.